首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为了评价在冬季持续低温天气下不同墙体结构日光温室的保温性能,选取北京地区推广应用广泛的土墙下凹结构、砖加聚苯板结构和砖加混凝土结构的日光温室进行了保温性能试验。结果表明,土墙下凹式温室在持续低温天气条件下保温性能最佳,砖加聚苯板温室的保温性能明显好于砖加混凝土温室,砖加混凝土温室保温性能最差,该结果对防御日光温室冬季低温灾害影响有较好的指导意义。  相似文献   

2.
节能日光温室的保温性能决定着在深冬农业生产的安全和成败.为此,针对节能日光温室的结构特点,结合铺卷节能日光温室内保温幕的技术要求,在吸收温室内保温先进技术的基础上,设计了一种用于无立柱节能日光温室内保温幕铺卷的机构,选择了合理的工作参数,以满足北方冬季对节能日光温室保温设备的需求.  相似文献   

3.
不同墙体结构日光温室保温效果的研究   总被引:2,自引:0,他引:2  
为明确墙体结构对日光温室保温性能的影响,以3种不同墙体结构的日光温室为研究对象,计算了日光温室各组成元素的热工性能,分析了不同结构温室的墙体温度分布、温室内空气温湿度以及土壤温度分布。研究结果表明,厚度为0.6m的秸秆块墙体的热阻是平均厚度4.0m土墙体热阻的2.54倍,土墙体导热系数和蓄热系数分别是厚度为0.6m秸秆块墙体导热系数的16.91倍和11.42倍;墙体温度梯度显示土墙体厚度方向上的温度衰减速率最小,其次是0.6m厚秸秆块墙体,0.46m厚秸秆块墙体温度衰减速率最大。试验期间,SBWG1、SBWG2和SWG中空气的平均温度分别为3 0.8℃,3 2.1℃和3 2.6℃,温室中土壤在0 cm、1 0 cm和2 0 cm处温度(2月份)分别为26.2、14.1、13.9,25.2、16.5、15.1、27.2、17.5、17.2℃。秸秆块墙体日光温室在保温性能及湿度调解方面优势明显,在蓄热性能和土壤温度方面需要提高,以达到土墙体日光温室的保温效果。  相似文献   

4.
张峰  张林华 《农村能源》2009,27(3):18-20
为研究土质墙体下沉式日光温室的保温蓄热性能,对墙体温度及热流的变化进行了实验测试。测试结果表明:白天土质墙体接受太阳辐射并蓄热;夜间墙体内侧表面温度高于室内温度,墙体向室内放热。土质墙体具有良好的保温蓄热性能,可以满足作物生长的需要。  相似文献   

5.
介绍了日光温室的墙体类型及建造方法,分析了各种墙体的保温性能和技术经济指标,提出了针对不同建造用途和经济条件的选型及建造方案。  相似文献   

6.
不同跨度组装式日光温室光热环境性能研究   总被引:1,自引:0,他引:1  
为研究跨度对组装式日光温室温光环境的影响,选取8m、9m和10m跨度的组装式日光温室,以当地普通日光温室为对照,进行温室环境温度、光照性能观测和墙体热工性能分析。结果表明:各组装式日光温室墙体热稳定性远低于普通温室,平均最低温度较普通日光温室低1.27℃~5.30℃;组装式温室保温和采光性能随跨度增加而减小,1月份,8m跨度组装温室平均最低温度较9m和10m跨度温室高1.33℃和4.04℃,透光率高1.93%和7.67%,室内外最低温度差可达30.09℃;组装温室随跨度增大,室内温度变化越剧烈。综合分析认为,冬季组装式温室中8m跨度温室综合保温性能最好,组装式温室的保温性能随温室跨度的增加而下降,组装温室在没有辅助热源加温的情况下,不宜过度增加跨度。  相似文献   

7.
新型复合相变墙日光温室性能实测分析   总被引:5,自引:0,他引:5  
日光温室墙体在温室蓄热保温方面起着非常重要的作用,对温室热环境有直接的影响。为此,对复合相变墙温室和普通温室进行了温度测试,通过对照分析发现低温条件下相变墙温室保温性优于普通温室,高温条件下相变墙温室室内温度波动幅度明显小于普通温室,相变墙内外表面温差波动幅度较普通温室墙体大幅减少,可以有效减少外界环境通过墙体对室内温度的扰动。试验结果表明:将复合相变材料应用于日光温室墙体中,可起到降低温室能耗,改善温室热环境,节能环保的积极作用。  相似文献   

8.
许方伟 《农业工程》2018,8(9):52-54
日光温室是我国农业发展体系中的重要特色,节能日光温控能够实现冬季不加热生产,已经在我国东北、华北和西北等大部分地区广泛应用推广。以西北农村某农业地区为例,结合日光温室性能试验,重点对保温采光性能进行了分析,并提出了提高西北地区日光温室保温性能的有效措施。   相似文献   

9.
新疆新型高效节能日光温室标准化设计探讨   总被引:4,自引:0,他引:4  
日光温室标准化设计的目的是为了提高新疆南北疆日光温室的综合性能,根据新疆的自然条件和气候特征,对两地区的日光温室建造参数进行标准化设计,通过对这两种结构日光温室的测试结果,分析在新疆独特气候下温室参数对日光温室性能的影响。温室保温性能验证实验表明:标准化设计的温室在南北疆喀什塔城两地分别在外界-10.7℃、-8.1℃低温环境下,其温室内冬至日的平均温度可达到19.9℃、22.8℃,最低温度为15.3℃、18.8℃,最高气温达到33℃、30.1℃,标准化设计温室保温效果好,并从实际生产角度充分验证了节能日光温室的使用性能。  相似文献   

10.
日光温室保温性能的试验与优化设计   总被引:1,自引:0,他引:1  
为了提高具有高纬度以及高寒气候特点的新疆塔城地区日光温室的保温性能,针对该地区两种不同结构的日光温室,通过对这两种结构日光温室的测试结果,分析了在高寒气候下温室结构参数对日光温室保温性能的影响;同时,运用优化日光温室结构参数的方法,再采用优化设计的结构参数建造温室.经优化后温室保温性能验证实验表明:优化温室比当地近年建造的温室室内气温高6℃,室内最低温度偏离度仅为10.4%,在当地成功地实现了越冬生产.  相似文献   

11.
Information don the shrinkage of grain both in bulk and as individual kernels is important in postharvest processing of these materials. The mass and volume of samples of wheat and canola seeds exposed either to humid or dry air were measured during adsorption or desorption cycles. When the grains were exposed to 90% r.h. at 40°C, the bulk density of wheat decreased almost linearly from 790 to 686 kg/m3as the kernel moisture content increased from 8% to 22% w.b. The bulk density of canola descreased by 11 kg/m3, from 672 to 661 kg/m3as the kernel moisture content increased from 5% to 19% w.b. The laws of mixtures were used to develop the following equations to predict grain kernel (vk)and grain bulk volume (vb)respectively as functions of moisture adsorption or desorption:vk/vk0=[1-M0/1+(γ-1)M0] [1+(γ-1)M/1-M]andvb/vb0={[1-(M0-M)][1+(γ-1)M]/[1+(γ-1)M0]} (1-ϵ0)/(1-ϵ)wherevkandvk0are the kernel volumes,vbandvb0are the bulk porosities at the kernel moisture contents ofMandM0respectively;γis the dry kernel density and is assumed to be a constant for each grain. Compared with experimental data, the kernel volumes of both wheat and canola, adequately predicted by the first equation. The second equation gave an adequate prediction of the bulk volume of canola by assumingϵ= ϵ0,but not for wheat unlessϵwas expressed as a polynomial function of kernel moisture content.  相似文献   

12.
陈金环 《湖南农机》2013,(3):145-146,148
随着我国社会经济的迅速发展,我国在施工中的机械现代化得到了很大的发展。但是在机械设备的管理与维修保养中仍然还存在着较大的问题,机械设备的使用、管理、维修保养在某种程度上几乎占据了机械设备的大部分寿命周期,因此做好机械设备的管理与维修保养十分必要,它作为企业管理工作当中的基本工作不仅关系到企业的生产经营,而且对于企业发展也具有重要的意义。文章就机械设备管理与维修保养进行简单的阐述,并提供一些可供参考的意见和措施。  相似文献   

13.
苎麻纤维剥制技术及剥制加工机械研究与展望   总被引:1,自引:0,他引:1  
为解决苎麻规模化种植的剥制加工问题,研制大型专业化苎麻纤维加工设备,对我国苎麻剥麻加工技术及加工机具进行了系统总结;结合作者多年的苎麻剥麻机研究实践,对提出我国苎麻剥制加工机械的发展思路。  相似文献   

14.
通过多年一线的养护管理的工作经验,根据实际情况,对城市园林绿化管理存在管理机制不通畅、法规不完善和执法力度不够等问题,并且通过分析和探讨,提出相关的解决方案,完善城市园林绿化管理.  相似文献   

15.
以3自由度运动为研究对象,介绍了3自由度运动与视频的同步记录和同步再现的实现装置及控制方法,以及利用有线通讯来实现运动与视频同步的方法。同步记录与同步再现的实验结果验证了其可行性。3自由度运动与视频的同步记录和同步再现技术,可以应用于车辆的新产品测试等多种应用场合。  相似文献   

16.
气缸磨损原因及防止早期磨损的措施   总被引:1,自引:0,他引:1  
气缸是发动机的基础部件,其技术性能的好坏是决定汽车是否进行大修的重要标志,直接影响着汽车的动力性和经济性。气缸主要破坏形式是其表面的磨损。这里主要谈一下它的磨损原因及预防措施。 一、气缸的磨损原因 1.润滑不良造成磨损的主要原因是由于气缸上部靠近燃烧室,温度较高,润滑油在高温作用下变稀,使其粘度下降,油膜不易形成,甚至被烧掉。另一原因是进入气缸中的混合气中含有细小的油滴,尤其低温时这种现象更为严重,它不断冲刷气缸壁上的润滑油,这样在气缸的上部造成了严重的干摩擦和半干摩擦,导致了活塞环与气缸壁接触范围内的上部磨损大、下部磨损小,呈锥形。  相似文献   

17.
质量追溯相关数据通过物联网感知设备采集后添加到区块链,在数据存储环节可以解决数据易被篡改问题从而增强数据可信度.数据直接存储在区块链中会造成系统吞吐量小、响应时间长,利用"数据库+区块链"的双存储设计虽然能大大提高响应速度,但是针对果蔬质量追溯系统,其响应速度依然不能满足要求.基于哈希加密算法的不可逆性、区块链数据结构...  相似文献   

18.
理实一体化是针对中职学校学生的特点而探索形成的一种教学方法,其改变了以往理论与实践相脱节的弊端,比单纯的理论化教学具有明显的优越性.介绍理实一体化教学的模式构架、创立背景和优势所在,提出理实一体化实验室的构建程序和对教师的要求,提出下一步完善目标.  相似文献   

19.
为提高苜蓿切根补播施肥机气送式集排系统工作性能,利用EDEM软件和Fluent软件对气送式集排系统工作过程进行联合仿真,以管道内部流场压力与速度变化情况、种子颗粒速度与受力情况为指标,分析波纹管和分配头结构参数对集排系统工作性能的影响,进而优化了其结构参数。以输种弯管弯径比、波纹管长度和分配头锥角为试验因素,以各行排量一致性变异系数和总排量稳定性变异系数为试验指标,进行Box-Behnken响应面分析仿真试验,获取集排系统最优结构参数组合。结果表明,当弯径比为0.96、波纹管长度为183mm、锥角为123.4°时,各行排量一致性变异系数为3.06%,总排量稳定性变异系数为3.17%。样机大田性能试验结果表明,在不同的螺旋输送机输送效率条件下,苇状羊毛种子、固体颗粒肥各行排量一致性变异系数和总排量稳定性变异系数均小于5%。  相似文献   

20.
为解决农场当地当时的复合肥料精准化配料问题,本研究将水肥一体化智能灌溉施肥系统作为研究对象,构建了水肥浓度智能感知与精准配比系统。首先提出现场在线水肥溶液智能感知模型的快速建立方法,利用数据分析算法从传感器实时监测的一系列浓度梯度的肥料溶液中挖掘出模型。其次基于上述模型设计水肥浓度智能感知与精准配比系统的框架结构,阐述系统工作原理;并通过三种水体模拟在线配肥验证了该系统原位指导水肥浓度配比的有效性,同时评价了水体电导率对水肥配比浓度的干扰。试验结果表明,正则化条件下二阶的多项式拟合曲线是表达溶液电导率与水肥浓度的变化关系最优的模型,相关系数R2均大于0.999,由此模型可得出用户关心的复合肥各指标浓度。三种水体模拟在线配肥结果表明,水体会干扰电导率导致无法准确反演水肥配比的浓度,相对偏差值超过了0.1。因此,本研究提出的在线水肥智能感知与精准配比系统实现了消除当地水体电导率对水肥配比准确性的干扰,通过模型计算实现复合肥精准化配比,并得出各指标浓度。该系统结构简单,配比精准,易与现有水肥一体机或者人工配肥系统结合使用,可广泛应用于设施农业栽培、果园栽培和大田经济作物栽培等环境下的精准智能施肥。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号