首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climate change will alter temperature and rainfall patterns over North American agricultural regions and there will be a need to adapt crop production systems to the altered conditions. A set of field experiments were conducted in south-western Quebec, Canada, with soybean ( Glycine max L.), corn ( Zea mays L.), sorghum ( Sorghum bicolor L.) × sudangrass ( Sorghum sudanense Piper) hybrid and switchgrass ( Panicum virgatum L.) under two tillage and three nitrogen fertility regimes, to study their performance in three successive growing seasons (2001–2003), two of them with unusually warm and dry conditions. The annual crops were established in two tillage systems: conventional and no-till (NT). All crops except soybean were fertilized with three levels of nitrogen: corn – 0, 90 and 180 kg N ha−1, sorghum-sudangrass – 0, 75 and 150 kg N ha−1, switchgrass – 0, 30 and 60 kg N ha−1. The 2001 and 2002 seasons were hotter and drier than the 2003 season, which was the most favourable for crop growth. The capacity of the crops to yield in dry seasons was as follow: switchgrass > sorghum-sudangrass > corn > soybean. The corn and sorghum-sudangrass responses to nitrogen fertilizer were low in 2001 due to the combined effect of dry growing season and coarse soil texture. Soybean did not perform well under NT. Corn yielded better at the highest nitrogen fertilizer rate under NT when the early season was warmer than the normal. Our results show that switchgrass and sorghum-sudangrass could be an option in south-western Quebec if the frequency of hot and dry seasons increase in the future, because of climate change.  相似文献   

2.
Sustainable soil and crop management practices that reduce soil erosion and nitrogen (N) leaching, conserve soil organic matter, and optimize cotton and sorghum yields still remain a challenge. We examined the influence of three tillage practices (no-till, strip till and chisel till), four cover crops {legume [hairy vetch (Vicia villosa Roth)], nonlegume [rye (Secaele cereale L.)], vetch/rye biculture and winter weeds or no cover crop}, and three N fertilization rates (0, 60–65 and 120–130 kg N ha−1) on soil inorganic N content at the 0–30 cm depth and yields and N uptake of cotton (Gossypium hirsutum L.) and sorghum [Sorghum bicolor (L.) Moench]. A field experiment was conducted on Dothan sandy loam (fine-loamy, siliceous, thermic, Plinthic Paleudults) from 1999 to 2002 in Georgia, USA. Nitrogen supplied by cover crops was greater with vetch and vetch/rye biculture than with rye and weeds. Soil inorganic N at the 0–10 and 10–30 cm depths increased with increasing N rate and were greater with vetch than with rye and weeds in April 2000 and 2002. Inorganic N at 0–10 cm was also greater with vetch than with rye in no-till, greater with vetch/rye than with rye and weeds in strip till, and greater with vetch than with rye and weeds in chisel till. In 2000, cotton lint yield and N uptake were greater in no-till with rye or 60 kg N ha−1 than in other treatments, but biomass (stems + leaves) yield and N uptake were greater with vetch and vetch/rye than with rye or weeds, and greater with 60 and 120 than with 0 kg N ha−1. In 2001, sorghum grain yield, biomass yield, and N uptake were greater in strip till and chisel till than in no-till, and greater in vetch and vetch/rye with or without N than in rye and weeds with 0 or 65 kg N ha−1. In 2002, cotton lint yield and N uptake were greater in chisel till, rye and weeds with 0 or 60 kg N ha−1 than in other treatments, but biomass N uptake was greater in vetch/rye with 60 kg N ha−1 than in rye and weeds with 0 or 60 kg N ha−1. Increased N supplied by hairy vetch or 120–130 kg N ha−1 increased soil N availability, sorghum grain yield, cotton and sorghum biomass yields, and N uptake but decreased cotton lint yield and lint N uptake compared with rye, weeds or 0 kg N ha−1. Cotton and sorghum yields and N uptake can be optimized and potentials for soil erosion and N leaching can be reduced by using conservation tillage, such as no-till or strip till, with vetch/rye biculture cover crop and 60–65 kg N ha−1. The results can be applied in regions where cover crops can be grown in the winter to reduce soil erosion and N leaching and where tillage intensity and N fertilization rates can be minimized to reduce the costs of energy requirement for tillage and N fertilization while optimizing crop production.  相似文献   

3.
Quinoa is a potential new seed crop for protein feed and human consumption in Europe, with tolerance to a range of abiotic stresses. For this purpose the study was planned to analyse the effect of important agronomic strategies like nitrogen level, N application strategy, row spacing and harvest time on yield and quality of quinoa. The experiments took place in the field of the experimental station of the Faculty of Science, University of Copenhagen. Three levels of organic nitrogen from slurry was used (60, 120 and 180 kg N ha?1), supplied either all at once at sowing, or split between sowing and beginning of the reproductive phase. The effect of row spacing and harvest time was studied by harvesting seeds at seed maturity, which occurred 2–3 weeks prior to the mechanical harvest by threshing, and a couple of months after. Yield increased significantly (P ≤ 0.05) with an application up to 180 kg N ha?1, reaching 2200 kg ha?1. Increasing N also caused a significantly increased seed weight (up to 3.3 mg) and protein content (up to 17 %). N level did not affect number and amount of weeds. Split application with part of the N applied at bud formation did not have a significant effect on yield. Delayed harvest had a negative influence on seed weight, whereas protein content was stable after harvesting even a month after seed maturity. A late harvest significantly reduced seed germination, being reduced by 50 % after a 2‐month delay. A conclusion from this study is that both yield and protein content of seed can be manipulated by N level and application strategy. Harvest time is important for securing a high seed quality measured as seed germination, seed weight and protein content. A fast germination of quinoa is an important characteristic demonstrating that the crop has good possibilities for being well‐established in the field when free from weeds at the time of sowing. The choice of row spacing is important and depends on weed control method. Weed control strategy should be developed based on modern precision tools.  相似文献   

4.
Field experiments were conducted to determine the direct and residual contributions of legumes to the yield and nitrogen (N) uptake of maize during the wet seasons of 1994 and 1995 at the University Farm, Abubakar Tafawa Balewa University, Bauchi, Nigeria, located in the Northern Guinea savannah of Nigeria. Nodulating soybean, lablab, green gram and black gram contributed to the yield and N uptake of maize either intercropped with the legumes or grown after legumes as a sole crop. Direct transfer of N from the nodulating soybean, lablab, green gram and black gram to the intercropped maize was 24.9–28.1, 23.8–29.2, 19.7–22.1 and 18.4–18.6 kg N ha–1, respectively. However, the transfer of residual N from these legumes to the succeeding maize crop was 18.4–20.0, 19.5–29.9, 12.0–13.7 and 9.3–10.3 kg N ha–1, respectively. Four years of continuous lablab cropping resulted in yields and N uptake of the succeeding maize crop grown without fertilizer N that were comparable to the yields and N uptake of the succeeding maize crop supplied with 40–45 kg N ha–1 and grown after 4 years of continuous sorghum cropping. It may therefore be concluded that nodulating soybean, lablab, green gram and black gram may be either intercropped or grown in rotation with cereals in order to economize the use of fertilizer N for maize production in the Nigerian savannah.  相似文献   

5.
A relay cropping system of cereals, whereby winter wheat (Triticum aestivum L.) was undersown in two‐row spring barley (Hordeum distichum L.), was established in a field trial in central Sweden in 1999 and continued until 2000. The purpose of the study was to examine crop and weed responses to different plant densities of the undersown winter crop. Winter wheat was sown at four seed rates (187, 94, 47 and 0 kg ha?1) immediately after the sowing of barley. Barley was harvested in the first autumn after sowing and winter wheat in the second autumn. The grain yield of barley was not affected by the seed rate of wheat, and averaged 4580 kg ha?1. Winter wheat did not vernalize during the first growing season but remained at the vegetative stage. The grain yield of wheat was 1990 kg ha?1 for the lowest and 5610 kg ha?1 for the highest seed rate of wheat. Whilst the undersowing process itself stimulated weed emergence in this experiment, increasing the undersowing seed rate reduced the population of perennial weeds by 40–70 %. In the second growing season, the total biomass of weeds was 66 % higher at the highest seed rate compared with the lowest seed rate.  相似文献   

6.
A 3‐year study was conducted at New Mexico State University in Las Cruces, NM, to investigate the effects of different fertilization treatments on turf performance when water conservation strategies are applied. These strategies include the use of non‐potable saline irrigation water and the use of efficient subsurface irrigation systems. Two low water use warm‐season grasses, “Princess 77” bermudagrass (Cynodon dactylon L.) and “Sea Spray” seashore paspalum (Paspalum vaginatum O. Swartz), were irrigated with either potable [Electrical Conductivity (EC) = 0.6 dS/m] or saline (EC = 3.1 dS/m) water from either an overhead or a subsurface drip irrigation (SDI) system. Four different fertilizers, liquid slow release, granular slow release, granular urea and liquid urea, were applied at two rates: 10 and 20 g N m?2 year?1 for “Sea Spray” and 20 and 30 g N m?2 year?1 for “Princess 77.” Spring green‐up, summer quality and fall colour retention were determined using digital image analysis, visual quality ratings and normalized difference vegetation index. Generally, subsurface drip‐irrigated grasses were slower to green‐up than overhead irrigated ones. “Sea Spray” irrigated from the SDI system took 18, 28 and 15 days longer to reach 80% green cover in 2010, 2011 and 2012, respectively, than their sprinkler‐irrigated counterparts. The combination of “Princess 77” and overhead irrigation reached 80% green cover 35 (in 2010), 34 (in 2011) and 12 (in 2012) days faster than SDI‐irrigated “Princess 77.” Fertilization rate and type had no effect on summer turfgrass quality of “Princess 77” irrigated from a sprinkler system throughout the research period reaching ratings of greater than 7 during all 3 years. Similar results were observed for “Princess 77” irrigated from a SDI system during 2010 and 2011. Summer quality of sprinkler‐irrigated “Sea Spray” was negatively affected by liquid fertilization. During two of three summers, visual quality of plots fertilized with either liquid slow release or liquid urea was lower than “Sea Spray” fertilized with granular fertilizer. Further research is needed to investigate the effect of fertilization on bermudagrass and seashore paspalum over a wider nitrogen range including both granular and foliar products.  相似文献   

7.
A generic agricultural drought index, called Agricultural Reference Index for Drought (ARID), was designed recently to quantify water stress for use in predicting crop yield loss from drought. This study evaluated ARID in terms of its ability to predict crop yields. Daily historical weather data and yields of cotton, maize, peanut and soybean were obtained for several locations and years in the south‐eastern USA. Daily values of ARID were computed for each location and converted to monthly average values. Using regression analyses of crop yields vs. monthly ARID values during the crop growing season, ARID‐yield relationships were developed for each crop. The ability of ARID to predict yield loss from drought was evaluated using the root mean square error (RMSE), the Willmott index and the modelling efficiency (ME). The ARID‐based yield models predicted relative yields with the RMSE values of 0.144, 0.087, 0.089 and 0.142 (kg ha?1 yield per kg ha?1 potential yield); the Willmott index values of 0.70, 0.92, 0.86 and 0.79; and the ME values of 0.33, 0.73, 0.60 and 0.49 for cotton, maize, peanut and soybean, respectively. These values indicated that the ARID‐based yield models can predict the yield loss from drought for these crops with reasonable accuracy.  相似文献   

8.
The Rolling Pampa is the most productive region of the Argentine Humid Pampa comprising around 10 Mha. Wheat (Triticum aestivum L.), corn (Zea mays L.), and soya bean [Glycine max (L.) Merr.] are the main grain crops produced. To develop sound cropping strategies, a better understanding of the impact of soil fertility and management on crops is needed. The objective of this study was to develop models for estimating the effects of growing season precipitation, soil fertility and management on wheat and corn yields. Data from 347 wheat and 323 corn field experiments and production fields over six growing seasons were used. Soil, management and weather characteristics were determined and yields were then evaluated. Data were analysed using linear and quadratic models and a quadratic polynomial surface model. Soil fertility, management and rainfall and interactions were analysed. Growing season precipitation correlated with wheat (R2 = 0.42) and corn (R2 = 0.25) yield. Maximum wheat yield was achieved with 350–400 mm rainfall and corn yield reached a plateau around 700 mm. Soil fertility accounted for 33 % of wheat yield variability and 5 % of corn yield variability. Management accounted for 48 and 9 % respectively. Whole polynomial models integrating rainfall, fertilizer N and P rates, soil N and P, previous crop and tillage system accounted for 67 % of wheat yield variability and 51 % of corn yield variability. Soil organic matter was not included in the models but an indirect effect on yield was detected as organic matter correlated with initial soil N levels for both crops. Soya bean as a previous crop had a positive effect on wheat and corn yields. Wheat was insensitive to tillage system but corn yield was higher under no till. N and P fertilization had a two- to three-fold greater impact on yield than soil nutrient levels. As this region is considered to be of high soil fertility and has a history of very low fertilizer consumption, adequate use of N and P fertilization will be essential to maintaining high wheat and corn yields.  相似文献   

9.
A 3‐year study was conducted at New Mexico State University in Las Cruces, NM, to investigate whether different fertilization treatments affect the carbohydrate and protein content in two warm‐season grasses grown using water conservation strategies such as non‐potable saline irrigation water and a subsurface irrigation system. “Princess 77” bermudagrass (Cynodon dactylon L.) and “Sea Spray” seashore paspalum (Paspalum vaginatum O. Swartz) were irrigated with either potable (electrical conductivity [EC] = 0.6 dS m?1) or saline (EC = 3.1 dS m?1) water from either an overhead or a subsurface drip irrigation system. Four different fertilizers were used in this study: liquid slow release, granular slow release, granular urea and urea liquid, at two rates: 10 and 20 g N m?2 yr?1 for “Sea Spray” and 20 and 30 g N m?2 yr?1 for “Princess 77.” Carbohydrate (sucrose, starch, total soluble carbohydrates and total non‐structural carbohydrates) and protein content of the grasses were measured, and their effect on spring green‐up was determined. The total carbohydrate content within the stolons and rhizomes was found to be closely associated with speed of spring green‐up, resulting in R2 values ranging from 0.36 to 0.76. The relationship between green‐up and carbohydrate content was similar for both grasses. Fertilizer treatment did not affect carbohydrate content in either grass under either irrigation system. Further analysis revealed that carbohydrate content in February was the best determinant for spring green‐up. Other sampling months also showed a significant correlation with spring green‐up, but with lower R2 values.  相似文献   

10.
Soil and climatic conditions in Newfoundland are on the margins of agricultural capability, and almost all feed grain is imported. The overall objective of this work was to develop guidelines for the production of barley in Newfoundland, with the goal of establishing modern cropping recommendations. We conducted a 4-year study near St. John's to examine the effect of seeding rate and topdress ammonium nitrate (N) fertilization rate on Chapais six-row barley ( Hordeum vulgare L.) yield components and grain yield. Increasing seeding rate from 200 to 380 seeds m–2 did not alter grain yield in any year. Increasing topdress fertilization from 0 to 60 kg N ha–1 increased spike density m–2 at harvest, resulting in linear increases in grain yield in all years. Highest N rates had greatest lodging in two years. Based on our results, agronomic recommendations for eastern Newfoundland now include barley seeding rates of 250 ± 50 seeds m–2, with topdress applications up to at least 30 kg N ha–1.  相似文献   

11.
A field experiment was conducted from 1985–1986 to 2002–2003 on Vertisols under rainfed conditions to evaluate the effect of cropping systems and application of fertilizers and manure on seed cotton yield. To determine the long‐term effects, trends and stability analyses were performed. Soil samples (0–0.15 and 0.15–0.30 m) were collected at the end of year 18 and analysed for available P and AB‐DTPA extractable Zn. Among cropping systems, Asiatic diploid cotton (Gossypium arboreum) yielded 233 kg ha?1 more seed cotton than the upland tetraploid cotton (Gossypium hirsutum). Yield trend was positive for G. arboreum compared with G. hirsutum. However, the slope was not significant. Stability analyses indicated overall higher yield stability for G. arboreum than G. hirsutum. Compared with monocropping G. hirsutum, G. hirsutum–sorghum (Sorghum bicolor L.) (H‐S) rotation was significantly more stable. Soil samples (0–0.30 m) of the manure‐amended plots had significantly greater P and Zn content (above the critical limit) compared to those receiving inorganic fertilizers alone. With regard to nutrient management practices, seed cotton yield was the highest for the integrated nutrient management (INM) treatment receiving a combination of organic and inorganic fertilizers. Among primary nutrients, the effect of P was significant while that of K was not. Balanced fertilizer application was significantly better than treatments receiving N and NK. Yield trends were, in general, not significant. However, a positive trend was noticed for treatments receiving manure compared to fertilizer alone. Stability analysis, on the other hand, indicated that the slopes were, in general, significant. Among the nutrients, mean yield response with and without P was 1007 and 672 kg ha?1 respectively. Combined application of manure and fertilizer (INM) resulted in the highest mean yield response (1218 kg ha?1) and the slope was highly significant (P < 0.004). In the manure‐amended plots, a better nutrient status probably imparted a greater degree of yield stability. The present study suggests that compared to trend analysis, stability analysis being sensitive as it recognizes the treatment × environment interaction, is a better option to interpret results from long‐term agronomic experiments.  相似文献   

12.
Field experiments were conducted at Indian Agricultural Research Institute, New Delhi, during 2001–2002 and 2002–2003, to study the effect of inorganic, organic and Azotobacter combined sources of N on cotton (Gossypium hirsutum L.) and their residual effect on succeeding wheat (Triticum aestivum L.) crop. The results indicated considerable increase in yield attributes and mean seed cotton yield (2.33 Mg ha?1) with the combined application of 30 kg N and farmyard manure (FYM) at 12 Mg ha?1 along with Azotobacter (M4). The treatment in cotton that included FYM, especially when fertilizer N was also applied could either improve or maintain the soil fertility status in terms of available N, P and K. Distinct increase in yield attributes and grain yield of wheat was observed with the residual effect of integrated application of 30 kg N ha?1 + FYM at 12 Mg ha?1 + Azotobacter. Direct application of 120 kg N ha?1 resulted 67.4 and 17.7 % increase in mean grain yield of wheat over no N and 60 kg N ha?1, respectively. Integrated application of organic and inorganic fertilizer is therefore, recommended for higher productivity and sustainability of the cotton–wheat system.  相似文献   

13.
为了进一步明确黄淮平原冬小麦晚播、夏玉米晚收的“双晚”增产及资源高效的效应,选用2个中熟冬小麦品种和2个中晚熟夏玉米品种,于2006—2008年先后在河南温县和焦作进行大田试验,研究作物群体物质生产、产量形成参数定量指标及光温资源的分配利用。结果表明,冬小麦晚播产量降低不明显,夏玉米晚收产量显著提高747~2 700 kg hm-2,“双晚”周年产量21 891~22 507 kg hm-2,比对照提高442~2 575 kg hm-2。冬小麦晚播平均叶面积指数、每平方米穗数和穗粒数降低,但平均净同化率、收获指数和粒重提高达5%显著水平;夏玉米晚收平均叶面积指数、收获指数、生育期天数和粒重均显著提高。“双晚”栽培优化了周年资源分配,提高生育期与光、温资源变化的吻合度,其生产效率分别提高2.22%~10.86%和0.47%~11.56%。小麦和玉米品种的遗传类型是影响“双晚”栽培技术的关键。因此,选用小麦晚播早熟高产和玉米长生育期晚熟品种,通过有效调节资源配置,将小麦冗余的光温资源分配给C4高光效作物玉米,是提高周年高产高效的重要途径。  相似文献   

14.
Increasing temperatures pose a significant threat to crop production in the tropics. A field experiment was conducted with mung bean at three locations in Sri Lanka representing an increasing temperature gradient (24.4–30.1 °C) during two consecutive seasons to (i) determine the response of mung bean to increasing temperature and (ii) test a selected set of crop management practices aimed at decreasing essential inputs such as water, synthetic pesticides and inorganic nitrogen fertilizer. The control treatment (T1) consisted of standard crop management including irrigation, chemical crop protection and inorganic fertilizer application. Adaptation system 1 (T2) included mulching with rice straw at 8 t ha?1 with 30 % less irrigation and crop protection and nutrient management as in T1. Adaptation system 2 (T3) included crop protection using a pretested integrated pest management package with water and nutrient management as in T2. In adaptation system 3 (T4), 25 % of the crop's nitrogen requirement was given as organic manure (compost) at 0.8 t ha?1 while 75 % was given as inorganic fertilizer with water management and crop protection as in T3. Durations of both pre‐ and post‐flowering phases were reduced with increasing temperature. In the warmer (25.4–30.1 °C) yala season, seed yield (Y) of T1 decreased with increasing temperature at 366 kg ha?1 °C?1. However, in maha season, Y did not show a significant relationship across the narrower temperature gradient from 24.4 to 25.8 °C. Pooling the data from both seasons showed a second‐order polynomial response with an optimum temperature of 26.5 °C. In addition to shortened durations, reduced crop growth rates and reduced pod numbers per plant were responsible for yield reductions at higher temperatures. In yala, yields of all adaptation systems at all locations were on par with yields of the respective controls. Furthermore, yala yields of T2 and T3 were less sensitive than T1 to increasing temperatures (265 and 288 kg ha?1 °C?1). In maha, T3 and T4 had greater yields than the control at the relatively cooler site while having lower yields than the control at the warmer site. Maha yields of T2 were on par with the control at both temperature regimes. While demonstrating the significant temperature sensitivity of mung bean yields, results of the present work showed that components of the tested adaptation systems could be promoted among smallholder farmers in Asia, especially in view of their long‐term environmental benefits and contributions to sustainable agriculture in a warmer and drier future climate.  相似文献   

15.
In recent years, there has been a growing interest in brown midrib (BMR) sorghum (Sorghum bicolor (L.) Moench.) × sudangrass (Sorghum sudanense Piper) hybrids (SxS) as a replacement for silage corn (Zea mays L.) in the north‐eastern USA. Recent studies suggest it is suitable for both rotational grazing and as a hay crop and could compete with corn harvested for silage in years when wet spring conditions prevent the timely planting of corn. However, little is known about its suitability as forage for non‐lactating cows that require low potassium (K) forages to prevent health problems. Our objective was to evaluate the impact of K fertilizer management (0, 112 or 224 kg K2O ha?1 cut?1) under optimum N management (112–168 kg N ha?1 cut?1) on yield, quality and K concentrations of BMR SxS over a 2‐year period. Field trials were established on a fine loamy, mixed, active, mesic Aeric Fragiaquepts with medium K‐supplying capacity and characteristic of a large region in New York. Potassium application did not affect dry matter yields in either of the 2 years. Averaged over 2 years, neutral detergent fibre (NDF) significantly increased with K addition with similar but non‐significant trends observed in each of the years individually. The digestibility of NDF was unaffected by K application. Crude protein (CP) concentrations showed a significant decrease with K application in 2002 and similar trends were observed in 2003, although differences were not significant at P ≤ 0.05. The changes in NDF and CP did not significantly impact forage quality expressed as milk production per megagram of silage. Potassium application increased forage K concentration up to 13 mg K kg?1 dry matter (in the first cut in 2003). Forage Ca and Mg concentrations decreased with K addition except for the first cut in 2002 where differences between 112 and 224 kg K2O ha?1 treatments were not significant. Without K addition in the 2‐year period, K concentrations in the forage decreased from 23 g kg?1 for the first cutting in 2002 to 15 g kg?1 for the second cut in 2003. Low K forage was obtained for all second‐cut forage unless 224 kg K2O ha?1 cut?1 had been added. First‐cut forage was suitable only when no additional K had been applied. These results suggest low K BMR SxS forage can be harvested from initially high K soils without loss in dry matter yield as long as no additional K is added.  相似文献   

16.
Italian ryegrass (Lolium multiflorum Lam.) and perennial ryegrass (L. perenne L.) can be grown for seed and forage in cold winter regions provided the stand persists well over winter. Seed yield and plant characteristics during primary growth, and forage yield during regrowth, were determined for two Italian and one perennial ryegrass cultivars in Atlantic Canada. Establishment methods and dates included sowing ryegrass in cultivated soil alone or with barley in mid‐May and, after harvesting the barley crop, by sowing ryegrass following conventional or reduced cultivation and by no‐till drilling into barley stubble in mid‐August and early September. Despite some winterkill, particularly in Italian ryegrass, seed and forage yields were adequate in post‐establishment growing seasons. Seed yield for Italian ryegrass was greatest (1270 kg ha?1) when it was sown into cultivated soil in mid‐August and least (890 kg ha?1) when sown alone in May. Italian ryegrass yielded 15–17 % more seed when plots were established in mid‐August rather than in mid‐May or early September. Italian ryegrass cv. Lemtal had a greater density of fertile tillers (1030 m?2) in the sward than cv. Ajax (860 m?2) and its tiller density was greater when seeded into cultivated soil in September than in mid‐August. There were fewer spikelets per seed head for sowing Italian ryegrass with barley in May than for the other methods of establishment. Forage yield in regrowth was greater for Italian ryegrass cv. Ajax (2770 kg ha?1) than for cv. Lemtal (2480 kg ha?1). Seed yield of perennial ryegrass was greater when seeded in mid‐May than in mid‐August or early September. The seed yield of perennial ryegrass was greater when it was sown with barley in May and harvested for grain, than when it was sown alone or with barley harvested at late milk stage. The establishment methods for mid‐August and early September sowing had little effect on seed yield. However, the no‐till and reduced tillage methods resulted in a greater tiller density than sowing into the cultivated seedbed. Fertile tillers tended to be denser under reduced cultivation for sowing in August. Forage yield of perennial ryegrass regrowth was not influenced by the sowing method and timing. In conclusion, Italian and perennial ryegrasses produce adequate seed and forage regrowth under different establishment methods and timing. However, the poor persistence of Italian ryegrass may limit commercial production after the establishment year in Atlantic Canada.  相似文献   

17.
Four crops, corn (Zea mays L.), sweet sorghum (Sorghum bicolor L.), fodder beet (Beta vulgaris L.) and sugarbeet (Beta vulgaris L.) were grown in irrigated plots at the experimental farm of the University of California, Davis, in 1980 and 1981. Six fertilizer N levels ranging from 0 to 280 kg ha?1 were used to estimate the most efficient N input for each of the tested crop in terms of energy input and output analysis. Calculations of cultural energy input costs in relation to potential ethanol yield showed production requirements of: corn 30.9 GJ ha?1, sweet sorghum 30.4 GJ ha?1, fodder beet 49.4 GJ ha?1 and sugarbeet 41.0 GJ ha?1. Highest average energy inputs were for liquid fuels for operations 35%, irrigation 23% and fertilizer nitrogen 19%. Fodder beet had the highest fermentable carbohydrate yield at 13.05 Mg ha?1 followed by sugarbeet at 11.5 Mg ha?1. Sweet sorghum and corn yields were lower at 9.71 and 8.09 Mg ha?1, respectively. Crop production inputs of energy per liter of potential ethanol were: corn 6.42 MJL?1 sweet sorghum 5.25 MJL?1, fodder beet 6.35 MJL?1 and sugarbeet 5.95 MJL?1.  相似文献   

18.
In order to obtain information about the impact of legume cover crops on the weed community in organic farming, winter wheat (Triticum aestivum L.) was directly drilled in rows 0.1875 and 0.3750 m apart in living mulches that consisted of Trifolium repens L. (TRFRE), T. subterraneum L. (TRFSU), Medicago truncatula Gaertner (MEDTR), and Lotus corniculatus L. (LOTCO). A control treatment without cover crops (NAT, the site‐specific weed community) was also established. The vegetation between the wide rows was either mulched or left undisturbed. The effect of liquid farmyard manure (60 m3 ha−1) was also tested. TRFRE, TRFSU, and LOTCO effectively suppressed Poa annua L. and Matricaria recutita L. at site 1 and P. annua, Capsella bursa‐pastoris (L.) Med., and Stellaria media (L.) Vill. at site 2 when compared with NAT. MEDTR, which died during the winter, provided little weed suppression. Mulching significantly suppressed dicotyledonous weed species, but favoured Poa trivialis L. No manure effect was observed. Winter hardy legume cover crops contribute to weed suppression in winter wheat. However, careful evaluation of cover crop × weed × management interactions is necessary to understand the risk for the establishment of problematic weeds.  相似文献   

19.
Annual Medicago as a Smother Crop in Soybean   总被引:2,自引:0,他引:2  
Use of conservation tillage and narrow row spacing in soybean [Glycine max (L.) Merr.] production has led to increased use of herbicides for weed control. Some producers are seeking alternative weed control methods, such as smother crops, that would reduce dependence on chemical weed control. A successful smother crop must compete strongly with weeds but minimally with the crop. In four environments, we intercropped three annual Medicago spp. (medics) with soybean to test their utility as a smother crop for weed control. Annual medics were intercropped with soybean at rates of 0, 85, 258, or 775 seeds m?2, and the intercrops were grown with and without weed control. Increasing medic seeding rate decreased weed yields but also reduced soybean herbage and grain yields. For the weed‐controlled treatment, average soybean grain yields declined 7 kg ha?1 for every 10 seeds m?2 increase in medic seeding rate. Soybean grain yield was lower when grown with Medicago scutellata L. cv. Sava than when grown with Medicago polymorpha L. cv. Santiago or Medicago lupilina L. cv. George. Soybean grain yield was negatively related (r=?81) to medic herbage production. In the autumn following soybean harvest, medic residue ranged from 200 to 3700 kg ha?1 depending on the location and seeding rate. Medics provided residue for soil protection, suppressed weeds, but also reduced soybean yields.  相似文献   

20.
Twenty wheat ( Triticum aestivum L.) varieties differing in plant height were grown in soil culture and evaluated for differences in nitrogen uptake and nitrogen utilization efficiency (NUE) at limited (40 kg N ha−1) and normal (120 kg N ha−1) nitrogen supply. Nitrogen uptake showed 1.4- and 1.5-fold varietal variation at harvest for limited and normal N supply, respectively. NUE for dry matter production (NE1) exhibited 1.28- and 1.38-fold genotypic variation while NUE for grain production (NE2) varied by 1.25- and 1.21-fold at limited and normal N supply, respectively. Tall varieties were found to have higher N uptake and NUE for dry matter production, while dwarf cultivars had greater NUE for grain production. Nitrogen uptake was found to be strongly positively associated with dry matter production (r=0.85 and r =0.77 at limited and normal N supply, respectively), indicating an important effect of growth rate on N uptake. NUE for biomass production, as well as for grain production, was reduced as the supply of nitrogen was increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号