首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
Abstract. There is increasing evidence that phosphorus has been accumulating in the surface horizons of agricultural soils to the extent that some soils represent a potential diffuse source of pollution to surface waters. The relationships between equilibrium phosphorus concentration at zero sorption (EPC 0) of soil and a number of soil physicochemical variables were investigated in the surface layers of arable and grassland agricultural soils sampled from the Thame catchment, England. Soil EPC0 could be predicted from an equation including soil test (Olsen) P, soil phosphate sorption index (PSI) and organic matter content (OM) (R2=0.88; P <0.001) across a range of soil types and land use. The simple index Olsen P/PSI was found to be a good predictor of EPC0 (R2=0.77; P <0.001) and readily desorbable (0.02 m KCl extractable) P (R2=0.73; P <0.001) across a range of soil types under arable having soil organic matter contents of <10%.  相似文献   

3.
Abstract. The literature indicates that cane yield-tonnes cane per hectare (tc ha−1)-is directly related to actual evapotranspiration (Et) and that a ratio 1 tc ha−1 cm−1 Et should be a reasonable objective; this is frequently not attained in commercial practice. Analysis of extensive data from non-irrigated cane in upland Kenya demonstrated water use efficiencies of 0.5 to 0.6 tc ha−1 cm−1 Et in relationships which were remarkably precise; some of the reasons for the failure to achieve higher efficiencies at this location are discussed. The practice of irrigation is likely to introduce additional complications and so reduce water use efficiencies even further; thus responses to irrigation should be measured experimentally before capital expenditure is approved. The main additional complications are the interactions between irrigation and soil type on rooting and growth, in particular the influence of soil type on yield responses; and the fact that advective energy interferes with the convenient, direct relationships between radiation and evaporation and yield.  相似文献   

4.
Laboratory experiments in soil columns were performed to study the influence of dissolved salts on the amount and composition of organic matter (OM) released from soil. Samples of two surface soils from former wastewater infiltration sites were leached with solutions containing dissolved salts (NaH2PO4, NaNO3, CaCl2) and by deionized water. The NaH2PO4 solution induced strongest release with 0.6% of soil organic carbon (Corg) with 700 ml for 100 g of soil, while CaCl2 released the least, summing to 0.1–0.2% of Corg. The OM released was characterized by UV absorbance (aromaticity), ultrafiltration (molecular size distribution) and solid-phase extraction (polarity). The results suggest that CaCl2 preferentially released readily soluble OM. For the other solutions we assume solubilization by enhanced electrostatic repulsion (water), sodium exchange (NaNO3), and sodium exchange and calcium decomplexation and displacement of sorbed organic anions (NaH2PO4) to be the major mechanisms of release. In all experiments a phase of spontaneous desorption was observed, followed by a phase of steady-state desorption. Activation energies for steady-state release were estimated from kinetic investigations and suggest that the release is controlled by diffusion towards the phase boundary. These investigations emphasize the influence of dissolved salts on the nature and quantity of organic matter released from soil. The method presented seems able to characterize soil organic matter with respect to its availability and its mode of association with the soil matrix.  相似文献   

5.
Determination of the gas diffusion coefficient D s of peat soils is essential to understand the mechanisms of soil gas transport in peatlands, which have been one of major potential sources of gaseous carbons. In the present study, we aimed at determining the D s of peat soils for various values of the air-filled porosity a and we tested the validity of the Three-Porosity Model (Moldrup et al. 2004) and the Millington-Quirk model (1961) for predicting the relative gas diffusivity, the ratio of D s to D 0, the gas diffusion coefficient in free air. Undisturbed peat soil cores were sampled from aerobic layers in the Bibai mire, Hokkaido, Japan. The MQ model reproduced the measured D s/ D 0 curves better than the TPM. The TPM, a predictive model for undisturbed mineral soils, overestimated the D s/ D 0 values for peat soils, implying that in the peat soils the pore pathways were more tortuous than those in the mineral soils. Since the changes in the D s/ D 0 ratios with the a values of a well-decomposed black peat soil tended to be more remarkable than those of other high-moor peat soils, the existence of a positive feedback mechanism was assumed, such that peat soil decomposition itself would increase the soil gas diffusivity and promote soil respiration.  相似文献   

6.
Fluxes of the greenhouse gases methane (CH4) and nitrous oxide (N2O) from histosolic soils (which account for approximately 10% of Swedish agricultural soils) supporting grassley and barley production in Sweden were measured over 3 years using static chambers. Emissions varied both over area and time. Methane was both produced and oxidized in the soil: fluxes were small, with an average emission of 0.12 g CH4 m−2 year−1 at the grassley site and net uptake of −0.01 g CH4 m−2 year−1 at the barley field. Methane emission was related to soil water, with more emission when wet. Nitrous oxide emissions varied, with peaks of emission after soil cultivation, ploughing and harrowing. On average, the grassley and barley field had emissions of 0.20 and 1.51 g N2O m−2 year−1, respectively. We found no correlation between N2O and soil factors, but the greatest N2O emission was associated with the driest areas, with < 60% average water-filled pore space. We suggest that the best management option to mitigate emissions is to keep the soil moderately wet with permanent grass production, which restricts N2O emissions whilst minimizing those of CH4.  相似文献   

7.
To further understand the impact of tillage on carbon dioxide (CO2) emission, we compare the performance of two conceptual models that describe CO2 emission after tillage as a function of the non-tilled emission plus a correction resulting from the tillage disturbance. The models assume that C in the readily decomposable organic matter follows a first-order reaction kinetics equation as     and that soil C-CO2 emission is proportional to the C decay rate in soil, where C soil( t ) is the available labile soil C (g m−2) at any time ( t ) and k is the decay constant (time−1). Two possible relationships are derived between non-tilled ( F NT) and tilled ( F T) soil fluxes:     (model 1) and     (model 2), where t is time after tillage. The difference between these two models comes from an assumption related to the k factor of labile C in the tilled plot and its similarity to the k factor of labile C in the non-till plot. Statistical fit of experimental data to conceptual models showed good agreement between predicted and observed CO2 fluxes based on the index of agreement (d-index) and with model efficiency as large as 0.97. Comparisons reveal that model 2, where all C pools are assigned the same k factor, produces a better statistical fit than model 1. The advantage of this modelling approach is that temporal variability of tillage-induced emissions can be described by a simple analytical function that includes the non-tilled emission plus an exponential term, which is dependent upon tillage and environmental conditions.  相似文献   

8.
Predicting the rate of dissolution of lime in soil   总被引:2,自引:0,他引:2  
A disc of CaCO3 was brought into contact with a column of moist acid soil, incubated for 6 days, the soil cut into thin sections, and the pH measured. The pH profile suggested that the rate of dissolution was controlled by the rate of acid-base diffusion in the soil near the interface of the soil and the CaCO3 disc.
A mechanistic model was developed, containing no arbitrary assumptions or fitting parameters, to predict the rate of neutralization of acid soil by CaCO3 particles of different size grades and at different application rates. The course of neutralization of soil at pH 3.0 and 4.9 with fine, medium and coarse grades of CaCO3 was measured and compared with the model predictions. The agreement was satisfactory within the limits imposed by experimental difficulties.  相似文献   

9.
Abstract. A number of organic farms in Flanders were sampled to investigate the general phosphorus (P) status and degree of P saturation (Psat) of the soils. Where possible, the soil P status was compared to that in conventional agriculture and related to farm characteristics: agricultural land use, soil texture, fertilization intensity and time since conversion. Generally, the P status of the organic farms was high, and similar to that of conventional farms in Flanders, which is due to the restricted time since conversion to organic farming on most farms. The average soil Psat was slightly lower (37%) than the average value for East Flanders (39%) taken over the soil profile to 90 cm. However, a large proportion of the field areas on organic farms still had a Psat greater than 30% (critical Psat value), which may be an indication that P saturation will continue to be a problem for these farms.  相似文献   

10.
Carbon, Al and Fe (Cpyr, Alpyr and Fepyr) were extracted with 0.1 m Na4P2O7 from 26 A horizon samples of tropical Thai and temperate Korean soils (Ultisols, Alfisols, Oxisols and Inceptisols). The soils, except for one Thai Inceptisol, had similar total C (0.35–3.29%) and Cpyr/total C ratios (0.20–0.41). There were approximately linear relationships between total C or Cpyr and clay content; two groups of soils gave different linear relationships. A curvilinear relationship between Cpyr and (Al + Fe)pyr (milli-atom kg−1) that can be approximated by an equation: Cpyr= 53 (Alpyr+ Fepyr)1/2– 24 was also found for most Thai and Korean soils. The above relationships indicated that total C and Cpyr would be close to zero at zero clay or zero (Al + Fe)pyr. It was inferred that clay-humus interaction has a primary importance in the determination of humus content in red and yellow soils in tropical and temperate regions and that the main role of clay is to supply Al and Fe that complex and stabilize humus against microbial degradation.  相似文献   

11.
This paper describes the design and operation of a simple tension infiltrometer which imposes pressure potentials at the soil surface (hb) of –0.5, – 2 and –9 cm water, corresponding to equivalent diameters ( e d) of the largest conducting pore of 6, 1.5 and 0.3 mm respectively. Infiltration measurements obtained in Evesham series clay soil were fitted to Philip's (1957) two-term infiltration equation. Results were interpreted using information on the number, type and size of conducting macropores obtained in a dye tracing experiment. Significantly larger values of effective hydraulic conductivity at h b=–0.5 cm were attributed to the flow of water in large shrinkage cracks which constituted nearly 90% of the total conducting macroporosity. Measured fluxes at h b=–9 cm were related to sorption and swelling in the clay matrix, since within the range of infiltration times considered ( t <0.5 h), the gravity or steady state component of infiltration was negligible. Rainfall intensity/duration data for a large number of storms at Silsoe were used to demonstrate that in dry soil nearly 70% of rainfall infiltrates in the clay matrix, and that the infiltration capacity of macropores of e d≤1.5 mm is only rarely exceeded.  相似文献   

12.
Abstract. Uptake in grass crops of ammonium acetate lactate extractable K (KAL) and reserve K (interlayer K + structural K) in soil was studied in 16 field experiments at different locations on a range of mineral soil types in Norway. The K uptake from soil, both from KAL and reserve K, was considerable, often even at the highest level of K fertilizer. During three years, only on the sandy soils with a low level of acid soluble K (KHNO3 minus KAL) was there a yield response to K fertilization. The KAL values declined rapidly and flattened off at a 'minimum level' which differed with soil type. This minimum level for KAL is a useful parameter in fertilizer planning, because the grass usually took up the K in excess of the minimum level over two years. The minimum value of KAL was significantly correlated with the content of clay + silt in soil. The decrease in KAL during the growing season was closely correlated to the KAL value in spring minus the minimum value and, therefore, the amount of K supplied to the grass from the KAL fraction can be calculated. Furthermore, the KAL value for the following spring may be estimated. The release from reserve K was partially related to acid soluble K.  相似文献   

13.
The numerical density, Nv , of the pore structure of soil is the number of disjoint networks of pores per unit volume of soil. A method is described for estimating Nv of patterns of cracks that dominate in many clay subsoils. The cracks are photographed from numerous close-spaced parallel sections and skeletonized; by comparing the skeletonized photographs sequentially, individual networks are tracked from one section to another and counted. The average number of networks that appears or disappears per section in the sequence is a measure of the numerical density and is obtained by regressing the counts on the volume of soil spanned by the sections. The regressions for appearances and disappearances converge on one another and stabilize within 10 to 20 sections, so that Nv can be estimated for a sample of soil with moderate effort.
Estimates of Nv for cracks wider than 60 μm in subsoil of the Windsor series, sampled at two nearby sites and 5 years apart in time and determined from sections at 50 μm intervals, were approximately 32 cm−3 and 36cm−3. That of Nv in the Swanwick series subsoil nearby was about 75 cm−3.  相似文献   

14.
Abstract. 15N labelled NH4NO3 (fertilizer N) was applied at a rate of 50 kg N ha–1 to an Ando-Humic Nitisol and two maize crops grown on it. About 20 months later, soil cores were taken to a depth of 2.5 m. Leached fertilizer N was found between 1.4 m and 1.8 m deep and was delayed relative to net drainage by between 4.2 and 4.9 pore volumes. Anion exchange capacity (AEC) increased ten-fold down the profile, up to 2.9 cmolckg–1. The delay to fertilizer N leaching was predicted to be between 4.1 and 5.3 pore volumes when calculated from the AEC and from an equation relating delay due to AEC in laboratory columns of repacked soil obtained by Wong et al. (1990b). It was concluded that the nitrate leaching delay equation was also valid in undisturbed field profiles. Two concentration maxima for mineral N were found, which did not usually coincide with the fertilizer N and were thought to result from mineralization of soil organic matter and plant residues at the end of each season. The delay equation overestimated their leaching delay but the results were considered close enough to support the hypothesis for their formation.  相似文献   

15.
Significant increases in extractable ions resulted from air-drying and grinding samples of two infertile Aquults. Effects of the sample preparation differed markedly between ions and between the two soils. Regression equations were calculated to predict extractable ions in dried, ground samples from extractable ions in fresh, unground samples and the relationships were compared between the two soil series. Regressions were significantly different between soils for extractable PO34, Mg++, and K+, but not for Ca++ and Na+. Extractable NH +4 and NO-3 in fresh, unground samples were not correlated with those in air-dry, ground samples of either soil. Differences in response to preparation between soil types appeared to be related to the oxidative status of these soils in the field, wherein constituents of more poorly-drained soils may be less stable to the oxidizing conditions of air-drying and grinding. Such complexities suggest that effects of sample preparation should be considered when interpreting soil nutrient data for studies of forest nutrient cycling and forest soil fertility.  相似文献   

16.
Abstract. The behaviour of potassium (K) in a range of arable soils was examined by plotting the change in exchangeable K of the topsoil (Δ Kex) at the end of a 3–5 year period against the K balance over the same period (fertilizer K applied minus offtake in crops, estimated from farmers' records of yield and straw removal). Based on the assumption that values for offtake per tonne of crop yield used for UK arable crops MAFF 2000) are valid averages, 10–50% of Δ Kex was explained by the balance, relationships being stronger on shallow/stony soils. Excess fertilizer tended to increase Kex and reduced fertilization decreased it, requiring between 1.2 and 5.4 kg K ha−1 for each mg L−1Δ Kex. However, merely to prevent Kex falling required an extra 20 kg K ha−1 yr−1 fertilizer on Chalk soils and soils formed in the overlying Tertiary and Quaternary deposits, despite clay contents >18%. Whereas, on older geological materials, medium soils needed no extra K and clays gained 17 kg K ha−1 yr−1. It is unlikely that the apparent losses on some soil types are anomalies due to greater crop K contents. Theory and the literature suggest leaching from the topsoil as a major factor; accumulation in the subsoil was not measured. Recommendations for K fertilization of UK soils might be improved by including loss or gain corrections for certain soil types.  相似文献   

17.
To investigate the effects of plant species in grassland on methane (CH4) and nitrous oxide (N2O) fluxes from soil, fluxes from an orchardgrass ( Dactylis glomerata L.) grassland, white clover ( Trifolium repens L.) grassland and orchardgrass/white clover mixed grassland were measured weekly from April 2001 to March 2002 using a vented closed chamber method. Related environmental parameters (soil inorganic N content, soil pH (H2O) value, soil moisture content, soil temperature, grass yield, and the number of soil microorganisms) were also regularly monitored. On an annual basis, CH4 consumption in the soil of the orchardgrass grassland, white clover grassland and orchardgrass/white clover mixed grassland was 1.8, 2.4, and 1.8 kg C ha−1 year−1, respectively. The soil bulk density of the white clover grassland was lower than that of the other grasslands. Fluxes of CH4 were positively correlated with the soil moisture content. White clover increased the CH4 consumption by improving soil aeration. Nitrogen supply to the soil by white clover did not decrease the CH4 consumption in the soil of our grasslands. On the other hand, annual N2O emissions from the orchardgrass grassland, white clover grassland, and orchardgrass/white clover mixed grassland were 0.39, 1.59, and 0.67 kg N ha−1 year−1, respectively. Fluxes of N2O were correlated with the NO3 content in soil and soil temperature. White clover increased the N2O emissions by increasing the inorganic N content derived from degrading white clover in soil in summer.  相似文献   

18.
Abstract. The Agricultural Catchments Research Unit model (ACRU) includes a decision support system (DSS) for estimating the water content of soil at field capacity (θ fc ) and wilting point (θ wp ) when these characteristics are not directly measurable. Three methods of estimation are proposed: (a) based on silt and clay content and bulk density, (b) based on clay content only, and (c) based on soil series. These three pedotransfer functions are compared with respect to both the estimation of θ fc and θ wp and the propagation of errors when the actual evapotranspiration of a wheat crop (E) is predicted over the growing season by the ACRU model.
The standard error of estimation was between 0.066 and 0.082 m3/m3 for θ fc , between 0.056 and 0.069 m3/m3 for θ wp and between 29.9 and 34.8 mm of water for E. The method based on silt and clay contents and bulk density predicted θ fc and θ wp for non-swelling soils most precisely. The method based on soil series was better than other methods for swelling soils. It also performed better for estimating available water capacity and consequently for predicting E from a conceptual soil water model. The propagated error of estimating θ fc and θ wp using the DSS reached 15–18% of the simulated E. The error in the prediction of E can reach 26–30% when spatial variation in soil properties is also estimated.  相似文献   

19.
Abstract. Soils in areas with high livestock density contribute to the eutrophication of aquatic ecosystems through loss of nutrients, especially phosphorus (P). In order to identify the potential for P loss from such soils we determined phosphorus extracted by water (H2O-P), by double lactate (DL-P), and P sorption capacity (PSC) and degree of P saturation (DPS) in soil samples from two counties, one with low (Harle-catchment) and the other with very high livestock density (Vechta). Both catchments are hydrologically connected with the tidal areas of the North Sea.
The mean concentrations of H2O-P (0.4mmol/kg) and DL-P (3.9 mmol/kg) were lower in the Harle-catchment than in the Vechta area (1.2 mmol/kg, 6.8mmol/kg). Although oxalate-extractable Al (Alox) and Fe (Feox) and the derived PSCs varied according to soil type and to land use, the livestock density and the resulting high concentrations of oxalate-extractable P (Pox) were shown to be the main reason for the very high DPS of up to 179% in the county of Vechta. These values exceeded DPS reported from other intensive pig feeding areas in western Europe and indicate the potential for significant P loss. Less than 40% of the variation in Pox could be explained by the routinely determined H2O-Por DL-P. Geostatistical analyses indicated that the spatial variability of Pox depended on manurial history of fields and Alox, showed still smaller-scale variability. These were the major constraints for regional assessments of P losses and eutrophication risk from agricultural soils using available soil P-test values, digital maps and geostatistical methods.  相似文献   

20.
In a field experiment with soil compaction by tractor traffic on a loam soil, the denitrification rate (using the C2H2 inhibition method), the soil structure, and the wheat yield were investigated. Tractor traffic on wet soil (> – 50 mbar matric potential) reduced the pore volume, doubled the percentage of large aggregates (> 20 mm), reduced the wheat yield by about 25%, and increased the N-loss through denitrification by a factor of 3–4. Neither of these parameters were affected by tractor traffic at low soil moisture content. The weight of the tractor (1800 kg vs 4800 kg) did not significantly alter the effect of compaction on the measured parameters. There was a factor of 2–6 between the measured denitrification rate in compacted and that in uncompacted soil, and this factor showed little dependence on the average activity level on each date of measurement. Accumulated values for the measured denitrification during 75 days (May 23-August 9) were 3–5 kg N ha–1 in uncompacted soil and 15–20 kg N ha–1 in soil which was compacted in wet condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号