首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study aimed to clarify the effect of timing and type of supplementary grain in grazing dairy cows on herbage dry matter intake (HDMI), nitrogen utilization and milk production. Eight lactating cows were allowed to graze from evening to morning during three seasonal periods (spring, summer, autumn). They were randomly allocated to four treatments (timing: pre‐ (Pre) or post‐grazing (Post), for large grain allotments consisting of 75% of daily grain offered; grain type: barley or corn) in 4 × 4 Latin square designs in each period. In the spring period, HDMI was greater for cows fed corn than those fed barley (P = 0.005), whereas cows in the Pre treatment had a similar HDMI, higher (P = 0.049) urinary purine derivative concentration and greater (P = 0.004) milk yield compared with cows in the Post treatment. In the summer and autumn periods, timing treatments did not affect HDMI, nitrogen utilization or milk production, but cows supplemented with barley had higher urinary purine derivatives concentration (P < 0.05) and milk yield (P < 0.05) compared with those supplemented with corn. The results indicate that large grain allotments immediately before evening grazing during early grazing seasons increased ruminal microbial protein synthesis and milk production without reducing HDMI regardless of grain type.  相似文献   

2.
This study aimed to evaluate the feeding choice, dry matter (DM) intake, and milk production of dairy cows that strip grazed on a mixed perennial species pasture receiving different supplementation strategies. The treatments were without supplementation (WS) or with supplementation of either corn silage (CS) or a total mixed ration (TMR) based on CS and concentrates, in a subtropical area. The supplements were provided ad libitum after the afternoon milking. Twelve Holstein × Jersey cows in mid-lactation (133 ± 43 days in milk) were divided into six groups (two cows/group) and distributed in accordance with a replicated 3 × 3 Latin square design, with three 21 day periods (15 adaptation days and 6 evaluation days). The total DM intake, milk production, milk fat, and milk protein production were greater in the TMR treatment than in the WS and CS treatments and were similar between the WS and CS treatments. The herbage DM intake and proportion of time spent grazing were greater in the CS treatment than in the TMR treatment. CS supplementation did not affect the total DM intake or milk production/cow, whereas TMR supplementation greatly improved the total DM intake and milk production of the dairy cows grazing on mixed perennial species.  相似文献   

3.
Two experiments were conducted to elucidate the effect of increased concentrate allotment before evening grazing on herbage intake, nitrogen utilization and rumen fermentation in dairy cows. In experiment 1, nine lactating cows were grazed in the morning and evening sessions (2.5 h each). The cows were allocated to treatments of three concentrate allotment levels before the evening grazing session by altering proportions to daily total offered; 25%, 50% and 75%. Daily herbage dry matter intake quadratically decreased with increasing the concentrate allotment levels (P < 0.05). Nitrogen utilization was similar among treatments. To investigate diurnal changes in rumen fermentation, a second experiment was conducted where six ruminally cannulated non‐lactating dairy cows grazed in the morning and evening sessions (3 h each) were subjected to the same treatments as experiment 1. Total volatile fatty acid concentration in the rumen linearly increased with increasing the concentrate allotment levels throughout the pre‐evening grazing session to the post‐morning grazing session (P < 0.01). The results indicate that dairy cows reduce daily herbage intake but do not alter nitrogen utilization with increasing concentrate allotment before evening grazing. © 2016 Japanese Society of Animal Science  相似文献   

4.
研究不同放牧制度和强度对在“多年生禾草+紫花苜蓿(Medicago sativa)”人工草地上放牧奶牛的采食量、产奶量、乳成分及体重和体况分的影响。结果表明:轮牧制奶牛的采食量低于连续放牧制,中度放牧低于轻度放牧。轻度轮牧有较高的体增重和较小的体况分损失,连续放牧则相反。轮牧制奶牛的产奶量显著高于连续放牧制,中牧高于轻牧。不同放牧处理对乳成分的影响不显著,轻度轮牧的乳脂率低于中度轮牧和连续放牧,轻度轮牧的乳蛋白最高,乳糖和乳干物质含量则无显著变化。  相似文献   

5.
To clarify the effect of digesta weight in the reticulorumen on diurnal and seasonal fluctuations in herbage intake, six ruminally cannulated, non‐lactating dairy cows were grazed on perennial ryegrass/white clover pasture during morning and evening sessions in spring and autumn. The digesta weight of fresh matter, dry matter (DM) and fiber in the reticulorumen at the beginning and the end of each grazing session was lower in spring than in autumn (P < 0.01). Although the digesta weight was similar between the sessions at the beginning of grazing, it was greater for the evening than for the morning at the end of grazing (P < 0.01). The large particles proportion in the digesta was lower for the morning than the evening (P < 0.01), and it was lower in spring than in autumn (P < 0.01). The concentrations of volatile fatty acids in rumen fluid were generally higher in spring compared with autumn. The herbage DM intake during the evening was greater compared with the morning in both seasons (P < 0.01). However, there was no difference in herbage DM intake between seasons. The results showed that the rumen digesta fill was not the sole factor explaining diurnal and seasonal variation of herbage intake in grazing dairy cows.  相似文献   

6.
The objective of this study was to measure the effect of feeding two total mixed rations (TMRs), differing in their roughage content and in vitro dry matter digestibility, on the respiratory rate, body temperature, eating behavior and energy balance of lactating cows. The partitioning of metabolizable energy intake (MEI) between heat production (HP) and retained energy (RE) of cows held under heat load conditions was measured. Forty-two lactating cows were divided into two similar sub-groups, each of 21 animals, and were fed either a control (CON) ration containing 18% roughage neutral detergent fiber (NDF) or an experimental (EXP) TMR that contained 12% roughage NDF and used soy hulls as partial wheat silage replacer. The in vitro DM digestibility of the CON and EXP TMRs was 75.3 and 78.6%, respectively (P < 0.05). The EXP diet reduced rectal temperature and respiratory rate of the cows while increasing their number of meals per day by 32.7% as compared with the CON fed cows, and these meals were shorter in duration and were eaten faster. The EXP diet increased total DM intake from 19.6 to 21.5 kg/cow/d, milk yield from 32.3 to 34.6 kg, and yield of energy corrected milk from 30.9 to 32.2 kg, as compared with the CON group. Cows fed the EXP TMR had increased RE in milk and body tissue, as compared with the CON group, but the diets had no effect on the measured HP that was maintained similar (121 vs. 127 MJ/cow/d) in the two groups. The measured MEI (MEI = RE + HP) and the efficiency of MEI utilization for RE production, were similar in the two dietary groups.  相似文献   

7.
To evaluate the effect of gastrointestinal parasites on grazing behaviour, herbage intake and milk production in spring calving dairy cows, 12 naturally infected control cows were compared with 12 similar animals treated on three occasions (June, July and September) with eprinomectin. The cows were blocked according to calving date, parity, live weight and milk yield during week 2 after turnout and then allocated to the treatments. The grazing area was sub-divided into two sets of 12 replicated paddocks of equivalent size and topography. Pairs of either control or treated animals were randomly assigned to graze each paddock over the duration of the study. Within each plot, the pair of cows grazed a series of 1-day paddocks, of areas calculated to provide 72 kg of herbage dry matter measured to ground level. Faecal samples were collected from each cow in April, prior to allocation, and every 28 days thereafter. Samples were submitted for counts of nematode eggs (sensitivity 1 epg) and the presence of Dictyocaulus viviparus larvae. Additional faecal samples were taken on each occasion for culture and nematode identification. Pasture samples for direct larval counts were collected at the same time as faecal sampling. Behaviour measurements on all cows were made during three periods, once before the first treatment with eprinomectin and thence after the 2nd and 3rd treatments. During each behaviour measurement period, grazing and ruminating behaviour were recorded over two 24-h periods and measurements of components of short-term intake rate were made during a morning and a late afternoon grazing meal. Milk yield was recorded daily and milk quality was recorded weekly. Live weight and body condition score were recorded on the day of allocation, the day of initial treatment and thereafter at weekly intervals until the end of the trial. The parasitological results showed low levels of faecal egg output throughout the study with group arithmetic means ranging from 0 to 6.8 epg. Faecal culture yielded predominantly larvae of the genus Ostertagia, but the following genera were also identified: Cooperia, Oesophagostomum and Trichostrongylus. Pasture larval levels were also low with peak values of 135 and 58 L3/kg DM herbage (7 August) in the paddocks grazed by the control and treated cattle, respectively. Thereafter, larval counts on paddocks grazed by treated cows declined to undetectable levels by October, while control paddocks remained at approximately 40 L3/kg DM. There was no effect of treatment on components of grazing or ruminating behaviour recorded over 24 h or on short-term intake rates. There were significant differences between components of short-term intake rates measured during the morning and afternoon grazing meals. The overall milk yield response to treatment with eprinomectin was +1.68 kg/day solids-corrected milk (SCM) (P=0.026). The overall response included significant (P<0.050) increases in mean daily SCM yield following each of the three treatments, indicating a positive response to repeated treatments at several different stages of lactation. There were no significant differences in the overall percentages of fat, protein or lactose between control and treated groups. The differences in live weight were not significant, although there was a consistent pattern throughout for the treated cows to be heavier than the controls.  相似文献   

8.
This study aimed to evaluate the hypothesis that mixed sequential grazing of dairy cows and breeding ewes is beneficial. During the seasons of spring–summer 2013 and autumn–winter 2013–2014, 12 (spring–summer) and 16 (autumn–winter) Holstein Friesian cows and 24 gestating (spring–summer) and lactating (autumn–winter) Pelibuey ewes grazed on six (spring–summer) and nine (autumn–winter) paddocks of alfalfa and orchard grass mixed pastures. The treatments “single species cow grazing” (CowG) and “mixed sequential grazing with ewes as followers of cows” (MixG) were evaluated, under a completely randomized design with two replicates per paddock. Herbage mass on offer (HO) and residual herbage mass (RH) were estimated by cutting samples. The estimate of herbage intake (HI) of cows was based on the use of internal and external markers; the apparent HI of ewes was calculated as the difference between HO (RH of cows) and RH. Even though HO was higher in CowG, the HI of cows was higher in MixG during spring–summer and similar in both treatments during autumn–winter, implying that in MixG the effects on the cows HI of higher alfalfa proportion and herbage accumulation rate evolving from lower residual herbage mass in the previous cycle counteracted that of a higher HO in CowG. The HI of ewes was sufficient to enable satisfactory performance as breeding ewes. Thus, the benefits of mixed sequential grazing arose from higher herbage accumulation, positive changes in botanical composition, and the achievement of sheep production without negative effects on the herbage intake of cows.  相似文献   

9.
The objective was to determine the effect of including silages of annual ryegrass (Lolium multiflorum) intercropped with winter vetch (Vicia villosa) (ARG-VV) or with common vetch (Vicia sativa) (ARG-VS) compared with maize silage (MS) on milk yield and milk composition of dairy cows grazing cultivated perennial ryegrass–white clover pastures with supplemented concentrate during the dry season. Six Holstein dairy cows with a mean yield of 19.0 kg/cow/day at the beginning of the experiment were randomly assigned to a 3 × 3 repeated Latin square. Treatments were: 8 h/day intensive grazing, 3.6 kg of dry matter (DM) per cow per day of concentrate plus MS, and ARG-VV or ARG-VS ad libitum at a stocking rate of 3.0 cows/ha for three experimental periods of 3 weeks each. Milk yield (MY) and milk composition, live weight and body condition score as well as silage and concentrate intakes were recorded during the third week of each experimental period, and pasture intake was estimated indirectly from utilised metabolisable energy. Economic analysis was obtained by preparing partial budgets. There were no statistical differences (P > 0.10) in MY, milk fat or protein content nor for live weight, but there was significant difference (P < 0.10) in body condition score. There were non-statistical differences in silage DM intake (P < 0.11); however, significant differences (P < 0.10) were obtained for estimated grazed herbage intake whilst no differences for total DM intake. Slightly higher economic returns (10%) were obtained with ARG-VS over MS, and this was 7% higher than ARG-VV. It is concluded that ARG-VS could be an option for complementing grazing for small-scale dairy production systems in the dry season as it is comparable to MS in animal performance and slightly better in economic terms.  相似文献   

10.
In a two-period replicated crossover design, four groups of lactating Holstein Friesian dairy cows (n = 10 per group) were kept on pasture to investigate the effects of providing artificial shade in summer on their vaginal temperature, behaviour and milk production. Two groups had access to shade and two groups in adjacent paddocks had no shade for a 10-day period before the treatments were switched. The body temperature rhythm was recorded in all animals using vaginal data loggers. Daily milk yield and milk composition was measured for each cow. Standing without grazing, lying and grazing behaviour was recorded continuously by observers for two 24-h periods during each 10-day treatment period. Shade use was recorded daily from 0800 to 2000 h. The provision of shade reduced (P < 0.05) mean vaginal temperature. This was particularly evident between 1000 and 1500 h, when the increase in vaginal temperature was significantly (P < 0.001) lower in shaded cows compared to cows without shade. No effect of shade (P > 0.05) on the maximum and minimum vaginal temperature, or the amplitude of the vaginal temperature rhythm was found. Cows with access to shade preferred (P < 0.001) using it mainly during the mid-afternoon, while, in contrast, cows with no shade grazed more (P < 0.001) at this time. The total time spent grazing, standing without grazing and lying per 24 h did not differ (P > 0.05) between treatments. Milk production was higher (P < 0.05) in cows that had access to shade compared to those without, but milk composition was not affected (P > 0.05) by shade treatment. These data suggest that the provision of shade is an effective method to reduce heat load in dairy cows under New Zealand summer conditions and, in addition, may increase daily milk yield. Despite only mild summer conditions, vaginal temperature was elevated during the mid-afternoon in non-shaded cows but did not cause a significant disruption in the underlying circadian body temperature rhythm compared to shaded cows.  相似文献   

11.
The objective of this study was to assess the effects of restricting access time to pasture and time of grazing allocation on grazing behaviour, daily dry matter intake (DMI), rumen fermentation, milk production and composition in dairy cows. Twenty-one autumn-calving Holstein cows were assigned to one of the following 3 treatments: providing access to a daily strip of pasture for either 8 h between 07:00 and 15:00 h (T7–15), 4 h between 07:00 and 11:00 h (T7–11), or 4 h between 11:00 and 15:00 h (T11–15). The experimental period consisted of 3 weeks of adaptation and 6 weeks of measurements. Cows were offered a daily herbage allowance of 18 kg DM/cow to ground level, 6.1 kg DM/day of a ground sorghum grain-based supplement and 5.2 kg DM/day of maize silage. Milk yield was greater for cows with 8 h access time to the pasture (25.4 vs. 24.1 for 8 and 4 h access time, respectively). Milk yield was not different between cows that access early (T7–11) or late (T11–15) to the grazing session. Milk protein yield was greater for cows with 8 h access time (0.75 kg/d) vs. 4 h access time treatments (0.72 kg/d). Cows with late access time to grazing in the morning produce more protein (0.74 kg/d) than cows with early access to the pasture (0.70 kg/d). Duration of access had a significant effect on herbage DMI (8.3 vs. 6.6 kg/d, for 8 and 4 h access, respectively), but there was no significant effect of time of grazing allocation. Intakes of concentrate and maize silage DM did not differ between treatments.  相似文献   

12.
Two experiments were conducted to clarify the effect of water‐soluble carbohydrate (WSC) content in orchardgrass pasture on the diurnal distribution of grazing time. Six ruminally cannulated, non‐lactating dairy cows were grazed on either of two pastures with different orchardgrass cultivars containing low WSC (LWSC; cultivar: ‘Hokkai 28’) or high WSC (HWSC; cultivar: ‘Harunemidori’). The cows were grazed in morning and evening sessions in experiment 1, whereas the cows were grazed throughout the day in experiment 2. In experiment 1, grazing time of the cows on HWSC was longer than that of the cows on LWSC (P < 0.01). This difference was larger in the morning session than in the evening session (pasture × grazing session: P < 0.05). Effects on herbage intake were similar to those on grazing time. In experiment 2, daily total grazing time was longer for the cows on HWSC than for those on LWSC (P < 0.05). The cows on HWSC spent a longer time grazing than those on LWSC in the morning between 03.00 and 09.00 hours (P < 0.01). The results indicated that prolonged grazing time in the period between dawn and early morning could increase daily herbage intake in cows grazed on pastures of orchardgrass cultivars with high‐WSC content.  相似文献   

13.
Four Holstein cows were used to determine the effect of timing of the feeding of a corn silage (CS)‐based supplement on the feed intake, milk production and nitrogen utilization of grazing dairy cows. The cows were fed the supplement 2 h before grazing (pre‐grazing) or immediately after grazing (post‐grazing). Cows were grazed for 5 h per day under a rotational grazing system. There was no difference in the herbage and total feed intake between treatments. The milk protein yield for pre‐grazing tended to be higher than that for post‐grazing, whereas the milk yield did not differ between treatments. The total nitrogen intake for pre‐grazing tended to be higher than that for post‐grazing (P = 0.06). There was no difference in the urinary nitrogen output between treatments, whereas the proportion of urinary nitrogen output : total nitrogen intake for pre‐grazing tended to be lower than that for post‐grazing (P = 0.06). The milk nitrogen output and nitrogen retention for pre‐grazing tended to be higher than that for post‐grazing (milk nitrogen, P = 0.06; nitrogen retention, P = 0.05). Nitrogen utilization of grazing dairy cows was improved by feeding a CS‐based supplement before grazing.  相似文献   

14.
The effects of supplementary corn silage (CS) of either 2 or 4 kg of dry matter (DM; S + 2 and S + 4, respectively) above the energy requirement for milk production and maintenance for grazing dairy cows (S) were determined. Time‐restricted grazing was used to compare the feed intake, milk production, and nitrogen and energy use of lactating cows. The experiment was carried out on two different pastures using a 3 × 3 Latin square design for each pasture. Cows were grazed for 5 h on a rotational grazing system and were fed concentrate (1 kg per 5 kg of milk yield). Herbage intake was measured using a weighing technique. To calculate the energy and nitrogen use, whole feces and urine were collected. There was no statistical effect of the pastures. Herbage intake decreased by the addition of CS (P = 0.02). The reduction of herbage DM intake per unit consumption of supplementary CS towards the S group were 0.80 and 0.45 kg for the S + 2 and S + 4 groups, respectively. The total DM intake for the S + 4 group was higher than that for the S and S + 2 groups (P = 0.02). Milk yield did not differ among treatments, even though the total DM intake for the S + 4 group was higher than that of the S and S + 2 groups. Nitrogen and energy use did not differ with the addition of CS.  相似文献   

15.
The objective of this study was to investigate the effect of daily herbage allowance and concentrate supplementation level offered at approximately 40 and 80 days in milk (DIM) and the carryover effects at 120 DIM on the production performance of spring calving dairy cows. Sixty-six (30 primiparous and 36 multiparous) Holstein–Friesian dairy cows (mean calving date — 7 Feb ± 9.9 days) were randomly assigned to a 6 treatment (n = 11) grazing study. The experiment was a randomised block design with a 3 × 2 factorial arrangement of treatments (3 daily herbage allowances (DHA's; approximately 13, 16 and 19 kg DM/cow/day; > 4 cm) and 2 concentrate allowances (0 and 4 kg DM/day). Treatments were imposed from 21 February to 8 May. Following this period (subsequent 4-weeks) animals were offered a daily herbage allowance of 20 kg DM/cow/day and no concentrate. Milk production, total dry matter intake (TDMI), energy balance (EB) and blood metabolites were measured on three occasions — at approximately 40, 80 and 120 days in milk, R1, R2 and the carryover period, respectively. Cows offered a low DHA had a lower post-grazing sward height but increased sward utilisation (> 4 cm) during R1 and R2, there was no difference during the carryover period. Concentrate supplementation increased post-grazing sward height by 11% during R2 but had no effect during R1 and the carryover period. Daily herbage allowance had no effect on milk yield or composition during R1 however a low DHA tended to reduce milk yield in R2. Concentrate supplementation increased milk and solids corrected milk (SCM) yield by 4.1 and 2.8 kg/cow/day, respectively during R1 and also increased R2 milk production performance, this effect extended into the carryover period. Offering a low DHA restricted grass dry matter intake (DMI) during R1 and R2 yet concentrate supplementation significantly increased total DMI (2.3 (R1) and 3.0 (R2) kg DM/cow). Animals offered a low DHA had a significantly lower bodyweight (BW) than those offered a medium or high DHA during P1 and P2. Concentrate supplementation increased BW during P1 and P2 (+ 9 and + 14 kg/cow, respectively). There was no effect of treatment on BW during P3. There was no effect of DHA on EB in R1; during R2 animals offered a low DHA had the lowest EB. Concentrate significantly increased EB in R1 and R2 and increased plasma glucose concentration while it decreased plasma NEFA and BHB concentrations. The results of this study indicate that animals should be offered a low DHA up to 80 DIM after which DHA should be increased however animals should also be supplemented with concentrate during the early post-partum period.  相似文献   

16.
17.
This study was performed to investigate the effect of the transition from barn feeding to pasture on the pattern of reticuloruminal pH values in 8 multiparous dairy cows. A indwelling wireless data transmitting system for pH measurement was given to 8 multiparous cows orally. Reticuloruminal pH values were measured every 600 s over a period of 42 days. After 7 days of barn feeding (period 1), all of the animals were pastured with increasing grazing times from 2 to 7 h/day over 7 days (period 2). From day 15 to day 21 (period 3), the cows spent 7 h/day on pasture. Beginning on day 22, the animals had 20 h/day access to pasture (day and night grazing). To study reticuloruminal adaptation to pasture feeding, the phase of day and night grazing was subdivided into another 3 weekly periods (periods 4–6). Despite a mild transition period from barn feeding to pasture, significant effects on reticuloruminal pH values were observed. During barn feeding, the mean reticuloruminal pH value for all of the cows was 6.44 ± 0.14, and the pH values decreased significantly (p < 0.001) during period 2 and 3 to 6.24 ± 0.17 and 6.21 ± 0.19 respectively. During periods 4, 5 and 6, the reticuloruminal pH values increased again (pH 6.25 ± 0.22; pH 6.31 ± 0.17; pH 6.37 ± 0.16). Our results showed that the animals had significantly lowered reticuloruminal pH during the periods of feed transition from barn to pasture feeding. Despite these significant changes, the decrease was not harmful, as indicated by data of feed intake and milk production.  相似文献   

18.
The challenge for sustainable organic dairy farming is identification of cows that are well adapted to forage‐based production systems. Therefore, the aim of this study was to compare the grazing behaviour, physical activity and metabolic profile of two different Holstein strains kept in an organic grazing system without concentrate supplementation. Twelve Swiss (HCH; 566 kg body weight (BW) and 12 New Zealand Holstein‐Friesian (HNZ; 530 kg BW) cows in mid‐lactation were kept in a rotational grazing system. After an adaptation period, the milk yield, nutrient intake, physical activity and grazing behaviour were recorded for each cow for 7 days. On three consecutive days, blood was sampled at 07:00, 12:00 and 17:00 h from each cow by jugular vein puncture. Data were analysed using linear mixed models. No differences were found in milk yield, but milk fat (3.69 vs. 4.05%, = 0.05) and milk protein percentage (2.92 vs. 3.20%, < 0.01) were lower in HCH than in HNZ cows. Herbage intake did not differ between strains, but organic matter digestibility was greater (= 0.01) in HCH compared to HNZ cows. The HCH cows spent less (P = 0.04) time ruminating (439 vs. 469 min/day) and had a lower (= 0.02) number of ruminating boli when compared to the HNZ cows. The time spent eating and physical activity did not differ between strains. Concentrations of IGF‐1 and T3 were lower ( 0.05) in HCH than HNZ cows. In conclusion, HCH cows were not able to increase dry matter intake in order to express their full genetic potential for milk production when kept in an organic grazing system without concentrate supplementation. On the other hand, HNZ cows seem to compensate for the reduced nutrient availability better than HCH cows but could not use that advantage for increased production efficiency.  相似文献   

19.
This study was carried out to evaluate the impact of including Acacia mearnsii tannin extract (TA) as a feed additive on nutrition and productive performance of dairy cows grazing a high‐quality temperate pasture and receiving supplementation with a concentrate feedstuff. Fourteen multiparous Holstein cows were assigned to either of the following treatments: concentrate without or with 20 g TA/kg dry matter (DM). Concentrate intake accounted for 32% of the total DM intake. Tannin addition increased the herbage DM intake by 22% (p < .05). There was no effect of TA inclusion on milk yield, milk composition, milk nitrogen (N) excretion, milk and plasma urea‐N concentration, urinary excretion of total N, urea‐N, and purine derivatives. However, TA inclusion increased the N intake and retention, total N excretion in manure, fecal N to urine N ratio, and decreased the dietary N efficiency for milk production and the percentage of ingested N excreted in urine (p < .05). In conclusion, supplementing dairy cows grazing a high‐quality temperate pasture with a concentrate containing 20 g TA/kg DM showed the potential of decreasing the proportion of ingested N excreted in urine without affecting the productive performance.  相似文献   

20.
It was hypothesized that long‐term intake of a diet contaminated with deoxynivalenol (DON) and differing in the proportion of concentrate might affect hepatocellular integrity and function as well as biomarkers of systemic inflammation in lactating dairy cows. In Period 1 (11 weeks), 26 lactating German Holstein cows (13 primiparous and 13 pluriparous, 31 days in milk, 522 kg body weight, on average) were divided into two groups and fed diets (50% concentrate) with (MYC,= 12; on average 5.3 mg DON/kg DM) or without (CON,= 14) DON contaminations. In Period 2 (16 weeks), each group was further divided into two groups to test whether elevated concentrate proportion as additional burden might enhance the toxicity of DON. The cows in MYC60 (= 6; 4.6 mg DON/kg DM) and CON60 (= 7) received the diet with 60% concentrate, while cows in MYC30 (= 6; 4.4 mg DON/kg DM) and CON30 (= 7) received the diet with 30% concentrate. Blood samples were taken in biweekly intervals for activities of aspartate amino transferase (AST), glutamate dehydrogenase (GLDH) and gamma‐glutamyl transferase as well as for concentration of total bilirubin and haptoglobin. Biopsies from liver were collected in week 27 for morphological analyses. No DON effect was found for the variables assessed in blood. The diet with 60% concentrate led to higher activities of AST and GLDH in Period 2. No morphological change was found by both light and electron microscopic analyses of liver samples. Results indicated that long‐term intake of DON‐contaminated diet over 27 weeks led to neither relevant damages of hepatocytes nor systemic inflammatory responses in lactating dairy cows, even if the dietary concentrate proportion was increased to 60%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号