首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An aminopeptidase, Jc-peptidase, was purified from Japanese cedar pollen by seven steps, including precipitation with ammonium sulfate, ion-exchange chromatography, gel filtration, hydrophobic interaction chromatography on phenyl-agarose, and high-performance liquid chromatography. Purified Jc-peptidease has a molecular weight of 42 kDa and hydrolyzes the synthetic substrates of L-phenylalanyl-4-methylcoumaryl-7-amide (Phe-MCA) with Km = 5 x 10(-5) M, Tyr-MCA with Km = 7 x 10(-4) M, Leu-MCA with Km = 1 x 10(-3) M, and Met-MCA with Km = 1 x 10(-3) M. Other MCA analogues such as Arg-MCA or Glu-MCA failed to serve as its substrates. The activity was inhibited in the presence of phebestin, [(2S,3R)-3-amino-2-hydroxy-4-phenylbutanoyl-L-valyl]-L-phenylalanine, with Ki = 4.7 x 10(-5) M, or bestatin, [(2S,3R)-3-amino-2-hydroxy-4-phenylbutanoyl]-L-leucine, with Ki = 1.1 x 10(-4) M. According to amino acid sequence analysis, the N-terminal amino group seems to be blocked. The physiological function of the aminopeptidase (Jc-peptidase) has not been clarified in vivo.  相似文献   

2.
The first enzyme of the basidiomycete Piptoporus soloniensis, a peptidase (PsoP1), was characterized after isolation from submerged cultures, purification by fractional precipitation, and preparative native-polyarylamide gel electrophoresis (PAGE). The native molecular mass of PsoP1 was 38 kDa with an isoelectric point of 3.9. Similar to chymosin from milk calves, PsoP1 showed a maximum milk-clotting activity (MCA) at 35-40 °C and was most stable at pH 6 and below 40 °C. The complete inhibition by pepstatin A identified this enzyme as an aspartic peptidase. Electrospray ionization-tandem MS showed an amino acid partial sequence that was more homologous to mammalian milk clotting peptidases than to the chymosin substitute from a fungal species, such as the Zygomycete Mucor miehei. According to sodium dodecyl sulfate-PAGE patterns, the peptidase cleaved κ-casein in a way similar to chymosin and hydrolyzed β-casein slowly, as it would be expected from an efficient chymosin substitute.  相似文献   

3.
Summary Organic matter was extracted from three soils, a cultivated Berwick sandy loam, a cultivated Franklin loamy sand, and an uncultivated Cumberland silty loam. Gel-permeation chromatography was used to separate organic matter extracts into high- (HMW) and low-molecular-weight (LMW) fractions. Reversed-phase high performance liquid chromatography was used to separate and collect the LMW peptide fractions. Peptide samples were hydrolyzed with immobilized proteases attached to beaded agarose and carboxymethyl cellulose in column and batch reaction systems. The chromatograms suggested that peptides are bound to common soil components. The amino acids released in the greatest percentages were relatively non-polar. Large percentages of serine, glycine, alanine, threonine, and valine were observed in the LMW soil peptides. Little aspartic acid, asparagine, glutamic acid, glutamine, arginine, and no histidine was detected in the LMW soil peptides. The soil peptides released different amino acid percentages and quantities when hydrolyzed by immobilized proteases attached to different supports. The quanitities of amino acids released by batch hydrolysis differed from those obtained with column hydrolysis. Greater quantities of amino acids were released (by both types of immobilized protease) from the LMW peptide hydrolysates of the two cultivated soils than from the uncultivated soil.  相似文献   

4.
为促进对马面鱼皮资源的综合利用,开发高附加值产品,本试验以DPPH自由基清除率和水解度(DH)为评价指标,探讨马面鱼皮胶原蛋白的最佳酶解工艺,并采用超滤和凝胶柱层析法分离制备抗氧化肽,通过超高效液相色谱-质谱联用(UPLC-MS)法对其进行结构解析。此外,还探讨了pH值、温度及体外模拟消化对多肽抗氧化活性的影响。结果表明,利用双酶分步酶解法可制备高活性抗氧化多肽,即在底物浓度3%,加酶量3 600 U·g-1以及温度50℃的条件下先用Proteasea A ‘Amano’2G酶解3 h,再用酸性蛋白酶酶解2 h,清除DPPH自由基的IC50值为13.03 mg·mL -1。经超滤及柱层析分离后,可得到抗氧化活性较高的A1组分,其清除DPPH自由基的 IC50值为1.80 mg·mL-1。稳定性研究结果表明,所制备的胶原蛋白抗氧化肽热稳定性好,在偏酸性条件下能保持较高的活性,经体外模拟胃肠消化后仍能保持较高的抗氧化活性。根据UPLC-MS分析推测A1的氨基酸序列可能为Gly-Glu-Gly-Ala-Cys-Asn或Asn-Glu-Gly-Ala-Cys-Gly。本研究结果为马面鱼皮的高值化利用及高活性抗氧化肽的筛选提供了一定的理论依据。  相似文献   

5.
在日粮蛋白质的降解过程中,蛋白酶是把蛋白质水解为肽或氨基酸的关键酶,由于受到纯培养技术的影响,瘤胃内产生蛋白酶活性的细菌和各种蛋白酶的遗传信息知之甚少。本实验旨在利用蛋白酶选择性培养基从瘤胃微生物 Fosmid 文库中筛选出含蛋白酶活性的克隆子,通过生物信息学分析获得这些克隆子的遗传信息。应用脱脂乳粉和大豆蛋白粉两种蛋白酶选择性培养基,从 30 000 个克隆中筛选得到 14 个具有蛋白酶活性的活性克隆。利用福林酚试剂法检测 14 个蛋白酶克隆子的酶活力,结果表明,每个克隆子分别具有不同的蛋白质分解能力。以酪蛋白为底物的克隆子酶活力介于 0.59~2.74 U/mg 之间,以大豆蛋白粉为底物的克隆子酶活力在 0.70~7.19 U/mg 之间,而且同一克隆对于不同的底物所表现的酶活力也不同。随机挑选 10 个活性克隆进行末端测序(GenBank 登录号:JY084410~JY084429),经 Blast 比对后发现,45%的基因序列与已知编码基因无法匹配,pro10F 末端序列与金属肽酶匹配度为 54%,属于肽酶 M13 家族,且该克隆蛋白酶最适 pH 值为 7.0,为下一步研究该克隆的酶学性质和序列特征分析提供了基础资料。  相似文献   

6.
Gelatin extracted from Alaska pollack skin was hydrolyzed with serial digestions in the order of Alcalase, Pronase E, and collagenase using a three-step recycling membrane reactor. The fraction from the second step, which was hydrolyzed with Pronase E, was composed of peptides ranging from 1.5 to 4.5 kDa and showed high antioxidative activity. Two different peptides showing strong antioxidative activity were isolated from the hydrolysate using consecutive chromatographic methods including gel filtration on a Sephadex G-25 column, ion-exchange chromatography on a SP-Sephadex C-25 column, and high-performance liquid chromatography on an ODS column. The isolated peptides, P1 and P2, were composed of 13 and 16 amino acid residues, respectively; and both peptides contained a Gly residue at the C-terminus and the repeating motif Gly-Pro-Hyp. The antioxidative activities of the purified peptides were measured using the thiobarbituric acid method, and the cell viability was measured with MTT assay. The results showed that P2 had potent antioxidative activity on peroxidation of linoleic acid. Moreover, the cell viability of cultured liver cells was significantly enhanced by addition of the peptide. These results indicate that the purified peptide, P2, from gelatin hydrolysate of Alaska pollack skin is a natural antioxidant which has potent antioxidative activity.  相似文献   

7.
Summary Soil organic matter (OM) from seven different fertility plots of a loamy sand was extracted and fractionated into high- and low-molecular-weight (HMW, LMW) fractions using gel filtration. The fractions were acid-hydrolyzed to determine the amino sugar and amino acid contents. The same fractions were hydrolyzed with an immobilized protease reactor column. Reverse-phase high-performance liquid chromatography (HPLC) was used to identify the soil amino-N compounds. With the HMW fraction as substrate, the enzyme released less than 1% of 11 amino-N compounds determined by acid hydrolysis. Phenylalanine and leucine, however, were recovered in quantities of 2% and 4%, respectively. Immobilized protease hydrolysis of the LMW fraction recovered considerably more amino-N compounds compared with acid hydrolysis of the same fractions. Each system of hydrolysis produced some amino-N compounds not found in the other. We conclude that an immobilized enzyme reactor column will allow a researcher to perform time-course hydrolysis, so that hydrolysis intermediates, e.g. peptides, can be separated and identified.  相似文献   

8.
Latex of the medicinal plant Ervatamia coronaria was found to contain at least three cysteine proteases with high proteolytic activity, called ervatamins. One of these proteases, named ervatamin B, has been purified to homogeneity using ion-exchange chromatography and crystallization. The molecular mass of the enzyme was estimated to be 26 000 Da by SDS-PAGE and gel filtration. The extinction coefficient (epsilon(1%)(280 nm)) of the enzyme was 20.5 with 7 tryptophan and 10 tyrosine residues per molecule. The enzyme hydrolyzed denatured natural substrates such as casein, azoalbumin, and azocasein with a high specific activity. In addition, it showed amidolytic activity toward N-succinyl-alanine-alanine-alanine-p-nitroanilide with an apparent K(m) and K(cat) of 6.6 +/- 0.5 mM and 1.87 x 10(2) s(-)(1), respectively. The pH optima was 6.0-6.5 with azocasein as substrate and 7.0-7.5 with azoalbumin as substrate. The temperature optimum was around 50-55 degrees C. The enzyme was basic with an isoelectric point of 9.35 and had no carbohydrate content. Both the proteolytic and amidolytic activity of the enzyme was strongly inhibited by thiol-specific inhibitors. Interestingly, the enzyme had only two disulfide bridges versus three as in most plant cysteine proteases of the papain superfamily. The enzyme was relatively stable toward pH, denaturants, temperature, and organic solvents. Polyclonal antibodies raised against the pure enzyme gave a single precipitin line in Ouchterlony's double immunodiffusion and typical color in ELISA. Other related proteases do not cross-react with the antisera to ervatamin B showing that the enzyme is immunologically distinct. The N-terminal sequence showed conserved amino acid residues and considerable similarity to typical plant cysteine proteases.  相似文献   

9.
In this study, collagen extracted from chicken legs (which are the yellow keratin parts containing a nail) was hydrolyzed with various enzymes, and the angiotensin I-converting enzyme (ACE)-inhibitory activity of each hydrolysate was determined. The hydrolysate by treatment with an Aspergillus species-derived enzyme had the highest activity (IC 50 = 260 microg/mL). The fraction of this hydrolysate obtained by ultrafiltration with a molecular-weight cutoff of 3000 Da (low fraction) had a stronger activity (IC 50 = 130 microg/mL) than the fractionated one. This fraction was further fractionated by HPLC, and the peptides in the fraction with high ACE-inhibitory activity were identified. The amino acid sequences of the four peptides were identified using a protein sequencer. These peptides were synthesized to confirm their ACE-inhibitory activities; this showed that peptides with a Gly-Ala-Hyp-Gly-Leu-Hyp-Gly-Pro sequence had the highest activity (IC 50 = 29 microM). When the low fraction was administered to spontaneous hypertensive rats, a decrease in their blood pressure was observed after 2 h of administration, and a significant decrease in blood pressure (-50 mmHg) was observed after 6 h. Moreover, long-term administration studies indicated that the low fraction showed a significant suppression of increased blood pressure.  相似文献   

10.
Brewer's spent grain (BSG) is an abundant, protein-rich coproduct from the beer industry. There is a growing interest in increasing and diversifying the exploitation of BSG and related coproducts for economic and environmental reasons. In this paper, we report on a study of the solubilization of proteinaceous material from BSG using several commercial peptidase preparations. Our data show that Alcalase is the most effective peptidase for solubilization of BSG proteins, with an ability to release up to 77% of total protein. The peptides produced by Alcalase had lower average molecular weight than peptides produced by the less effective enzymes. Processes that combined peptidase treatment with carbohydrate-degrading enzyme preparations such as Depol740 increased the solubilization of dry matter (from 30 to 43% under optimal conditions). However, such additional treatment had little effect on the solubilization of protein. The choice of enzyme dosage depends on the desired hydrolysis time and was assessed through several experiments. Protein solubilization was consistently better at pH 8.0 as compared to pH 6.8. Maximum protein solubilization at pH 8.0 within 4 h required the use of 10-20 microL Alcalase per g of dry matter. However, a considerable degree of solubilization (64%) and hydrolysates with high protein content could be obtained using doses down to only 1.2 microL. Amino acid composition analyses showed that Alcalase treatment solubilizes proline and glutamine (constituents of barley hordein) slightly more efficiently than the other amino acids in BSG.  相似文献   

11.
The gene encoding pyrethroid-hydrolyzing esterase (EstP) from Klebsiella sp. strain ZD112 was cloned into Escherichia coli and sequenced. A sequence analysis of the DNA responsible for the estP gene revealed an open reading frame of 1914 bp encoding for a protein of 637 amino acid residues. No similarities were found by a database homology search using the nucleotide and deduced amino acid sequences of the esterases and lipases. EstP was heterologously expressed in E. coli and purified. The molecular mass of the native enzyme was approximately 73 kDa as determined by gel filtration. The results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the deduced amino acid sequence of EstP indicated molecular masses of 73 and 73.5 kDa, respectively, suggesting that EstP is a monomer. The purified EstP not only degraded many pyrethroid pesticides and the organophosphorus insecticide malathion, but also hydrolyzed rho-nitrophenyl esters of various fatty acids, indicating that EstP is an esterase with broad substrates. The K(m) for trans- and cis-permethrin and k(cat)/K(m) values indicate that EstP hydrolyzes both these substrates with higher efficiency than the carboxylesterases from resistant insects and mammals. The catalytic activity of EstP was strongly inhibited by Hg2+, Ag+, and rho-chloromercuribenzoate, whereas a less pronounced effect (3-8% inhibition) was observed in the presence of divalent cations, the chelating agent EDTA, and phenanthroline.  相似文献   

12.
A novel fibrinolytic enzyme was purified from fermented shrimp paste, a popular seasoning used in Asian countries. The enzyme is a monomer with an apparent molecular weight of 18 kDa, and it is composed primarily of beta-sheet and random coils. The N-terminal amino acid sequence was determined to be DPYEEPGPCENLQVA. It is a neutral protease with an optimal activity from pH 3 to 7. No inhibition was observed with PMSF, Pepstatin A, E64, and 1,10-phenanthroline, but the enzyme was slightly inhibited by EDTA and Cu(2+). It was relatively specific to fibrin or fibrinogen as a protein substrate, yet it hydrolyzed none of the plasma proteins in the studies. In vitro, the enzyme was resistant to pepsin and trypsin digestion. It also had an anticoagulant activity measured with activated partial thrombin time and prothrombin time tests. The novel fibrinolytic enzyme derived from traditional Asian foods is useful for thrombolytic therapy. In addition, this enzyme has a significant potential for food fortification and nutraceutical applications, such that its use could effectively prevent cardiovascular diseases.  相似文献   

13.
14.
A simplified and rapid procedure for the determination of pyroglutamic acid in peptides was developed. The method involves the enzymatic cleavage of an N-terminal pyroglutamate residue using a thermostable pyroglutamate aminopeptidase and isocratic HPLC separation of the resulting enzymatic hydrolysate using a column switching technique. Pyroglutamate aminopeptidase from a thermophilic archaebacteria, Pyrococcus furiosus, cleaves N-terminal pyroglutamic acid residue independent of the molecular weight of the substrate. It cleaves more than 85% of pyroglutamate from peptides whose molecular weight ranges from 362.4 to 4599.4 Da. Thus, a new method is presented that quantitatively estimates N-terminal pyroglutamic acid residue in peptides.  相似文献   

15.
Only a minor part of Maillard reaction studies in the literature focused on the reaction between carbohydrates and peptides. Therefore, in continuation of a previous study in which the influence of the peptide C-terminal amino acid was investigated, this study focused on the influence of the peptide N-terminal amino acid on the production of pyrazines in model reactions of glucose, methylglyoxal, or glyoxal. Nine different dipeptides and three tripeptides were selected. It was shown that the structure of the N-terminal amino acid is determinative for the overall pyrazine production. Especially, the production of 2,5(6)-dimethylpyrazine and trimethylpyrazine was low in the case of proline, valine, or leucine at the N-terminus, whereas it was very high for glycine, alanine, or serine. In contrast to the alkyl-substituted pyrazines, unsubstituted pyrazine was always produced more in the case of experiments with free amino acids. It is clear that different mechanisms must be responsible for this observation. This study clearly illustrates the capability of peptides to produce flavor compounds such as pyrazines.  相似文献   

16.
Fish liver transglutaminase (FTG), a Ca(2+)-dependent enzyme, exhibits different characteristics from the Ca(2+)-independent microbial transglutaminase (MTG), leading to potential differences in their substrate specificity and reactivity. The ability of these enzymes to catalyze isopeptide bond formation by incorporating 5-(biotinamido)pentylamine (BPNH2) into peptides derived by tryptic digestion of threadfin bream (TB)-myosin was investigated to identify reaction sites and substrate specificity using a peptidomic strategy. BPNH2 was incorporated into TB-myosin peptides to a greater extent by MTG than FTG. Peptides derived from TB-myosin heavy chain (MHC) shared highest similarity to amberjack-MHC on the basis of a Mascot database search. Amino acid sequences and modification sites of BPNH2-tagged peptides were identified by tandem mass spectrometry based on the amberjack-MHC sequence. The BPNH2 modification sites catalyzed by both TGases were at the myosin rod. Most of the BPNH2 peptides contained charged amino acids (E, R, K) at the glutaminylamide site of reactive glutamine (Q*). The alpha-acrylamide site of Q* contained E, F, or L on peptides catalyzed by both enzymes, I, Q, or A on peptides catalyzed only by FTG, and V on a peptide catalyzed only by MTG. These results demonstrate the different structural requirements for glutaminyl substrates between these two enzymes.  相似文献   

17.
Defibrinated bovine plasma (DBP) was treated with the microbial protease Flavourzyme to obtain protein hydrolysates with various degrees of hydrolysis (DH). The angiotensin I-converting enzyme (ACE) inhibiting activity of the hydrolyzed protein was assessed with hippuryl-His-Leu as the substrate. The amount of hippuric acid released, due to uninhibited ACE activity, was determined by high-performance liquid chromatography. ACE inhibiting (ACEI) activity was found to increase with increasing DH; the 43% DH hydrolysate exhibited the highest activity and had an IC(50) of 1.08 mg/mL. Peptide fractions with high ACEI activity were isolated using size exclusion chromatography. The fraction that possessed the highest ACEI activity contained peptides with GYP, HL(I), HPY, HPGH, L(I)F, SPY, and YPH sequence motifs, as determined by reversed-phase liquid chromatography-tandem mass spectrometry using a novel immonium precursor-ion scanning technique. Some of these motifs correspond to sequences found in bovine serum albumin, a potential source of ACEI peptides in bovine plasma.  相似文献   

18.
This study was aimed at the determination of the pepsin-susceptible and pepsin-resistant epitopes in native and heat-treated Ara h 1, a major allergen from peanuts. Both the oligomeric structure and the trimeric structure of the allergen were investigated. Under the in vitro conditions applied, oligomeric Ara h 1, either unheated or preheated, was hydrolyzed by pepsin at a lower rate than trimeric Ara h 1. Peptides with relatively high molecular masses were shown to be able to bind IgE, whereas peptides with lower molecular masses (<2 kDa) did not. In these latter fractions, fragments of 15 previously published epitopes of mature Ara h 1 were identified. As a result, these epitopes are not likely responsible for the induction of systemic food allergic reactions to peanuts. Using sequential chymotrypsin digestion, the pepsin-resistant IgE-binding peptides were deduced to contain the previously identified intact epitopes EDWRRPSHQQ (amino acids 50-59) and PRKIRPEG (amino acids 60-67). The presence of four additional earlier published intact epitopes (covering amino acids 6-13, 14-21, 24-31, and 40-47) on the pepsin-resistant peptides could be neither deduced nor ruled out. The two deduced and four possible pepsin-resistant epitopes are all situated in the N-terminal part of Ara h 1, which does not show homology with other vicilin proteins. Consequently, this unique N-terminal part of Ara h 1 is proposed to be responsible for the allergen's ability to induce systemic allergic reactions.  相似文献   

19.
This work was aimed at the isolation, purification, and characterization of novel antimicrobial peptides from chicken egg white lysozyme hydrolysate, obtained by peptic digestion and subsequent tryptic digestion. The hydrolysate was composed of over 20 small peptides of less than 1000 Da, and had no enzymatic activity. The water-soluble peptide mixture showed bacteriostatic activity against Gram-positive bacteria (Staphylococcus aureus 23-394) and Gram-negative bacteria (Escherichia coli K-12). Two bacteriostatic peptides were purified and sequenced. One peptide, with the sequence Ile-Val-Ser-Asp-Gly-Asp-Gly-Met-Asn-Ala-Trp, inhibited Gram-negative bacteria E. coli K-12 and corresponded to amino acid residues 98-108, which are located in the middle part of the helix-loop-helix. Another novel antimicrobial peptide inhibited S. aureus 23-394 and was determined to have the sequence His-Gly-Leu-Asp-Asn-Tyr-Arg, corresponding to amino acid residues 15-21 of lysozyme. These peptides broadened the antimicrobial activity of lysozyme to include Gram-negative bacteria. The results obtained in this study indicate that lysozyme possesses nonenzymatic bacteriostatic domains in its primary sequence and they are released by proteolytic hydrolysis.  相似文献   

20.
To obtain information about the extent of the early Maillard reaction between the N-termini of peptides and lactose, alpha-N-(2-furoylmethyl) amino acids (FMAAs) were quantified together with epsilon-N-(2-furoylmethyl)lysine (furosine) in acid hydrolyzates of hypoallergenic infant formulas, conventional infant formulas, and human milk samples using RP-HPLC with UV-detection. FMAAs are formed during acid hydrolysis of peptide-bound N-terminal Amadori products (APs), and furosine is formed from the Amadori products of peptide-bound lysine. Unambiguous identification was achieved by means of LC/MS and UV-spectroscopy using independently prepared reference material. The extent of acid-induced conversion of APs to FMAAs was studied by RP-HPLC with chemiluminescent nitrogen detection (CLND). Depending on the corresponding alpha-N-lactulosyl amino acid, between 6.0% and 18.1% of FMAAs were formed during hydrolysis for 23 h at 110 degrees C in 8 N HCl. From epsilon-N-lactulosyllysine, 50% furosine is formed under these conditions. Whereas furosine was detectable in all assayed samples, five different FMAAs, alpha-FM-Lys, alpha-FM-Ala, alpha-FM-Val, alpha-FM-Ile, and alpha-FM-Leu, were exclusively detected in acid hydrolyzates of hypoallergenic infant formulas in amounts ranging from 35 to 396 mumol/100 g protein. Taking the conversion factors into account, modification of N-terminal amino acids in peptides by reducing carbohydrates was between 0.3% and 8.4%. This has to be considered within the discussion concerning the nutritional quality of peptide-containing foods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号