首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 659 毫秒
1.
Tenacibaculum maritimum, the aetiological agent for marine tenacibaculosis, is one of the most significant pathogens that threaten Senegalese sole, Solea senegalensis (Kaup), aquaculture. Because no immersion challenge with T. maritimum has been reported previously for this flatfish species, this study aimed to optimize bacterial yields as well as to establish a challenge model for tenacibaculosis induction. Several approaches were performed to optimize bacterial culture conditions, including treatment with non‐ionic surfactants, detergents, cellulase hydrolysis and strong shaking. A prolonged bath challenge was performed for 24 h under two different temperatures, 16 and 23 °C. Moreover, mucus and plasma bactericidal activities against T. maritimum were also assessed. Culturing bacteria with strong shaking and continuous shaking provided suitable culture conditions to obtain higher bacterial yields without aggregation and fluctuation, contrary to most other treatments that showed a huge amount of bacterial aggregates. A prolonged bath method for 24 h, without skin or gill scarification, was considered suitable for disease induction with high mortality rates. Moreover, data regarding mucus and plasma bactericidal activities suggested that there is a lack of host innate immune response against T. maritimum or that this particular pathogen presents evading strategies against Senegalese sole.  相似文献   

2.
A total of 777 fish from three growing regions of New Zealand Chinook salmon farms comprising of five sites were tested. Quantitative PCR was used to determine the distribution of New Zealand rickettsia‐like organism and Tenacibaculum maritimum. Genetic information from these bacteria were then compared with strains reported worldwide. Using this information, suggested associations of pathogens with clinically affected fish were made. NZ‐RLO was detected in two of the three regions, and T. maritimum was detected in all regions. Three strains of NZ‐RLO were identified during this study. Based on analysis of the ITS rRNA gene, NZ‐RLO1 appears to be part of an Australasian grouping sharing high similarity with the Tasmanian RLO, NZ‐RLO2 was shown to be the same as an Irish strain, and NZ‐RLO3 was shown be closely related to two strains from Chile. Based on multi‐locus sequence typing, the New Zealand T. maritimum was the same as Australian strains. NZ‐RLOs were detected more frequently in fish with skin ulcers than fish without skin ulcers. While additional research is required to investigate the pathogenicity of these organisms, this is the first time that NZ‐RLOs have been associated with the development of clinical infections in farmed Chinook salmon.  相似文献   

3.
Mouthrot infections (bacterial stomatitis) have a significant impact on the Atlantic salmon aquaculture industry in Western Canada due to economic losses and fish welfare. Bacteria isolated from lesions in the field have been identified as Tenacibaculum maritimum. Mouthrot is different to classical tenacibaculosis, which is most commonly associated with ulcerative lesions, frayed fins and tail rot. The marine fish pathogen T. maritimum is found worldwide; however, in Western Canada, the knowledge of the genetic profile of T. maritimum is limited. This study looked at increasing this knowledge by genotyping T. maritimum isolates collected from Atlantic salmon from farms in Western Canada. These genotypes were compared to other species of the genus Tenacibaculum, as well as other known sequence types within the species. The Western Canadian isolates belong to two new sequence types within the T. maritimum species. Phylogenetic analysis shows that the isolates form a distinct branch together with T. maritimum NCIMB 2154T separate from other Tenacibaculum type strains, and they are most closely related to strains from Norway and Chile.  相似文献   

4.
The success and sustainability of Chilean aquaculture largely depends on the control of endemic and emerging pathogens, including several species of the genus Tenacibaculum. Tenacibaculum dicentrarchi and “Tenacibaculum finnmarkense” have been detected and confirmed in Chilean Atlantic salmon (Salmo salar). However, no outbreaks of tenacibaculosis in rainbow trout (Oncorhynchus mykiss) or coho salmon (Oncorhynchus kisutch) have been reported, either in Chile or globally. The aims of this study were to determine whether the mortalities recorded for rainbow trout and coho salmon from five marine fish farms located in the Los Lagos, Aysén, and Magallanes Regions could be caused by Tenacibaculum spp. The diseased fish exhibited cutaneous haemorrhages, tail and peduncle rots, and damage on the mouth and tongue. Microbiological analysis of infected external tissues yielded 13 bacterial isolates. The isolates were identified as members of the genus Tenacibaculum through biochemical analysis (e.g. Gram-stain negative, straight rods, filamentous cells and motile by gliding), but differences existed in biochemical results, making species-level identification through biomolecular tools essential. The 16S rRNA analysis found that the majority of isolates were more closely related to “T. finnmarkense” than T. dicentrarchi, while the phylogenetic trees resulting from multilocus sequence data recovered the four main clades (clades I to IV) identified by Olsen et al. (2017, Veterinary Microbiology, 205, 39). This is the first documented occurrence of clinical tenacibaculosis in farmed rainbow trout and coho salmon globally, and it extends the known host distribution of this pathogen in Chile. Moreover, we confirm the presence of Tenacibaculum species in the Chilean Patagonia. These findings highlight the importance of establishing preventative measures to minimize the spread of this disease within the Chilean marine aquaculture industry, as well as the need for monitoring initiatives worldwide in these farmed fish species.  相似文献   

5.
Mouthrot, or bacterial stomatitis, is a disease which mainly affects farmed Atlantic salmon, (Salmo salar, L.), smolts recently transferred into salt water in both British Columbia (BC), Canada, and Washington State, USA. It is a significant fish welfare issue which results in economic losses due to mortality and antibiotic treatments. The associated pathogen is Tenacibaculum maritimum, a bacterium which causes significant losses in many species of farmed fish worldwide. This bacterium has not been proven to be the causative agent of mouthrot in BC despite being isolated from affected Atlantic salmon. In this study, challenge experiments were performed to determine whether mouthrot could be induced with T. maritimum isolates collected from outbreaks in Western Canada and to attempt to develop a bath challenge model. A secondary objective was to use this model to test inactivated whole‐cell vaccines for T. maritimum in Atlantic salmon smolts. This study shows that T. maritimum is the causative agent of mouthrot and that the bacteria can readily transfer horizontally within the population. Although the whole‐cell oil‐adjuvanted vaccines produced an antibody response that was partially cross‐reactive with several of the T. maritimum isolates, the vaccines did not protect the fish under the study's conditions.  相似文献   

6.
This work was carried out to investigate the effects of injection of Tenacibaculum maritimum formalin‐killed cells (FKC), extracellular products (ECPs) and crude lipopolysaccharide (LPS) as well as 1% feed supplements of oil extracts of Echinacea purpurea and Origanum vulgare on sea bass immunity improvement to the favour of T. maritimum experimental infection control after 4 weeks of the experiment. Tenacibaculum maritimum isolated from naturally infected sea bass showed brown to yellowish‐brown lesions (sores) on gills, skin and/or fins and identified by different biochemical methods and polymerase chain reaction technique. Immune parameters namely, total protein, globulin and lysozyme activity, as well as the relative level of protection were improved by T. maritimum (FKC), (LPS), (ECPs), O. vulgare and E. purpurea, respectively compared with control. Histopathological examination of T. maritimum naturally infected sea bass indicated many pathological changes in gill, skin and musculatures. Present study could be concluded that application of T. maritimum (FKC), (LPS), (ECPs), O. vulgare or E. purpurea improved sea bass immunity to the favour of disease resistance against T. maritimum. Further investigations on the combination between the previous control methods and the vaccine application methods will be needed.  相似文献   

7.
The development and the application of a quantitative real‐time PCR for the detection of Tenacibaculum maritimum are described. A set of primers and probe was designed to amplify a 155‐bp fragment specific to the T. maritimum 16S rRNA gene. The test was shown to be very sensitive, able to detect as little as 4.8 DNA copies number μL?1. In addition, the assay was found to have a high degree of repeatability and reproducibility, with a linear dynamic range (R2 = 0.999) extending over 6 log10 dilutions and a high efficiency (100%). The assay was applied to DNA samples extracted from 48 formalin‐fixed paraffin‐embedded (FFPE) Atlantic salmon, Salmo salar, gill tissues showing varying degrees of gill pathology (scored 0–3) and from 26 jellyfish samples belonging to the species Phialella quadrata and Muggiaea atlantica. For each sample, the bacterial load was normalised against the level of the salmonid elongation factor alpha 1 (ELF) detected by a second real‐time PCR using previously published primers and probe. Tenacibaculum maritimum DNA was detected in 89% of the blocks with no signs of gill disease as well as in 95% of the blocks with mild‐to‐severe gill pathology. Association between bacterial load and gill pathology severity was investigated. T. maritimum DNA was detected at low level in four of the 26 jellyfish tested.  相似文献   

8.
The in vitro susceptibility of 63 isolates of Tenacibaculum maritimum from four fish farms to eight chemotherapeutic agents used for the treatment of bacterial diseases in fish were assessed. The results indicated that all strains were resistant to oxolinic acid and susceptible to amoxicillin, nitrofurantoin, florfenicol, oxytetracycline and trimethoprim-sulphamethoxazole. However, some isolates presented resistance to enrofloxacin and flumequine, ranging from 10 to 30%, and from 25 to 60%, respectively, depending on the farm sampled. These data were used in an attempt to predict whether the resistance to enrofloxacin was static or evolved during the time of sampling from 2003 to 2004. A relationship between the use of enrofloxacin and levels of resistance was detected in the studied farm, increasing significantly from no resistant isolates in 2003 to 44.8% resistant strains in 2004, the year in which this drug was commonly employed. This result was accompanied by a marked decline of about 29.2% of the inhibition zone sizes for the T. maritimum strains in comparison to the initial values (average 21.5 mm). Minimum inhibitory concentration (MIC) of enrofloxacin for 100 T. maritimum strains was determined by the microdilution method. Twenty isolates were resistant to enrofloxacin (> 256 μg ml−1), while the remaining strains showed a bimodal distribution, which ranged from 0.5 to 32 μg ml−1. Our interpretation of the enrofloxacin MIC data suggests that the breakpoint for T. maritimum should be 4 μg ml−1. However, similar studies in other laboratories are necessary to validate this breakpoint value.  相似文献   

9.
An enzootic disease characterized by granulomas in internal organs occurred in cage‐farmed large yellow croaker, Larimichthys crocea (Richardson), in April and November 2010, in Ningbo, Zhejiang Province. One bacterial strain, named XSDHY‐P, was isolated from the diseased fish and identified by biochemical characterization, fatty acid methyl ester (FAME) analysis and multilocus sequence analysis (MLSA). According to the results obtained from the biochemical tests, FAME analysis and phylogenetic analysis derived from 16S ribosomal RNA, gyrB, oprF, oprI, oprL and rpoD gene sequencing, the bacterial isolate, XSDHY‐P, was identified as Pseudomonas plecoglossicida. Moreover, lethal dose, 50% trials were carried out to demonstrate the virulence of XSDHY‐P in large yellow croaker when administered at 2.13 × 105 colony‐forming units per fish. Visceral granulomas were found in the experimentally infected fish as well as in the naturally infected fish, indicating that P. plecoglossicida is another bacterial pathogen that causes granulomatosis in Lcrocea.  相似文献   

10.
The first isolation of Tenacibaculum maritimum from wedge sole, Dicologoglossa cuneata, is reported. The pathogen was recovered from ulcers of cultured fish, from three different outbreaks. The six isolates obtained were biochemically and serologically characterized and diagnosis was confirmed by polymerase chain reaction using specific primers and partial 16S rRNA gene sequencing. The isolates constituted a homogeneous phenotypic group; however, they belong to two of the different serotypes described within this species. A virulence evaluation of the isolates using Wedge sole fry was also performed.  相似文献   

11.
Intestinal bacteria in marine fish may produce antimicrobial substances which inhibit pathogenic bacteria. The aim of this study was to determine the influence of a change of fish diet on the antimicrobial activity of the culturable aerobic gut microflora of Senegalese sole, Solea senegalensis. Pre‐adult 15‐month‐old fish previously fed on an artificial diet, were fed polychaetes (Hediste diversicolor), which form part of the natural diet of Senegalese sole. Samples were taken0, 3 and 6 weeks after start of the experiment from the stomach, small and large intestine of the fish. The bacterial strains isolated from these samples were sub‐cultured to pure cultures and stored at ?80°C. Several biochemical tests were run to obtain some basic phenotypic characteristics of the isolated strains. Amplification and sequencing of 16S rDNA fragments were used to identify the majority of the bacterial strains isolated. The identification by use of this molecular approach gave results in agreement to the phenotypic characterization. Feeding with polychaetes significantly increased (P<0.05) the numbers of presumptive Vibrio isolates in the gut. The number of bacterial strains with antimicrobial activity, as determined by two in vitro approaches, was significantly (P<0.05) increased by feeding with polychaetes.  相似文献   

12.
This study describes morphopathologic changes in naturally infected farmed Senegalese sole affected by tenacibaculosis caused by Tenacibaculum maritimum. Macroscopic observation, in addition to light microscopy and scanning electron microscopy, was used to study the lesions. Main lesions were characterized by complete loss of epidermis and dermis, as well as extensive necrosis of muscle layers. Mild-to-moderate inflammatory response with the presence of macrophages was noted around hyaline degenerated muscle cells. Gram-negative filamentous bacteria could be detected only at the dermis. Under scanning electron microscopy, filamentous bacteria located over the scales without epithelium could be observed. These findings together with the isolation and PCR detection of the bacteria in kidney and skin tissues suggest that once the bacteria reach the dermis, probably through eroded epidermis, they are able to proliferate and produce enzymes that are responsible for the damage in the underlying tissues.  相似文献   

13.
The aim of this study was to determine the influence of the feeding regimes in Senegalese sole (Solea senegalensis) cultured under extensive, semi‐extensive and intensive production systems. A total of 254 bacterial isolates from guts of fish cultured under different production systems and feeding regimes were tested. Biochemical tests and genetic analyses based on the 16S rDNA sequence analysis were conduced to identify bacterial strains. Vibrio species were the most represented taxonomic group in the culturable microbiota of S. senegalensis guts tested. Particularly, Vibrio ichthyoenteri was the most frequently isolated Vibrio species. Comparison among diets showed a significant reduction (P<0.05) in vibrio percentages and a higher occurrence of Shewanella species in Senegalese soles fed polychaeta. In addition, a major influence of environmental temperature on microbiota composition was detected. Cold temperatures brought about a change in the percentages of Vibrio species and a higher representation of α‐Proteobacteria in both outdoor systems (extensive and semi‐extensive). The significant differences between intestinal bacterial composition in Senegalese soles fed commercial diets and natural preys (polychaeta) reveal the necessity to develop specific optimized diets for the intensive rearing of this fish species.  相似文献   

14.
An outbreak of disease characterized by skin ulcers, fin rot and mortality was observed a few days after the transfer of Atlantic salmon (Salmo salar) from a freshwater smolt production facility to a land‐based seawater post‐smolt site. Dead and moribund fish had severe skin and muscle ulcers, often 2–6 cm wide, particularly caudal to the pectoral fins. Microscopic examination of smears from ulcers and head kidney identified long, slender Gram‐negative rods. Histopathological analysis revealed abundance of long, slender Tenacibaculum‐like bacteria in ulcers and affected fins. Genetic characterization using multilocus sequence analysis (MLSA) of seven housekeeping genes, including atpA, dnaK, glyA, gyrB, infB, rlmN and tgt, revealed that the isolates obtained during the outbreak were all clustered with the Tenacibaculum dicentrarchi‐type strain (USC39/09T) from Spain. Two bath challenge experiments with Atlantic salmon and an isolate of T. dicentrarchi from the outbreak were performed. No disease or mortality was observed in the first trial. In the second trial with a higher challenge dose of T. dicentrarchi and longer challenge time, we got 100% mortality within 48 hr. This is the first reported outbreak of disease caused by T. dicentrarchi in Norwegian farmed Atlantic salmon.  相似文献   

15.
The present study aimed to investigate leucocyte responses to inflammation as well as some innate immune parameters of Senegalese sole, Solea senegalensis, following challenge with two strains of Photobacterium damselae subsp. piscicida belonging to the European and Japanese clones described for this bacterium. Pathogenicity assays were performed to assess the virulence of each Photobacterium damselae subsp. piscicida strain for sole. Subsequently, fish were intraperitoneally injected with phosphate‐buffered saline (control) or two concentrations (2 × 102 and 2 × 106 CFU mL?1) of each bacterial strain and sampled after 6 and 24 h. Results showed that the European isolate induces a higher degree of response than the Japanese strain. While blood neutrophilia and monocytosis correlated well with the increase in neutrophil and macrophage numbers in the peritoneal cavity, fish infected with the European isolate presented higher peritoneal cell numbers than fish challenged with the Japanese strain. In addition, alternative complement pathway activity and respiratory burst of head kidney leucocytes increased significantly in fish infected with the European isolate. The enhanced innate immune response displayed by Senegalese sole challenged with the European isolate is probably due to the higher degree of virulence presented by this Photobacterium damselae subsp. piscicida strain.  相似文献   

16.
As adhesion and translocation through fish gut enterocytes of the pathogen Vibrio (Listonella) anguillarum are not well investigated, the effective cause of disease and mortality outbreaks in larval sea bass, Dicentrarchus labrax, suffering from vibriosis is unknown. We detected Vanguillarum within the gut of experimentally infected gnotobiotic sea bass larvae using transmission electron microscopy and immunogold labelling. Intact bacteria were observed in close contact with the apical brush border in the gut lumen. Enterocytes contained lysosomes positive for protein A‐gold particles suggesting intracellular elimination of bacterial fragments. Shed intestinal cells were regularly visualized in the gut lumen in late stages of exposure. Some of the luminal cells showed invagination and putative engulfment of bacterial structures by pseudopod‐like formations. The engulfed structures were positive for protein A‐colloidal gold indicating that these structures were V. anguillarum. Immunogold positive thread‐like structures secreted by V. anguillarum suggested the presence of outer membrane vesicles (MVs) hypothesizing that MVs are potent transporters of active virulence factors to sea bass gut cells suggestive for a substantial role in biofilm formation and pathogenesis. We put forward the hypothesis that MVs are important in the pathogenesis of Vanguillarum in sea bass larvae.  相似文献   

17.
In the present study a multiplex real-time PCR method was developed for early detection of diseased fish infected by Aeromonas salmonicida, Vibrio anguillarum, and/or Tenacibaculum maritimum. The method consisted of the detection of three species-specific genes after DNA extraction with a commercial kit. Three types of samples were tested, and the results were compared with those of traditional diagnosis. The method obtained a limit of detection of 104 cfu/mL (2 x 102 cfu/tube). Additionally, 27 samples from fish showing signs of disease were correctly diagnosed by the developed methodology, demonstrating its suitability for implementation in aquaculture.  相似文献   

18.
Unusual persistent natural mortality occurred in a floating in‐pond raceway system intensively stocked with channel and hybrid catfish beginning in early November 2016 up until March 2017. The temperature during the period of outbreak ranged from 7.2 to 23.7°C. Gross examination of freshly dead and moribund fish revealed pale gills, slight abdominal distension and swollen inflamed vents. Comprehensive necropsy of 20 fish demonstrated vast amounts of bloody ascitic fluid in the coelomic cavity, visceral congestion, splenomegaly and pale friable livers but macroscopically normal kidneys, suggesting systemic bacterial infection. Bacterial cultures were initiated from skin, gills and major internal organs. Following incubation, a mixture of three bacterial colony phenotypes was observed on agar plates. Presumptive biochemical characterization of the isolates followed by 16S‐rRNA sequence analysis resulted in the identification of Aeromonas veronii, Streptococcus parauberis and Shewanella putrefaciens. Channel catfish juveniles were experimentally infected with the recovered isolates to fulfil Koch's postulates. Moreover, an antibiogram was used to evaluate the susceptibility of the isolates to antimicrobial drugs approved for use in aquaculture. Aquaflor was used successfully for treatment. Here, we report bacterial coinfection lead by A. veronii and the first identification of S. parauberis and S. putrefaciens from cultured catfish in North America.  相似文献   

19.
Zebrafish (Danio rerio) are a popular model organism used in a growing number of research fields. Maintaining healthy, disease‐free laboratory fish is important for the integrity of many of these studies. Mycobacteriosis is a chronic bacterial infection caused by several Mycobacterium spp. and is the second most common disease found in laboratory zebrafish. Current mycobacteriosis control measures recommend the removal of infected fish and in severe outbreaks, depopulation. These measures can be effective, but less disruptive measures should be assessed for controlling mycobacteriosis, particularly when valuable and rare lines of fish are affected. Here, the in vivo efficacy of two drug candidates, tigecycline (1 μg g?1) and clarithromycin (4 μg g?1), was tested in adult zebrafish experimentally infected with Mycobacterium chelonae. We assessed both short (14 day)‐ and long‐term (30 day) treatments and evaluated fecundity and pathological endpoints. Fecundity and histology results show that zebrafish tolerated antibiotics. Antibiotic treatments did not significantly impact the prevalence of acid‐fast granulomas; however, the severity of infections (acid‐fast granuloma intensity) was significantly decreased following treatments.  相似文献   

20.
The aim of this study was to determine the effect of a dietary multi‐species probiotic on growth, gut morphology and immune parameters in Senegalese sole (Solea senegalensis). Fish were fed with two experimental diets, a control diet and the same diet supplemented with the probiotic for 72 days. A sub‐lethal bath challenge with Photobacterium damselae subsp. piscicida was performed after the growth trial. Intestine and blood samples were collected to study gut structure and plasmatic immune parameters. No significant differences were found in growth performance. The analysis of gut morphology showed a significant increase in intestinal villi height of Senegalese sole fed the probiotic. Regarding circulating leucocytes, dietary probiotic supplementation increased thrombocytes levels whereas a decrease in the proportion of lymphocytes was observed. No significant differences were observed in humoural immune parameters. Bath challenge differentially affected leucocyte counts and increased peroxidase activity. This study presents the possibility of using dietary probiotic supplementation to increase Senegalese sole welfare since gut morphology was positively affected. Although the immune response after a bacterial challenge was not modulated by dietary treatment, further studies would be instrumental to unravel eventual dietary benefits on immune mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号