首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rates of gain and feed efficiency are important traits in most breeding programs for growing farm animals. The rate of gain (GAIN) is usually expressed over a certain age period and feed efficiency is often expressed as residual feed intake (RFI), defined as observed feed intake (FI) minus expected feed intake based on live weight (WGT) and GAIN. However, the basic traits recorded are always WGT and FI and other traits are derived from these basic records. The aim of this study was to develop a procedure for simultaneous analysis of the basic records and then derive linear traits related to feed efficiency without retorting to any approximation. A bivariate longitudinal random regression model was employed on 13,791 individual longitudinal records of WGT and FI from 2,827 bulls of six different beef breeds tested for their own performance in the period from 7 to 13 mo of age. Genetic and permanent environmental covariance functions for curves of WGT and FI were estimated using Gibbs sampling. Genetic and permanent covariance functions for curves of GAIN were estimated from the first derivative of the function for WGT and finally the covariance functions were extended to curves for RFI, based on the conditional distribution of FI given WGT and GAIN. Furthermore, the covariance functions were extended to include GAIN and RFI defined over different periods of the performance test. These periods included the whole test period as normally used when predicting breeding values for GAIN and RFI for beef bulls. Based on the presented method, breeding values and genetic parameters for derived traits such as GAIN and RFI defined longitudinally or integrated over (parts of) of the test period can be obtained from a joint analysis of the basic records. The resulting covariance functions for WGT, FI, GAIN, and RFI are usually singular but the method presented here does not suffer from the estimation problems associated with defining these traits individually before the genetic analysis. All the results are thus estimated simultaneously, and the set of parameters is consistent.  相似文献   

2.
Growth, feed intake, and temperament indicator data, collected over 5 yr on a total of 1,141 to 1,183 mixed-breed steers, were used to estimate genetic and phenotypic parameters. All steers had a portion of Hereford, Angus, or both as well as varying percentages of Simmental, Charolais, Limousin, Gelbvieh, Red Angus, and MARC III composite. Because the steers were slaughtered on various dates each year and the animals thus varied in days on feed, BW and feed data were adjusted to a 140-d feeding period basis. Adjustment of measures of feed efficiency [G:F or residual feed intake (RFI), intake adjusted for metabolic body size, and BW gain] for body fatness recorded at slaughter had little effect on the results of analyses. Average daily gain was less heritable (0.26) than was midtest BW (MBW; 0.35). Measures of feed intake had greater estimates of heritability, with 140-d DMI at 0.40 and RFI at 0.52; the heritability estimate for G:F was 0.27. Flight speed (FS), as an indicator of temperament, had an estimated heritability of 0.34 and a repeatability of 0.63. As expected, a strong genetic (0.86) correlation was estimated between ADG and MBW; genetic correlations were less strong between DMI and ADG or MBW (0.56 and 0.71). Residual feed intake and DMI had a genetic correlation of 0.66. Indexes for phenotypic RFI and genotypically restricted RFI (no correlation with BW gain) were compared with simple economic indexes incorporating feed intake and growth to elucidate expected selection responses under different criteria. In general, few breed differences were detected across the various measurements. Heterosis contributed to greater DMI, RFI, and MBW, but it did not significantly affect ADG, G:F, or FS. Balancing output (growth) with input costs (feed) is needed in practicing selection, and FS would not be recommended as an indicator trait for selection to change feed efficiency. An index including BW gain and RFI produced the best economic outcome.  相似文献   

3.
This study estimated genetic and phenotypic parameters and annual trends for growth and fertility traits of Charolais and Hereford cattle in Kenya. Traits considered were birth weight (BW, kg), pre-weaning average daily gain (ADG, kg/day) and weaning weight (WW, kg); calving interval (CI, days) and age at first calving (AFC, days). Direct heritability estimates for growth traits were 0.36 and 0.21; 0.25 and 0.10; 0.23 and 0.13 for BW, ADG and WW in Charolais and Hereford, respectively. Maternal heritability estimates were 0.11 and 0.01; 0.18 and 0.00; 0.17 and 0.17 for BW, ADG and WW in Charolais and Hereford, respectively. Direct-maternal genetic correlations ranged between −0.46 and 1.00; −0.51 and −1.00; −0.47 and −0.39 for BW, ADG and WW in Charolais and Hereford, respectively. Genetic correlations ranged from −0.99 to unity and −1.00 to unity for growth and fertility traits respectively. Prospects for improvement of growth and fertility traits exist.  相似文献   

4.
Assumptions of normality of residuals for carcass evaluation may make inferences vulnerable to the presence of outliers, but heavy‐tail densities are viable alternatives to normal distributions and provide robustness against unusual or outlying observations when used to model the densities of residual effects. We compare estimates of genetic parameters by fitting multivariate Normal (MN) or heavy‐tail distributions (multivariate Student's t and multivariate Slash, MSt and MS) for residuals in data of hot carcass weight (HCW), longissimus muscle area (REA) and 12th to 13th rib fat (FAT) traits in beef cattle using 2475 records from 2007 to 2008 from a large commercial operation in Nebraska. Model comparisons using deviance information criteria (DIC) favoured MSt over MS and MN models, respectively. The posterior means (and 95% posterior probability intervals, PPI) of v for the MSt and MS models were 5.89 ± 0.90 (4.35, 7.86) and 2.04 ± 0.18 (1.70, 2.41), respectively. Smaller values of posterior densities of v for MSt and MS models confirm that the assumption of normally distributed residuals is not adequate for the analysis of the data set. Posterior mean (PM) and posterior median (PD) estimates of direct genetic variances were variable with MSt having the highest mean value followed by MS and MN, respectively. Posterior inferences on genetic variance were, however, comparable among the models for FAT. Posterior inference on additive heritabilities for HCW, REA and FAT using MN, MSt and MS models indicated similar and moderate heritability comparable with the literature. Posterior means of genetic correlations for carcass traits were variable but positive except for between REA and FAT, which showed an antagonistic relationship. We have demonstrated that genetic evaluation and selection strategies will be sensitive to the assumed model for residuals.  相似文献   

5.
Genetic parameters for carcass traits of 1774 field progeny (1281 steers and 493 heifers), and their genetic relationships with feed efficiency traits of their sire population (740 bulls) were estimated with REML. Feed efficiency traits included feed conversion ratio (FCR) and residual feed intake (RFI). RFI was calculated by the residual of phenotypic (RFIphe) and genetic (RFIgen) regression from the multivariate analysis of feed intake on metabolic weight and daily gain. Progeny traits were carcass weight (CWT), rib eye area (REA), rib thickness (RBT), subcutaneous fat, yield estimate (YEM), marbling score (MSR), meat quality grade, meat color, fat color, meat firmness and meat texture. The estimated heritability for CWT (0.70) was high and heritabilities for all the other traits were moderate (ranged from 0.32 to 0.47), except for meat and fat color and meat texture which were low (ranged from 0.02 to 0.25). The high genetic correlation (0.62) between YEM and MSR suggests that simultaneous improvement of high carcass yield and beef marbling is possible. Estimated genetic correlations of RFI (RFIphe and RFIgen) of sires with CWT (− 0.60 and − 0.53) and MSR (− 0.62 and − 0.50) of their progeny were favorably negative indicating that the selection against RFI of sires may have contributed to produce heavier carcass and increase in beef marbling. The correlated responses in CWT, REA and RBT of progeny were higher to selection against RFI than those to selection against FCR of sires. This study provides evidence that selection against RFI is preferred over selection against FCR in sire population for getting better correlated responses in carcass traits of their progeny.  相似文献   

6.
常青 《中国饲料》2020,(2):85-88
本试验旨在研究甘蔗青贮饲料的基因型和成熟期对肉牛瘤胃纤维消化率、采食量、瘤胃发酵、瘤胃动力学和瘤胃细菌数量的影响。试验采用2×2因子设计,即两个基因型(高和低中性洗涤纤维消化率)和2个收割期(早熟和晚熟)。试验日粮以40%青贮甘蔗饲料为试验料。结果:饲喂早熟甘蔗青贮饲料时干物质采食量较大,但仅表现在低中性洗涤纤维消化率基因型(P<0.05)。早熟甘蔗日粮较晚熟甘蔗日粮显著提高了中性洗涤纤维摄入量(P<0.05)。饲喂低中性洗涤纤维基因型饲粮时,瘤胃池干物质、中性洗涤纤维和不可消化中性洗涤纤维含量更高(P<0.05)。饲喂高中性洗涤纤维消化率品种的青贮甘蔗时,中性洗涤纤维和不可消化中性洗涤纤维过瘤胃速率更高(P<0.05)。饲喂早熟青贮甘蔗饲料的肉牛瘤胃pH较大,但表现在高中性洗涤纤维消化率品种组(P<0.05)。饲喂早熟青贮甘蔗饲料时,低中性洗涤纤维消化率品种组肉牛瘤胃短链脂肪酸总浓度较高(P<0.05)。晚熟期青贮甘蔗较早熟期显著提高了埃氏巨球型菌相对含量(P<0.05)。综上所述,采用高中性洗涤纤维消化率品种的青贮甘蔗饲喂生长期肉牛,可以通过更快的纤维过瘤胃速率和纤维周转对瘤胃池产生积极影响,这可能有利于提高采食量。  相似文献   

7.
Genetic parameters for feed efficiency traits of 380 boars and growth and carcass traits of 1642 pigs (380 boars, 868 gilts and 394 barrows) in seven generations of Duroc population were estimated. Feed efficiency traits included the feed conversion ratio (FCR), and nutritional (RFI(nut)), phenotypic (RFI(phe)) and genetic (RFI(gen)) residual feed intake. Growth and carcass traits were the age to reach 105-kg body weight (A105), loin eye muscle area (EMA), backfat (BF), intra-muscular fat (IMF) and meat tenderness. The mean values for RFI(phe) and RFI(gen) were close to zero and for RFI(nut) was negative. All the measures of feed efficiency were moderately heritable (h(2) = 0.31, 0.38, 0.40 and 0.27 for RFI(nut), RFI(phe), RFI(gen) and FCR respectively). The heritabilities for all growth and carcass traits were moderate (ranged from 0.37 to 0.45), except for BF, which was high (0.72). The genetic correlations of RFI(phe) and RFI(gen) with A105 were positive and high. Measures of RFI were correlated negatively with EMA. BF was more strongly correlated with measures of RFI (r(g) > or = 0.73) than with FCR (r(g) = 0.52). Selection for daily gain, EMA, BF and IMF caused favourable genetic changes in feed efficiency traits. Results of this study indicate that selection against either RFI(phe) or RFI(gen) would give a similar correlated response in carcass traits.  相似文献   

8.
Performance test results of 3250 sire candidates were used to estimate the genetic parameters of growth and feed utilization traits in Japanese Black cattle. Growth traits analyzed were six body measurements at the end of the performance test and daily gain (DG) during the test. Feed utilization traits were intakes and conversions of concentrate, roughage, digestible crude protein and total digestible nutrient (TDN). Genetic (co)variance components were estimated by the restricted maximum likelihood procedure using an expectation maximization algorithm under the two‐trait animal model. Heritabilities for growth traits ranged from 0.40 to 0.70 and for feed utilization traits from 0.21 to 0.74. Genetic correlations of DG were positive with feed intake (0.15–0.77) and negative with feed conversions (?0.63 to ?0.30). These relationships indicate that the selection based on DG improves feed efficiency but it simultaneously increases feed intake. Feed conversions showed genetic correlations ranging from ?0.09 to 0.03 with total available energy consumption, TDN intake. Thus the results suggested that feed conversions were not efficient selection criteria to decrease TDN intake and to improve comprehensive feed utilization ability.  相似文献   

9.
Genetic parameters and genetic trends for weaning weight adjusted to 240 d of age (WW240), and weight gain from weaning to 24 mo of age (GW730) were estimated in a Colombian beef cattle population composed of Blanco Orejinegro, Romosinuano, Angus, and Zebu straightbred and crossbred animals. Calves were born and weaned in a single farm, and moved to 14 farms postweaning. Data were analyzed using a multiple trait mixed model procedures. Estimates of variance components and genetic parameters were obtained by Restricted Maximum Likelihood. The 2-trait model included the fixed effects of contemporary group (herd–year–season–sex), age of dam (WW240 only), breed direct genetic effects (as a function of breed fractions of calves), breed maternal genetic effects (as a function of breed fractions of dams; WW240 only), individual heterosis (as a function of calf heterozygosity), and maternal heterosis (as a function of dam heterozygosity; WW240 only). Random effects for WW240 were calf direct genetic, dam maternal genetic, permanent environmental maternal, and residual. Random effects for GW730 were calf direct genetic and residual. All relationships among animals were accounted for. Program AIREML was used to perform computations. Estimates of heritabilities for additive direct genetic effects were 0.20 ± 0.003 for WW240, and 0.32 ± 0.004 for GW730. Maternal heritability was 0.14 ± 0.002 for WW240. Estimates of heritability suggest that selection for preweaning and postweaning growth in this population is feasible. Low direct and maternal preweaning heritabilities suggest that nutrition and management should be improved to allow fuller expressions of calf direct growth and cow maternal ability. The genetic correlation between direct additive and maternal additive effects for WW240 was − 0.42 ± 0.009, indicating an antagonistic relationship between these effects. The correlation between additive direct genetic effects for WW240 and GW730 was almost zero (− 0.04 ± 0.009), suggesting that genes affecting growth preweaning may differ from those influencing growth postweaning. Trends were negative for direct WW240 and GW730 weighted yearly means of calves, sires, and dams from 1995 to 2006. Maternal WW240 showed near zero trends during these years. Trends for calf direct WW240 and GW730 followed sire trends closely, suggesting that more emphasis was placed on choosing sires than on dam replacements.  相似文献   

10.
Data were collected over the first 4 generations of a divergent selection experiment for residual feed intake of Large White pigs having ad libitum access to feed. This data set was used to obtain estimates of heritability for residual feed intake and genetic correlations (r(a)) between this trait and growth, carcass, and meat quality traits. Individual feed intake of group-housed animals was measured by single-space electronic feeders. Upward and downward selection lines were maintained contemporarily, with 6 boars and 35 to 40 sows per line and generation. Numbers of records were 793 for residual feed intake (RFI1) of boar candidates for selection issued from first-parity (P1) litters and tested over a fixed BW range (35 to 95 kg) and 657 for residual feed intake (RFI2) and growth, carcass, and meat quality traits of castrated males and females issued from second-parity (P2) litters and tested from 28 to 107 kg of BW. Variance and covariance components were estimated using REML methodology applied to a series of multitrait animal models, which always included the criterion for selection as 1 of the traits. Estimates of heritability for RFI1 and RFI2 were 0.14 +/- 0.03 and 0.24 +/- 0.03, respectively, whereas the estimate of r(a) between the 2 traits was 0.91 +/- 0.08. Estimates of r(a) indicated that selection for low residual feed intake has the potential to improve feed conversion ratio and reduce daily feed intake, with minimal correlated effect for ADG of P2 animals. Estimates of r(a) between RFI2 and body composition traits of P2 animals were positive for traits related to the amount of fat depots (r(a) = 0.44 +/- 0.16 for carcass backfat thickness) and negative for carcass lean meat content (r(a) = -0.55 +/- 0.14). There was a tendency for a negative genetic correlation between RFI2 and carcass dressing percent (r(a) = -0.36 +/- 0.21). Moreover, selection for low residual feed intake is expected, through lower ultimate pH and lighter color, to decrease pork quality (r(a) = 0.77 +/- 0.14 between RFI2 and a meat quality index intended to predict the ratio of the weight of ham after curing and cooking to the weight of defatted and boneless fresh ham).  相似文献   

11.
A QTL detection experiment was performed in French dairy cattle to search for QTL related to male fertility. Ten families, involving a total of 515 bulls, were phenotyped for ejaculated volume and sperm concentration, number of spermatozoa, motility, velocity, percentage of motile spermatozoa after thawing and abnormal spermatozoa. A set of 148 microsatellite markers were used to realize a genome scan. First, genetic parameters were estimated for all traits. Semen production traits were found to have moderate heritabilities (from 0.15 to 0.30) while some of the semen quality traits such as motility had high heritabilities (close to 0.60). Genetic correlations among traits showed negative relationships between volume and concentration and between volume and most quality traits such as motility or abnormal sperm while correlations between concentration and these traits were rather favourable. Percentages of abnormal sperm were negatively related to quality traits, especially with motility and velocity of spermatozoa. Three QTL related to abnormal sperm frequencies were significant at p < 0.01. In total, 11 QTL (p < 0.05) were detected. However, the number of QTL detected was within the range of expected false positives. Because of the lack of power to find QTL in this design further analyses are required to confirm these QTL.  相似文献   

12.
Feed intake and feed efficiency are economically important traits in beef cattle because feed is the greatest variable cost in production. Feed efficiency can be measured as feed conversion ratio (FCR, intake per unit gain) or residual feed intake (RFI, measured as DMI corrected for BW and growth rate, and sometimes a measure of body composition, usually carcass fatness, RFI(bf)). The goal of this study was to fine map QTL for these traits in beef cattle using 2,194 markers on 24 autosomes. The animals used were from 20 half-sib families originating from Angus, Charolais, and University of Alberta Hybrid bulls. A mixed model with random sire and fixed QTL effect nested within sire was used to test each location (cM) along the chromosomes. Threshold levels were determined at the chromosome and genome levels using 20,000 permutations. In total, 4 QTL exceeded the genome-wise threshold of P < 0.001, 3 exceeded at P < 0.01, 17 at P < 0.05, and 30 achieved significance at the chromosome-wise threshold level (at least P < 0.05). No QTL were detected on BTA 8, 16, and 27 above the 5% chromosome-wise significance threshold for any of the traits. Nineteen chromosomes contained RFI QTL significant at the chromosome-wise level. The RFI(bf) QTL results were generally similar to those of RFI, the positions being similar, but occasionally differing in the level of significance. Compared with RFI, fewer QTL were detected for both FCR and DMI, 12 and 4 QTL, respectively, at the genome-wise thresholds. Some chromosomes contained FCR QTL, but not RFI QTL, but all DMI QTL were on chromosomes where RFI QTL were detected. The most significant QTL for RFI was located on BTA 3 at 82 cM (P = 7.60 x 10(-5)), for FCR on BTA 24 at 59 cM (P = 0.0002), and for DMI on BTA 7 at 54 cM (P = 1.38 x 10(-5)). The RFI QTL that showed the most consistent results with previous RFI QTL mapping studies were on BTA 1, 7, 18, and 19. The identification of these QTL provides a starting point to identify genes affecting feed intake and efficiency for use in marker-assisted selection and management.  相似文献   

13.
Direct and maternal (co)variance components and genetic parameters were estimated for growth and reproductive traits in the Kenya Boran cattle fitting univariate animal models. Data consisted of records on 4502 animals from 81 sires and 1010 dams collected between 1989 and 2004. The average number of progeny per sire was 56. Direct heritability estimates for growth traits were 0.34, 0.12, 0.19, 0.08 and 0.14 for birth weight (BW), weaning weight (WW), 12-month weight (12W), 18-month weight (18W) and 24-month weight (24W), respectively. Maternal heritability increased from 0.14 at weaning to 0.34 at 12 months of age but reduced to 0.11 at 24 months of age. The maternal permanent environmental effect contributed 16%, 4% and 10% of the total phenotypic variance for WW, 12W and 18W, respectively. Direct-maternal genetic correlations were negative ranging from −0.14 to −0.58. The heritability estimates for reproductive traits were 0.04, 0.00, 0.15, 0.00 and 0.00 for age at first calving (AFC), calving interval in the first, second, and third parity, and pooled calving interval. Selection for growth traits should be practiced with caution since this may lead to a reduction in reproduction efficiency, and direct selection for reproductive traits may be hampered by their low heritability.  相似文献   

14.
A linear assessment methodology was developed for the conformational data in the Pura Raza Español horse (Andalusian horse). The final design included 31 linear traits (20 primary and 11 secondary). A total of 4158 records from 2512 horses collected during 2008 and 2011 were included in the genetic evaluation. The genetic analyses were executed twice, the first one only with the first conformation assessment record of each animal (dataset 1: 2512 horses and records), and the second one, only for animals with more than one conformation records available (dataset 2: 876 horses and 2522 records). Genetic parameters were estimated using REML methodology (in a linear animal model), and age, sex, geographic region and combination of appraiser×event were included as fixed effects in the model. For the analysis with dataset 2, permanent environment was also included as random effect. The pedigree file traced back the relationships to include a total of 12,385 (dataset 1) and 3025 (dataset 2) horses. After the repeatability and reproducibility of the system were evaluated, according to our results, the appraisers used the whole scale and showed an adequate level of repeatability (≥0.95), and the reproducibility of analyzed traits was over 0.90 for all traits. Despite the fact that the quality of the morphological assessment can be considered adequate, further training is recommendable for appraisers in order to improve uniformity. Heritabilities with dataset 1 were low-moderate, ranging from 0.06±0.026 (angle of shoulder) to 0.35±0.044 (head length) for the primary traits, and from 0.08±0.032 (frontal angle of knee) to 0.23±0.035 (head-neck junction) for the secondary ones. Heritabilities found with dataset 2 were slightly lower than those obtained with dataset 1. Genetic correlations between traits were also obtained, which ranged from 0.92 to 0.00 in both datasets. These results must be taken into account in order to reduce the number of traits routinely collected in this population.  相似文献   

15.
The objective of this study was to compare sire EBVs for longevity in Chianina beef cattle estimated with linear models and survival analysis. Two datasets were created, one considered all data (SURVall), the other only uncensored records (SURVun). The linear models were used to analyze longevity measured as three correlated dichotomous (yes/no) measures of survival in the first three parities (LIN-S3) and as an overall measure of lifespan in months (LIN-LPL). Correlation between sire EBVs from the two survival analyses were 0.85. For LIN-S3 the correlations of EBVs across parities were between 0.69 to 0.93. Medium correlations (from 0.50 to 0.62) were found when only uncensored data (SURVun) were compared to the linear model (LIN-S3). Higher correlations (from 0.71 to 0.93) were found when EBV based on both censored and uncensored data (SURVall) were compared to LIN-S3. Heritability was estimated at 0.11, 0.09 and 0.08 for SURVall, SURVun and LIN-LPL, respectively; and 0.05, 0.02 and 0.02, respectively, for survival in the first three parities according to LIN-S3. Linear and non-linear models differed in many aspects; the most precise EBV were obtained when all data was used in the evaluation.  相似文献   

16.
中药饲料添加剂对肉牛生产性能和血液指标的影响   总被引:4,自引:1,他引:4  
选用20头杂交架子牛, 随机分2组, 研究日粮中添加中药饲料添加剂对肉牛生产性能和血液指标的影响。结果表明, 肉牛日粮中添加中药饲料添加剂, 可显著提高日增重、血液中淋巴细胞数量、血糖和血钙含量, 非蛋白氮含量显著下降; 血液中白细胞、分叶细胞、采食量、饲料转化率、各养分消化率均有上升趋势, 但组间无显著差异。  相似文献   

17.
The aim was to conduct a weighted single‐step genome‐wide association study to detect genomic regions and putative candidate genes related to residual feed intake, dry matter intake, feed efficiency (FE), feed conversion ratio, residual body weight gain, residual intake and weight gain in Nellore cattle. Several protein‐coding genes were identified within the genomic regions that explain more than 0.5% of the additive genetic variance for these traits. These genes were associated with insulin, leptin, glucose, protein and lipid metabolisms; energy balance; heat and oxidative stress; bile secretion; satiety; feed behaviour; salivation; digestion; and nutrient absorption. Enrichment analysis revealed functional pathways (p‐value < .05) such as neuropeptide signalling (GO:0007218), negative regulation of canonical Wingless/Int‐1 (Wnt) signalling (GO:0090090), bitter taste receptor activity (GO:0033038), neuropeptide hormone activity (GO:0005184), bile secretion (bta04976), taste transduction (bta0742) and glucagon signalling pathway (bta04922). The identification of these genes, pathways and their respective functions should contribute to a better understanding of the genetic and physiological mechanisms regulating Nellore FE‐related traits.  相似文献   

18.
19.
Genetic parameters for 54 carcass and chemical traits, such as general composition (moisture, crude fat and crude protein), fatty acid composition and water‐soluble compounds (free amino acids, peptides, nucleotides and sugars) of 587 commercial Japanese Black cattle were assessed. Heritability estimates for carcass traits and general composition ranged between 0.19–0.28, whereas those for fatty acid composition ranged between 0.11–0.85. Most heritability estimates for water‐soluble compounds were lower than 0.30; these traits were affected by aging period. Moderate heritability was observed for glutamine, alanine, taurine, anserine, inosine 5′‐monophosphate (IMP), inosine and myo‐inositol. In particular, heritability estimates were the highest (0.66) for taurine. Traits with moderate heritability were unaffected by aging period, with the exception of IMP, which was affected by aging period but exhibited moderate heritability (0.47). Although phenotypic correlations of water‐soluble compounds with carcass weight (CW), beef marbling standard (BMS) and monounsaturated fatty acid were generally low, genetic correlations between these traits were low to high. At the genetic level, most of the water‐soluble compounds were positively correlated with monounsaturated fatty acid but negatively correlated with CW and BMS. Thus, our results indicate that genetic variance and correlations could exist and be captured for some of the water‐soluble compounds.  相似文献   

20.
全基因组关联分析(genome-wide association studies,GWAS)是研究家畜复杂经济性状和疾病遗传变异的有效方法,GWAS的核心是挖掘遗传变异与目标表型性状间的关系.随着牛全基因组测序工作完成,海量单核苷酸多态性(single nucleotide polymorphism,SNP)位点被标记...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号