共查询到20条相似文献,搜索用时 16 毫秒
1.
Susceptibility of Faba Bean (Vicia faba L.) to Heat Stress During Floral Development and Anthesis 下载免费PDF全文
Experiments were conducted over 2 years to quantify the response of faba bean (Vicia faba L.) to heat stress. Potted winter faba bean plants (cv. Wizard) were exposed to temperature treatments (18/10; 22/14; 26/18; 30/22; 34/26 °C day/night) for 5 days during floral development and anthesis. Developmental stages of all flowers were scored prior to stress, plants were grown in exclusion from insect pollinators to prevent pollen movement between flowers, and yield was harvested at an individual pod scale, enabling effects of heat stress to be investigated at a high resolution. Susceptibility to stress differed between floral stages; flowers were most affected during initial green‐bud stages. Yield and pollen germination of flowers present before stress showed threshold relationships to stress, with lethal temperatures (t50) ?28 °C and ~32 °C, while whole plant yield showed a linear negative relationship to stress with high plasticity in yield allocation, such that yield lost at lower nodes was partially compensated at higher nodal positions. Faba bean has many beneficial attributes for sustainable modern cropping systems but these results suggest that yield will be limited by projected climate change, necessitating the development of heat tolerant cultivars, or improved resilience by other mechanisms such as earlier flowering times. 相似文献
2.
Increase in soil temperature together with decrease in soil moisture during anthesis of spring wheat (Triticum aestivum L) crops is predicted to occur more frequently in a future climate in Denmark. The objective of this study was to investigate the responses of two Danish spring wheat varieties (Trappe and Alora) to soil warming (H), drought (D) and both (HD) during anthesis. The plants were grown in pots in a climate‐controlled glasshouse. In H, the soil temperature was increased by 3 °C compared with the control (C). In both D and HD treatments, the plants were drought‐stressed by withholding irrigation until all of the transpirable soil water had been depleted in the pots. Results showed that, particularly under D treatment, Alora depleted soil water faster than Trappe. In both varieties, flag leaf relative water content (RWC) was significantly lowered, while spikelet abscisic acid (ABA) concentration was significantly increased by D and HD treatments. Compared with the C plants, D and HD treatments significantly reduced ear number, ear to tiller ratio, shoot biomass, grain yield, harvest index and seed set but hardly affected tiller number and 1000‐kernel weight, whereas H treatment alone only decreased shoot biomass and reduced seed set. When analysed across the varieties and the treatments, it was found that the reduction in seed set was closely correlated with the increase in spikelet ABA concentration, indicating that D and HD treatments induced greater spikelet ABA concentrations might have caused seed abortion. It was concluded that the grain yield reduction under D and HD treatments during anthesis in spring wheat is ascribed mainly to a lowered seed set and wheat varieties (i.e. Alora) with more dramatic increase in spikelet ABA concentration are more susceptible to D and HD treatment. 相似文献
3.
Wheat Cultivars Adapted to Post-Heading High Temperature Stress 总被引:3,自引:0,他引:3
The existence of genetic variation in wheat for tolerance to high temperature stress has been reported but cultivars released for a particular production system often are not characterized. The objective of this study was to identify and describe the characteristics of wheat cultivars adapted to production systems with risks of high temperature during the post‐heading period. Fifteen diverse wheat cultivars and one unreleased genotype were evaluated at the Texas A&M University Agricultural Research and Extension Center, Uvalde, TX, during two seasons characterized by daily maximum temperatures as high as 36 °C. Measurements during both seasons included days to heading, days to physiological maturity and grain yield. Large and significant (P < 0.05) grain yield differences were measured among cultivars within each season. Yield varied between 2979 and 4671 kg ha?1 in the first season and between 1916 and 5200 kg ha?1 in the second season. Late planting in the second season delayed heading date resulting in the post‐heading period to coincide with periods of high temperatures. Cultivars that headed early, in general, yielded better than cultivars that headed later within each season with yield reduction of 35.3 kg ha?1 in the first season and 91.0 kg ha?1 in the second season for every 1 day delay in heading after mid‐March. Early‐heading cultivars outperformed later‐heading cultivars because of two distinct advantages: the early‐heading cultivars had longer post‐heading and, therefore, longer grain filling period than the later‐heading cultivars. In addition, early‐heading cultivars completed a greater fraction of the grain filling earlier in the season when air temperatures were lower and generally more favourable. The advantage of earlier‐heading cultivars was also manifested in the amount of green leaves retained to anthesis. Earlier‐heading cultivars produced fewer total leaves per tiller but retained more green leaves and lost fewer leaves to senescence at anthesis than later‐heading cultivars. The results suggest that early heading is an important and effective single trait defining wheat cultivars adapted to production systems prone to high temperature stress during the post‐heading period. 相似文献
4.
K. Kocheva V. Nenova T. Karceva P. Petrov G. I. Georgiev A. Börner S. Landjeva 《Journal of Agronomy and Crop Science》2014,200(2):83-91
Water deficiency is a major constraint to wheat productivity in drought prone regions. The wheat DELLA‐encoding height‐reducing genes (Rht) are associated with significant increase in grain yield. However, the knowledge of their benefit in dry environments is insufficient. The objective of the study was to examine the effect of induced drought on leaf water content, level of oxidative stress, cell membrane stability, accumulation of osmoprotectants and activity of some antioxidant enzymes in wheat near‐isogenic lines carrying the alleles Rht‐B1b (semidwarfing) and Rht‐B1c (dwarfing) in comparison with the tall control Rht‐B1a. Six‐day‐long water deprivation was imposed at seedling stage. Plants carrying Rht‐B1c and, to a lesser extent, those carrying Rht‐B1b performed better under stress compared with Rht‐B1a in terms of more sustained membrane integrity, enhanced osmoregulation and better antioxidant defence. These differential responses could reflect pleiotropic effects of the Rht‐B1 gene associated with the accumulation of the mutant gene product, that is, altered DELLA proteins, or might be related to allelic variations at neighbouring loci carrying candidate genes for proteins with a major role in plant water regulations and stress adaptation. These findings might be of importance to breeders when introducing Rht‐B1 alleles into wheat cultivars designed to be grown in drought liable regions. 相似文献
5.
干旱胁迫对不同冬小麦品种幼苗期生理特性的影响 总被引:2,自引:0,他引:2
研究小麦幼苗时期生理指标等方面的抗旱特性,为今后抗旱小麦新品种的培育提供基础的理论依据。选用5个肥水类型不同的小麦品种,在20% PEG-6000(w/v)水分胁迫条件下,研究不同冬小麦品种幼苗时期的生理抗旱特性,并对幼苗期抗旱生理指标与抗旱指数做了相关性分析。结果表明,在20%的PEG-6000(w/v)渗透胁迫后,5个小麦品种渗透调节物质可溶性糖和脯氨酸含量均上升,且上升的程度与抗旱性一致;胁迫条件下保护酶系统SOD和POD活性均降低,其中POD活性呈先上升后降低的趋势;膜脂过氧化产物MDA含量升高。与高肥水品种相比,‘青麦7号’和‘鲁麦21’的可溶性糖和脯氨酸含量较高,随胁迫时间延长增加的幅度大;MDA含量积累的速度以及SOD、POD活性降低的速度较为缓慢。其中,可溶性糖含量、脯氨酸含量、SOD活性以及POD活性与抗旱性鉴定指标抗旱指数存在极显著相关性,可以作为小麦抗旱性鉴定的早期生理指标。 相似文献
6.
Effect of Simulating Drought in Various Phenophases on the Water Use Efficiency of Winter Wheat 下载免费PDF全文
B. Varga G. Vida E. Varga‐László S. Bencze O. Veisz 《Journal of Agronomy and Crop Science》2015,201(1):1-9
In Central Europe, drought is the most important limiting factor for autumn‐sown cereals. Due to the decline in groundwater, it is a priority to use less water‐demanding forms of crop production. Water use efficiency (WUE) can only be increased if cultivars with satisfactory water management traits are grown, so that they can exploit the water reserves of the soil even if drought occurs during the vegetation. Water consumption and water use efficiency of winter wheat genotypes were investigated in a model experiment carried out in a climate‐controlled glasshouse. The plants were grown either with optimum water supplies or with simulated drought in three phenophases, and measurements were made on the yield parameters, phenological traits and water use parameters of the plants. Substantial differences were observed between the water demands of the cultivars, and it was found that the later the phenophase in which drought was simulated, the greater the decline in water uptake. The analysis of WUE led to the conclusion that the WUE values of cultivars with short vegetation periods dropped to the greatest extent when water deficit was suffered at first node appearance, while cultivars with longer vegetation periods were more sensitive to drought during the heading and grain‐filling stages. 相似文献
7.
等离子体对干旱胁迫下小麦种子萌发的生物学效应 总被引:1,自引:1,他引:1
用80~240 W射频等离子体处理小麦种子,在聚乙二醇(PEG-6000)模拟干旱胁迫条件下,研究了不同功率等离子体对小麦幼苗生长及抗旱性的影响。试验结果表明:不同功率的等离子体处理对干旱胁迫条件下小麦幼苗生长的影响效果不同,80~200 W处理对幼苗生长有不同程度的促进作用,根数、根长、株高、幼苗干重和根冠比各项指标均比对照有不同程度的提高,而240 W处理对小麦幼苗生长产生了抑制效应。其中160 W处理小麦种子在干旱胁迫下小麦幼苗根数、根长及干重分别比对照增加14.29%、16.94%和9.76%;丙二醛(MOD)含量及质膜透性比对照明显降低,防止或降低了膜质过氧化作用对膜的伤害;SOD、POD活性及脯氨酸含量均比对照高,表明保护性酶系统增强,一定程度上缓减了干旱胁迫对小麦幼苗的伤害,提高了其抗旱性。 相似文献
8.
M. Filek M. Łabanowska J. Kościelniak J. Biesaga‐Kościelniak M. Kurdziel I. Szarejko H. Hartikainen 《Journal of Agronomy and Crop Science》2015,201(3):228-240
Two kinds of barley genotypes with various water‐stress tolerances, tolerant Cam/B1 and sensitive Maresi, were subjected to 10‐day soil‐drought stress in seedling and flag leaf developmental phases. After this time, both genotypes regardless of the growth stage showed a decrease in quantum yield of PSII photochemistry (ΦPSII) upon stress treatment; however, this effect was stronger in the sensitive plants than in the tolerant ones. The drought stress in the flag leaf stage was associated with an increase in superoxide dismutase (SOD) level in both genotypes, whereas in seedlings, this effect was observed only for Maresi. The activity of other enzymes (catalase and peroxidase) was changed only in small degree. An increase in proline levels and activities of Δ1‐pyrroline‐5‐carboxylate synthetase (P5CS) and ornithine delta‐aminotransferase (OAT) were observed independently of genotype and the phase of plant development, whereas the activity pyruvate dehydrogenase (PDH) decreased in tolerant genotype. Moreover, changes in the concentration of monocarbohydrates (glucose and fructose) and dicarbohydrates (saccharose, raffinose and maltose) were found: in seedlings, the amount of all soluble sugars increased, while in flag leaves decreased. The drought treatment resulted in a drop in starch level in the tolerant genotype, but in the sensitive one, the content of this substance increased in both developmental stages. EPR studies allowed the determination of the amount and character of organic radicals present in leaves. In control conditions, the content of these radical species was higher in the sensitive genotype than in tolerant one and decreased upon water stress, with the exception of flag leaves of the sensitive plant. Simulation procedure revealed four types of signals in the EPR spectra. One of them was attributed to a chlorophyll a cation and decreased upon drought. The second, ascribed to semiquinone radicals, reflected the redox balance disturbed by water deficit. The two remaining signals were connected with carbon‐centred radicals situated in the carbohydrate matrix. Their number was correlated with starch concentration. 相似文献
9.
不同基因型小麦对干旱胁迫响应的差异研究 总被引:2,自引:0,他引:2
采用PEG 6000模拟干旱试验和干旱棚试验,研究10个不同基因型小麦对干旱胁迫的响应。结果表明,不同基因型小麦的抗旱性表现时期有差异,同一基因型品种在不同抗旱指标上表现不完全一致。抗旱萌发较好的品种是济宁16和蘅观35,发芽势和发芽率均较高,发芽速度快。豫农949在幼苗生长期抗旱性表现比较突出,苗高、叶数、地上部分干重、根干重、叶绿素含量、脯氨酸含量等指标都比较高。干旱胁迫下单株产量最高的是南阳996,其次是豫农949。用综合抗旱系数评价小麦的抗旱性,南阳996的综合抗旱系数最高,与产量的表现吻合。 相似文献
10.
不同耐热性小麦品种旗叶膜脂过氧化和保护酶活性对花后高温胁迫的响应 总被引:24,自引:2,他引:24
以2个耐热性不同的冬小麦品种山农1391和藁城8901为材料,用塑料薄膜制成增温棚,分别于花后8~10 d (T1)和花后15~17 d (T2)进行高温处理,研究了花后不同时期高温胁迫对小麦旗叶丙二醛(MDA)含量、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)活性的影响。结果表明,T1处理的旗叶内活性氧防卫系统能更有效地启动,使膜脂过氧化水平有所下降,而T2处理造成的伤害不可恢复。花后28 d,与藁城8901相比,山农1391各处理MDA含量较低。T1处理的SOD和CAT活性明显上升,但CAT活性的上升期晚于SOD,它们协同起保护作用,延缓旗叶的衰老,其中山农1391SOD活性的上升幅度较大,而且CAT活性的恢复性增加的能力较强;T2处理的SOD活性未见上升,甚至有所下降,CAT活性虽然高于对照,却未能有效减轻膜脂过氧化程度,表明SOD在酶保护系统中起核心作用。T1处理降低了POD清除H2O2的能力;T2处理的POD活性大幅上升,可能对叶片起到了伤害作用,加速了旗叶的衰老。因此,小麦的耐热性随花后生育进程而下降,应特别加强灌浆中后期的田间管理,减轻高温的伤害。 相似文献
11.
干旱胁迫对小麦营养器官物质转运和籽粒灌浆特性的影响 总被引:1,自引:0,他引:1
为进一步明确干旱胁迫对小麦营养器官物质转运和籽粒灌浆特性的影响。在大田条件下,以冀麦585、河农825、农大211和京冬8为试验材料,设置灌溉和旱作2个处理,研究了干旱胁迫条件下小麦营养器官干物质的积累、转运和籽粒灌浆的特点。结果表明,与灌溉栽培相比,干旱胁迫下成熟期小麦个体营养器官干物质量增大,而经济系数和籽粒产量均显著下降。同时干旱胁迫提高了京冬8各营养器官干物质向籽粒的转运量,抑制了冀麦585、河农825和农大211各营养器官干物质向籽粒的转运。干旱胁迫对小麦籽粒灌浆的影响存在基因型差异。在旱作栽培条件下,河农825、冀麦585和农大211的最大灌浆速率与灌溉栽培相比显著增大,而京冬8的最大灌浆速率显著降低。干旱胁迫对河农825和农大211渐增持续期、快增持续期和缓增持续期的天数变化影响不大,却缩短了冀麦585渐增持续期和快增持续期的天数,延长了京冬8缓增持续期天数,推迟了灌浆高峰期的来临。 相似文献
12.
P. V. V. Prasad S. R. Pisipati I. Momčilović Z. Ristic 《Journal of Agronomy and Crop Science》2011,197(6):430-441
High temperature and drought stress are among the two most important environmental factors influencing crop growth, development and yield processes. These two stresses commonly occur in combination. Objectives of this research were to investigate the independent and combined effects of high temperature and drought stress during grain filling on physiological, vegetative and yield traits and expression of a chloroplast protein synthesis elongation factor (EF‐Tu) of wheat (Triticum aestivum L.). Two spring wheat cultivars (Pavon‐76 and Seri‐82) were grown at control temperatures (CT; day/night, 24/14 °C; 16/8 h photo/dark period) from sowing to heading. Thereafter, one half of the plants were exposed to high temperature stress (HT; 31/18 °C in Exp. 1 and 34/22 °C in Exp. 2), drought stress (withholding water), or a combination of both HT and drought stress. There were significant influences of HT and/or drought stress on physiological, growth and yield traits. There was no cultivar or cultivar by temperature or cultivar by drought interaction effects on most traits. The decreases in leaf photosynthesis were greater at HT compared with drought alone throughout the stress period, and the combination of HT and drought had the lowest leaf photosynthetic rates. Overall, HT or drought had similar effects (about 48–56 % decrease) on spikelet fertility, grain numbers and grain yield. High temperature decreased grain numbers (by 56 % averaged across both experiments) and individual grain weight (by 25 %), while, respective decreases due to drought were 48 % and 35 %. This suggests that the grain numbers were more sensitive to HT and grain weights to drought for the range of temperatures tested in this research. The interaction between HT and drought stress was significant for total dry weights, harvest index and spikelet fertility, particularly when HT stress was severe (34/22 °C). The combined effects of HT and drought were greater than additive effects of HT or drought alone for leaf chlorophyll content, grain numbers and harvest index. High temperature stress and the combination of HT and drought stress but not drought stress alone resulted in the overexpression of EF‐Tu in both spring wheat cultivars. 相似文献
13.
花后高温、弱光及其双重胁迫对小麦籽粒内源激素含量与增重进程的影响 总被引:4,自引:0,他引:4
在田间试验条件下研究了花后不同时期高温、弱光和温光双重胁迫对小麦籽粒内源激素含量与增重进程的影响。结果表明,灌浆中期温光双重胁迫处理对小麦粒重的影响最为显著,不同时期3种处理后,单粒重的降低主要是缓增期灌浆速率和平均灌浆速率显著降低所致,而灌浆持续期对其影响较小。灌浆进程中籽粒GA3含量的降低或ABA含量的升高可能是导致平均与最大灌浆速率以及渐增期、快增期和缓增期灌浆速率变化的生理原因。对籽粒各内源激素变化速率之间及其与籽粒平均灌浆速率的相关分析表明,对籽粒灌浆速率的调节作用GA3主要体现在灌浆前期(开花后7~12 d)和后期(开花后19~28 d);而ABA主要是在灌浆中期(开花后12~19 d),且籽粒平均灌浆速率与ABA之间的关系要比其与GA3的关系相对密切。整个籽粒灌浆过程,ZR和IAA含量变化与籽粒平均灌浆速率的相关性均不显著。 相似文献
14.
Effect of Heat Stress on Grain Starch Content in Diploid, Tetraploid and Hexaploid Wheat Species 总被引:1,自引:0,他引:1
Heat stress during grain development adversely affects the starch content of grain in wheat, which results in poor grain quality and yield. Identification of the sources of heat tolerance for grain starch content in wheat species is an important step towards breeding for heat‐tolerant wheat. In this study, 32 wild and cultivated genotypes belonging to diploid (probable donors of B, A and D genomes), tetraploid (BBAA and AAGG genomes) and hexaploid (BBAADD genome) wheat species were evaluated for heat stress tolerance in the field at the Indian Agricultural Research Institute (IARI), New Delhi, India (77°12′ E; 28°40′ N; 228.6 m m.s.l) on two dates, 18 November (normal sowing) and 15 January (heat stress), during 1995–96. The crop sown in January experienced mean maximum temperatures of 31.0–39.3 °C during grain development, which are considered to represent heat stress for wheat grain development. Hexaploids had the highest grain starch content and the lowest heat susceptibility index, followed by tetraploid and diploid species. The heat susceptibility index (S) for grain starch correlated significantly and positively with that of grain weight (Y = 1.259X ? 0.29, R2 = 0.8902, P < 0.001) across wheat species, while the actual grain growth duration or the ‘S’ of grain growth duration did not correlate significantly with that of grain weight. Hence, a high mean grain growth rate under heat stress is a better trait for heat tolerance than long grain growth duration. Wide genetic variability for heat tolerance in grain starch content was observed among the wheat species. Hence, the grain weight and quality under heat stress can be improved by using the variability available among wheat species. 相似文献
15.
Estimation of Crown Temperature of Winter Wheat and the Effect on Simulation of Frost Tolerance 下载免费PDF全文
T. Persson A. K. Bergjord Olsen L. Nkurunziza E. Sindhöj H. Eckersten 《Journal of Agronomy and Crop Science》2017,203(2):161-176
Accurate estimation of winter wheat frost kill in cold‐temperate agricultural regions is limited by lack of data on soil temperature at wheat crown depth, which determines winter survival. We compared the ability of four models of differing complexity to predict observed soil temperature at 2 cm depth during two winter seasons (2013‐14 and 2014‐15) at Ultuna, Sweden, and at 1 cm depth at Ilseng and Ås, Norway. Predicted and observed soil temperature at 2 cm depth was then used in FROSTOL model simulations of the frost tolerance of winter wheat at Ultuna. Compared with the observed soil temperature at 2 cm depth, soil temperature was better predicted by detailed models than simpler models for both seasons at Ultuna. The LT50 (temperature at which 50 % of plants die) predictions from FROSTOL model simulations using input from the most detailed soil temperature model agreed better with LT50 FROSTOL outputs from observed soil temperature than what LT50 FROSTOL predictions using temperature from simpler models did. These results highlight the need for simpler temperature prediction tools to be further improved when used to evaluate winter wheat frost kill. 相似文献
16.
Tolerance of Drought and Temperature Stress in Relation to Increased Antioxidant Enzyme Activity in Wheat 总被引:3,自引:0,他引:3
An experiment was conducted with three wheat genotypes differing in their sensitivity to moisture and/or temperature stress to study the relationship of the chloroplast antioxidant system to stress tolerance. Both moisture stress and temperature stress increased glutathione reductase and peroxidase and decreased membrane stab-iltty, chlorophyll content and chlorophyll stability index in all genotypes. Under moisture stress. DL 153–2 showed the highest membrane stabihty index, chlorophyll content, chlorophyll stability index, glutathione reductase activity and peroxidase activity. However, under elevated temperature conditions, HD 2285, and to a lesser extent DL 153–2, showed higher membrane stability, chlorophyll content and chlorophyll stability index and activities of glutathione reductase and peroxi-dase. Raj 3077, which is sensitive to both drought and temperature stress, showed the lowest membrane stability, chlorophyll content and chlorophyll stability index and glutathione reductase and perosidase activity under elevated temperature as well as drought conditions. Thus, it can be concluded that tolerance of the genotype to moisture and/or temperature stress is closely associated with its antioxidant enzyme system. 相似文献
17.
灌浆期高温胁迫对冬小麦叶源、库器官生理活性的影响及调控 总被引:11,自引:3,他引:11
研究了灌浆期高温胁迫条件对冬小麦叶源、库器官某些生理指标的影响。结果表明 ,高温胁迫导致冬小麦叶源、库活性显著降低。高温胁迫能显著降低冬小麦子粒蔗糖酶的活性 ,降低子粒可溶性糖含量 ,胁迫发生初期子粒ATP酶的活性迅速降低 ;高温胁迫导致冬小麦的旗叶MDA含量、脯氨酸含量上升。适当的调节剂处理能显著改变高温胁迫条件下上述生理指标的变化动态 ,显著抑制高温胁迫条件下冬小麦旗叶光合性能的下降 ,延缓叶片衰老的进程 ,对保持叶源、库器官的生理活性有显著的作用 ,协调源库关系 ,降低高温胁迫对植株的伤害程度 相似文献
18.
A. Yang S. S. Akhtar M. Amjad S. Iqbal S.‐E. Jacobsen 《Journal of Agronomy and Crop Science》2016,202(6):445-453
Quinoa (Chenopodium quinoa Willd.), traditionally called the mother of grains, has the potential to grow under high temperatures and drought, tolerating levels regarded as stresses in other crop species. A pot experiment was conducted in a climate chamber to investigate the potential of quinoa tolerance to increasing drought and temperature. Quinoa plants were subjected to three irrigation and two temperature regimes. At low temperature, the day/night climate chamber temperature was maintained at 18/8 °C and 25/20 °C for high temperature throughout the treatment period. The irrigation treatments were full irrigation (FI), deficit irrigation (DI) and alternate root‐zone drying (ARD). FI plants were irrigated daily to the level of the pot's water‐holding capacity. In DI and ARD, 70 % water of FI was applied either to the whole pot or to one side of the pot alternating, respectively. The results indicated that plant height and shoot dry weight significantly decreased by ARD and DI compared to FI treatment both at low and at high temperatures. However, plants in ARD treatment showed significantly higher plant height and shoot dry weight compared to DI especially at higher temperature, which is linked to increased xylem ion content. Higher quinoa plant growth in ARD was associated with increase in water‐use efficiency (WUEi) due to higher abscisic acid concentration and higher nutrient contents compared to DI. From results, it can be concluded that quinoa plant growth is favoured by high temperature (25/20 °C) and ARD is an effective irrigation strategy to increase WUE in drought prone areas. 相似文献
19.
Physiological Response to Heat Stress During Seedling and Anthesis Stage in Tomato Genotypes Differing in Heat Tolerance 下载免费PDF全文
R. Zhou K. H. Kjær E. Rosenqvist X. Yu Z. Wu C.‐O. Ottosen 《Journal of Agronomy and Crop Science》2017,203(1):68-80
Tomato cultivars differ in their sensitivity to heat stress, and the sensitivity depends on the developmental stage of the plants. It is less known how heat stress affects tomato at the anthesis stage in terms of leaf physiology and fruit set and whether the ability of tomato to tolerate heat at different developmental stages is linked. To investigate photosynthetic gas exchange characteristics, carbohydrate content and fruit set during heat stress, a thermo‐tolerant cultivar (‘LA1994’) and a thermo‐sensitive cultivar (‘Aromata’) were studied at the seedling and anthesis stage. The photosynthetic parameters, maximum quantum efficiency of photosystem II (Fv/Fm), chlorophyll content, carbohydrate content and fruit set were determined in plants grown at 26/18 °C (control) and 36/28 °C (heat stress). The physiological responses including net photosynthetic rate (PN), chlorophyll content and Fv/Fm decreased in ‘Aromata’ at both developmental stages during heat stress, whereas they were unaltered in ‘LA1994’ during heat stress as compared to the respective control. This was accompanied by lower contents of glucose and fructose in mature leaves of ‘Aromata’ at the seedling stage under heat stress. In contrast, the glucose content increased while the fructose content was unaltered in mature leaves of ‘LA1994’ at the seedling stage under heat stress. High temperature induced a similar change in carbohydrate content in the young leaves of both cultivars at anthesis. The fructose and sucrose content were unaffected in the mature leaves of ‘Aromata’ but significantly increased in ‘LA1994’ under heat stress at anthesis. The heat stress treatment decreased pollen viability and inhibited fruit set due to flower wilting and abnormal abscission in ‘Aromata’, whereas fruit set was not inhibited in ‘LA1994’. A decrease in chlorophyll content, photosynthesis and carbohydrate content in the mature leaves of tomato could be related to fruit set failure at high temperature. The results show that physiological responses to heat stress at the seedling stage correspond with the responses at the anthesis stage, demonstrating that screening for heat stress sensitivity can be carried out in young plants. 相似文献