首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quinoa is a native Andean crop for domestic consumption and market sale, widely investigated due to its nutritional composition and gluten‐free seeds. Leaf water potential (Ψleaf) and its components and stomatal conductance (gs) of quinoa, cultivar Titicaca, were investigated in Southern Italy, in field trials (2009 and 2010). This alternative crop was subjected to irrigation treatments, with the restitution of 100 %, 50 % and 25 % of the water necessary to replenish field capacity, with well water (100 W, 50 W, 25 W) and saline water (100 WS, 50 WS, 25 WS) with an electrical conductivity (ECw) of 22 dS m?1. As water and salt stress developed and Ψleaf decreased, the leaf osmotic potential (Ψπ) declined (below ?2.05 MPa) to maintain turgor. Stomatal conductance decreased with the reduction in Ψleaf (with a steep drop at Ψleaf between ?0.8 and 1.2 MPa) and Ψπ (with a steep drop at Ψπ between ?1.2 and ?1.4 MPa). Salt and drought stress, in both years, did not affect markedly the relationship between water potential components, RWC and gs. Leaf water potentials and gs were inversely related to water limitation and soil salinity experimentally imposed, showing exponential (Ψleaf and turgor pressure, Ψp, vs. gs) or linear (Ψleaf and Ψp vs. SWC) functions. At the end of the experiment, salt‐irrigated plants showed a severe drop in Ψleaf (below ?2 MPa), resulting in stomatal closure through interactive effects of soil water availability and salt excess to control the loss of turgor in leaves. The effects of salinity and drought resulted in strict dependencies between RWC and water potential components, showing that regulating cellular water deficit and volume is a powerful mechanism for conserving cellular hydration under stress, resulting in osmotic adjustment at turgor loss. The extent of osmotic adjustment associated with drought was not reflected in Ψπ at full turgor. As soil was drying, the association between Ψleaf and SWC reflected the ability of quinoa to explore soil volume to continue extracting available water from the soil. However, leaf ABA content did not vary under concomitant salinity and drought stress conditions in 2009, while differing between 100 W and 100 WS in 2010. Quinoa showed good resistance to water and salt stress through stomatal responses and osmotic adjustments that played a role in the maintenance of a leaf turgor favourable to plant growth and preserved crop yield in cropping systems similar to those of Southern Italy.  相似文献   

2.
Drought and salinity are the two major factors limiting crop growth and production in arid and semi‐arid regions. The separate and combined effects of salinity and progressive drought in quinoa (Chenopodium quinoa Willd.) were studied in a greenhouse experiment. Stomatal conductance (gs), leaf water potential (Ψl), shoot and root abscisic acid concentration ([ABA]) and transpiration rate were measured in full irrigation (FI; around 95 % of water holding capacity (WHC)) and progressive drought (PD) treatments using the irrigation water with five salinity levels (0, 10, 20, 30 and 40 dS m?1); the treatments are referred to as FI0, FI10, FI20, FI30, FI40; PD0, PD10, PD20, PD30, PD40, respectively. The measurements were carried out over 9 days of continuous drought. The results showed that increasing salinity levels decreased the total soil water potential (ΨT) and consequently decreased gs and Ψl values in both FI and PD. During the drought period, the xylem [ABA] extracted from the shoots increased faster than that extracted from the roots. A reduction in ΨT, caused by salinity and soil drying, reduced transpiration and increased apparent root resistance (R) to water uptake, especially in PD0 and PD40 during the last days of the drought period. The reasons for the increase in apparent root resistance are discussed. At the end of the drought period, the minimum value of relative available soil water (RAW) was reached in PD0. Under non‐saline conditions, Ψl decreased sharply when RAW reached 0.42 or lower, but under the saline conditions of PD10 and PD20, the threshold values of RAW were 0.67 and 0.96, respectively. In conclusion, due to the additive effect of osmotic and matric potential during soil drying on soil water availability, quinoa should be re‐irrigated at higher RAW in salt‐affected soils, i.e. before the soil water content reaches the critical threshold level causing the drop in Ψl resulting in stomatal closure.  相似文献   

3.
Thermotolerance acclimation of photosystem II to heat and drought is well documented, but studies demonstrating developmental impacts on heat tolerance in field‐grown plants are limited. Consequently, climatic variables, estimated canopy temperature, predawn leaf water potential (ΨPD), and the temperature responses of maximum quantum yield of photosystem II (Fv/Fm), variable fluorescence (Fv/F0), quantum yield of electron transport (φEο) and efficiency of PSI electron acceptor reduction (REο/ABS) were characterized for Gossypium hirsutum at three sample times during the growing season (21 June, 2 July and 18 July 2013) under well‐watered conditions. The temperature decreasing a given photosynthetic parameter 15% from the optimum is referred to as T15 and served as a standardized measure of heat tolerance. Ambient and estimated canopy temperatures were well within the optimal range for cotton throughout the sample period, and leaves were verified well watered using ΨPD measurements. However, T15 varied with sample date (highest on July 2 for all parameters), being 2 °C (Fv/F0) to 5.5 °C (φEο) higher on July 2 relative to June 21, despite optimal temperature conditions and predawn leaf water potential on all sample dates. These findings suggest that even under optimum temperature conditions and water availability, heat tolerance could be influenced by plant developmental stage.  相似文献   

4.
Facing a steadily increasing world energy demand, jatropha, among other energy crops, has been reported to potentially contribute to biofuel production. A basic characterisation of plant responses to abiotic environmental factors is important for assessing the model‐assisted potential of this plant in view of the many agro‐ecological zones in which jatropha is presently cultivated. Two pot experiments and two field studies were used to record gas exchange parameters in response to light, nitrogen supply, atmospheric vapour pressure deficit (VPD), leaf age and time of measurements. Variation of N supply from 0 to 16 mm resulted in lower rates of photosynthesis (A) and stomatal conductance (gs) of treatment 0 mm N compared with other N levels, whereas the light compensation point (IC), quantum yield (QY) and dark respiration rates (Rd) were similar in all treatments. In the field, diurnal effects were evident with higher light‐saturated photosynthetic rate (Amax) and QY and lower IC and Rd in the morning than in the afternoon. Considering leaf age effects, fully expanded leaves had a lower Amax compared with expanding leaves and this variation in leaf gas exchange was not related to changes in the chlorophyll index value (SPAD) which steadily increased with leaf age. QY of field and greenhouse plants varied from 0.023 to 0.037 and was substantially lower than in C3 plants. A was positively correlated with gs in a hyperbolic function. A varied from 0.64 to 21.13 μmol m?2 s?1 and gs varied from 12 to 469 mmol m?2 s?1. With increasing VPD, gs decreased, but this response differed between the field experiments and the two pot experiments which contrasted each other distinctively. Applying the inverse logistic function of Webb (Ecological Modeling, 56 (1991), 81), the maximal stomatal conductance of jatropha was in the range of 382 mmol m?2 s?1 and gs is predicted to be close to zero at 5 kPa. These data altogether indicate that light absorption characteristics of single leaves and carbohydrate status parameters should be investigated further to explain the low QY and the pronounced diurnal variation.  相似文献   

5.
Selection for drought tolerance entails prioritizing plant traits that integrate critical physiological processes occurring during crop growth. Discrimination against 13C (?) in leaflets (?leaflet) and tubers (?tuber) was compared under two water regimes in two potato‐improved varieties selected to maintain yield under drought conditions (Unica and Sarnav) and one drought susceptible European cultivar (Désirée). In the control treatment, soil water content was kept at field capacity over the whole growth cycle, while in the drought treatment water supply was restricted after tuber initiation (50 % of field capacity). Gas exchange and N content per unit leaf area (Narea) as well as ? were assessed at different stages. Sarnav showed the highest tuber yield in both water conditions, suggesting that yield in the water restriction treatment was largely driven by yield potential in this genotype. Higher stomatal conductance (gs) and Narea and lower ?leaflet in well‐watered Sarnav suggested higher photosynthetic capacity. Under water restriction, Sarnav maintained higher gs indicating that carbon diffusion was a key factor for biomass accumulation under water restriction. Our results suggest the use of ? determined after tuber initiation as an indirect selection indicator for tuber yield under both well‐watered and restricted soil water availability conditions.  相似文献   

6.
The main task of this research was to evaluate canopy temperature and Crop Water Stress Index (CWSI) by assessing genotype variability of maize performance for different water regimes. To that end, three hundred tropical and subtropical maize hybrids with different phenology in terms of date of anthesis were evaluated. The influence of phenology on the change in canopy temperatures and CWSI was not equal during the three dates of measurement. At the end of vegetative growth (82 days after sowing, DAS) and at the blister stage (DAS 97), a high significant difference in temperatures and CWSI (P < 0.001) were obtained between the early‐ and late‐maturity genotypes. During anthesis (DAS 89), phenology had a significant effect (P < 0.01) only for the well‐watered genotypes, while under water‐stress conditions, no differences were found between early and late genotypes in terms of canopy temperature and CWSI. High significant differences (P < 0.001) in stomatal conductance (gs) between early and late genotypes for different treatments were observed. A relationship (R2 = 0.62) between gs and canopy temperature was obtained. Under a water‐stress canopy, temperature was measured at anthesis, which was negatively correlated with grain yield of the early (r = ?0.55)‐ and late (r = ?0.46)‐maturity genotypes in the water‐stressed condition.  相似文献   

7.
Our study was conducted to determine agronomic optimum seeding rates (AOSR) for irrigated maize under a range of agroecological conditions in Texas. Environmental factors that affect irrigated maize production vary considerably across Texas. This variability imposes region‐specific limitations on statewide maize seeding rate recommendations. Our research examined the efficiency of varying seeding rates on irrigated maize grain yields in five USEPA Level IV Ecoregions that comprise most of the irrigated maize‐producing area of Texas. The selected sites span a distance of 1200 km from south to north Texas and elevations from 20 to 1218 m above mean sea level. We conducted the study over three growing seasons from 2005 through 2007 in two Level IV Ecoregions of the High Plains of North Texas (N), one in the East Central Plains (E), one in the Southern Plains and one in Western Gulf Coastal Plains of South Texas (S). We observed that maximum grain yields and AOSR to achieve maximum maize grain yields vary considerably among ecoregions. In South Texas, we observed grain yield response rates of 125–129, 151 kg 1000 seeds?1 in E and 163–199 kg 1000 seeds?1 in N. We show that growing season average daily minimum air temperature (TMIN) explains most of this variation (r2 = 0.98, P‐value < 0.01) and conclude that seeding rate efficiency is concomitant to TMIN. Maximum grain yields (GYMAX) determined with seeding rate response analysis also varied among ecoregions and with TMIN from south to north Texas, from a low of 8.3 Mg ha?1 in S to a high of 18.4 Mg ha?1 in N (r2 = 0.59, P‐value < 0.01). We conclude that development of agronomic management models by Level IV Ecoregions of Texas combined with site‐specific TMIN climatological data serve as a valid template for delivering robust and agroecozone‐specific irrigated maize seeding rate recommendations in Texas.  相似文献   

8.
Full‐grown Artemisia annua plants were subjected to chemical and physical stress conditions, and the effect of these on the concentration and chemical composition of essential oil components (EOC) in the leaves was studied. The chemical stress treatments were performed by foliar application of NaCl, H2O2, salicylic acid and chitosan oligosaccharide (COS). The EOC of the leaves were extracted with n‐hexane and identified and quantified by GC–MS and GC–FID, respectively. Approximately 96 % of EOC in the extracts were identified and quantified of which β‐pinene, camphene, germacrene D, camphor, coumarin and dihydro‐epi‐deoxyarteannuin B were the major EOC accounting for about 75 % of the total content of EOC in the extracts. The physical stress treatment, sandblasting of the plants resulted in a significant enhancement in the content of α‐pinene, camphene, coumarin and dihydro‐epi‐deoxyarteannuin B. The total yield of identified EOC in non‐treated plants (control) was 86.2 ± 13.8 μg g?1 fresh weight (FW) compared with 104.0 ± 9.1 μg g?1 FW in sandblasted plants. The chemical stress treatments did not affect the composition of EOC significantly. The results indicate that chemical stress treatments do not affect the concentration and composition of EOC in full‐grown A. annua plants to the same extent as physical stress treatment by sandblasting.  相似文献   

9.
沼液与尿素配施对冬小麦光合特性及产量的影响   总被引:4,自引:0,他引:4  
2007—2009年度,在总施氮量相同的条件下,比较了沼液与尿素氮肥不同基追比对冬小麦品种温麦28光合特性及产量的影响。在基施沼液的基础上追施尿素,提高叶片PSII潜在活性(Fv/Fo)、PSII光化学最大效率(Fv/Fm)和荧光光化学猝灭系数(qP),降低荧光非光化学猝灭系数(qN),其PSII量子效率(ΦPSII)和电子传递速率(ETR)优势明显,具有较高的光合速率,尤其是基施25%沼液氮+追施75%尿素氮处理,光合功能强,籽粒产量最高,2007—2008年度达8 277.90 kg hm-2,2008—2009年度为7 318.07 kg hm-2。整个生育期单施沼液处理使小麦营养生长过旺,荧光参数变劣,光合速率下降,产量显著降低。单施尿素氮肥处理Fv/Fo和Fv/Fm在开花期前具有明显优势,但在开花期后不再延续前期优势,ΦPSII和ETR参数年度间存在差异,qP值持续低于基施沼液追施尿素的配施处理,而qN值表现相反,荧光参数间不够协调,产量较基施沼液追施尿素处理降低,而较单施沼液处理显著提高。  相似文献   

10.
This study aimed to reduce the gap of knowledge on white lupin drought tolerance variation, by assessing the grain yield of 21 landraces from major historical cropping regions, one variety and two breeding lines in a large phenotyping platform that imposed controlled severely stressed or moisture‐favourable conditions after an initial stage of favourable growth. Drought stress reduced grain yield by 79%. Genetic correlation coefficients indicated moderate consistency of genotype responses across conditions for grain yield (rg = 0.76), fairly high consistency for straw yield (rg = 0.85) and harvest index (rg = 0.91), and high consistency for flowering time (rg = 0.99). However, low genetic correlation for yield (rg = 0.31) occurred among a subset of genotypes with early phenology. Specific adaptation to either condition implied significant (= 0.05) genotype × condition interaction of crossover type between well‐performing genotypes. Early flowering was an important stress escape mechanism, but intrinsic drought tolerance could be inferred from responses of a few genotypes. Various landraces out‐yielded the improved germplasm under stressed or favourable conditions.  相似文献   

11.
 利用Fluke红外热像仪获取两个棉花品种4水平水分处理5个关键生育时期冠层的红外热图像;并在红外热图像测试的样本区内,分别测试棉花叶片净光合速率(Pn)、气孔导度(Gs)和叶面积指数(LAI)。应用图像处理技术,提取棉花冠层受光叶片温度,并将人工参考湿表面(WARS)的温度运用到Jones定义的作物水分胁迫指数CWSI的经验公式中,计算CWSI;分析棉花冠层CWSI和光合参数的生育期变化,表明棉花冠层CWSI升高,Pn、Gs和LAI相应降低;不同水分处理条件下,生育期CWSI平均值分别与Pn、Gs和LAI平均值呈极显著的负相关关系(rCWSI-Pn=-0.9182**,rCWSI-Gs=-0.8819**,rCWSI-LAI=-0.8661**,n=16),CWSI与Pn、Gs和LAI可同步反映棉花冠层水分胁迫的状况。研究结果表明,先进的红外热图像技术,提供了一种获得作物冠层表面温度的高分辨率空间信息的手段,能够消除背景干扰因素的影响,更精确的计算棉花冠层CWSI,可快速、有效、准确地监测棉花冠层的水分状况。  相似文献   

12.
This study aimed to evaluate the ability of Piriformospora indica to colonize the root of Chenopodium quinoa and to verify whether this endosymbiont can improve the growth, performance and drought resistance of this species. The study delivered, for the first time, evidence for successful colonization of P. indica in quinoa. Hence, pot experiment was conducted in the greenhouse, where inoculated and non‐inoculated plants were subjected to ample (40%–50% WHC) and deficit (15%–20%WHC) irrigation treatments. Drought adversely influenced the plant growth, leading to decline the total plant biomass by 74%. This was linked to an impaired photosynthetic activity (caused by lower gs and Ci/Ca ratio; stomatal limitation of photosynthesis) and a higher risk of ROS production (enhanced ETR/Agross ratio). P. indica colonization improved quinoa plant growth, with total biomass increased by 8% (controls) and 76% (drought‐stressed plants), confirming the growth‐promoting activity of P. indica. Fungal colonization seems to diminish drought‐induced growth hindrance, likely, through an improved water balance, reflected by the higher leaf ψw and gs. Additionally, stomatal limitation of photosynthesis was alleviated (indicated by enhanced Ci/Ca ratio and Anet), so that the threat of oxidative stress was minimized (decreased ETR/Agross). These results infer that symbiosis with P. indica could negate some of the detrimental effects of drought on quinoa growth, a highly desired feature, in particular at low water availability.  相似文献   

13.
A field trial conducted on the melon cultivar Huanghemi irrigated with saline water was carried out in Minqin County in the 2‐year period, 2007 and 2008. In three irrigation treatments, different saline water concentrations were applied, that is 0.8 g l?1 (Control C), 2 g l?1 (Treatment S1) and 5 g l?1 (Treatment S2), reproducing the natural groundwater concentration in the county. The electrical conductivity of the saline water was as follows: 1.00, 2.66 and 7.03 dS m?1, respectively. The aims of the study were (i) to monitor water consumption and water potential, (ii) assess, during the whole crop cycle, some growth parameters and their relations for estimating the morpho‐functional plant response irrigated with saline water and (iii) determine the ion concentration in different plant tissues to evaluate which mechanism the plant activates in the presence of high salt concentrations. Under salinity stress, the plants sustained the concentration of Ca, Mg and K, but at a level not sufficient to limit the Na adsorption. Therefore, the melon yield decreased and it was determined by a displacement of the ratio K/Na and by a lower (total potential MPa). Consequently with increasing salinity, a significant reduction was observed in: water consumption (ET c, mm), leaf area duration (LAD, m2 d), on shoot dry weight aboveground (W , g plant?1), on specific leaf area (SLA, cm2 g?1) and on leaf area ratio (LAR, cm2 g?1). In treatment S2, in addition to these changes which mainly affected the plant morphology with effects on the biomass produced, a moderate reduction was also observed in net assimilation rate (NAR, g m?2 d?1), water use efficiency (WUE), a significant reduction in the energy conversion efficiency (ECE, %) and, in short, in a reduction in the relative growth rate (RGR, g g?1 d?1).  相似文献   

14.
This study investigated the relationship between osmotic potential at full hydration (π100) and turgor loss point (ΨTLP) in wheat (Triticum aestivum) to determine the potential of using π100 to predict ΨTLP under well‐watered (WW) and drought (WS) conditions. Two methods for determining π100 were tested: pressure–volume (PV) analysis and freezing point osmometry. The study also measured π100 in a range of 38 field‐grown wheat cultivars to determine whether there is genetic variation in π100 under field conditions. π100 correlated with ΨTLP using both methods under both water treatments, particularly WS. Genetic variation of π100 in the field, under rainfed conditions, was greater than controlled conditions and ranged from ?0.94 to ?1.95 MPa. Overall, the evidence supports development of π100 as a novel tool for plant breeders to screen large populations of wheat and identify genotypes with lower ΨTLP, an integrative trait that is related to drought tolerance.  相似文献   

15.
An accurate estimation of stomatal resistance (rS) also under drought stress conditions is of pivotal importance for any process‐based prediction of transpiration and the energy budget of real crop canopies and quantification of drought stress. A new model for rS was developed and parameterized for winter wheat using data from field experiments accounting for the influences of net radiation (RNet), air temperature (TAir) and vapour pressure deficit of the atmosphere (VPD) interacting with an average water potential in the rooted soil (ψRootedSoil). rS is simulated with a limiting factor approach as maximum of the metabolic (related to photosynthesis) and hydraulic (related to drought stress) acting influences assuming that, if drought stress occurs, it will dominate stomatal control: rS = max(rS(TAir), rS(RNet), rS(VPD, ψRootedSoil)). This transitional approach is suited to reproduce measured daily time courses of rS with a varying accuracy for the single measurement dates but performed satisfactorily for the whole data set (r2 = 0.63, RMSE = 59 s m?1, EF = 0.60). This new semi‐empiric approach calculates rS directly from external environmental conditions. Therefore, it can be easily implemented in existing model frameworks as link between operational crop growth models that use the concept of radiation use efficiency instead of mechanistic photosynthesis modelling and soil–vegetation–atmosphere transport models.  相似文献   

16.
Summary The characterization of photosynthetic, chlorophyll fluorescence parameters and yield and yield components was compared between two newly developed CMS cotton hybrids (H1, H2) and their parents, as well as currently planted hybrid and conventional cultivars (C1, artificially produced hybrid CCRI 29 and C2, conventional cultivar CCRI 12) under the field condition. The results showed that Pn, Fv/Fm, ΦPSII and qP of hybrids was significantly higher than that of C1 and C2. Furthermore, heterosis was found on photosynthetic parameters in hybrids over their parents at the first four growth stages, while only heterosis over mean of parents (HOMP) was detected in chlorophyll fluorescence parameters. It was clearly shown that one male-sterile line M2 was higher than the hybrids in Fv/Fm, ΦPSII and qP over all growth stages. Significantly positive correlations (P < 0.01) were found between LAI or Yield and Pn, Cs, Tr, Fv/Fm, ΦPSII, or qP, while significantly negative correlations between Ci and LAI or Yield, and no significance between qN and Chl a, Cs and qP were found. It was concluded that CMS hybrid cottons showed better potential to maintain relatively higher photosynthetic ability during the growth, which contributes to the increased lint yield.  相似文献   

17.
The physiological functions of epicuticular wax (EW) include reflectance of irradiation and the reduction of water loss. When a plant experiences stressful conditions, most notably, high irradiance and temperature, damage to the photosynthetic apparatus can occur and is signalled by a decrease in the Fv/Fmax ratio. In this study, we examined the influence of increased EW on physiological function in terms of chlorophyll fluorescence (ChFl), stomatal conductance (gs), leaf temperature and spectral reflectance indices (SRI) of bread wheat (Triticum aestivum L.) cultivars. The wheat cultivars were subjected to high temperature stress (HT) (38–40°C) under greenhouse conditions when the primary inflorescence was fully emerged to determine its effect on leaf EW deposition. Leaf temperature depression (LTD) was generally lower in control (2.3°C—2012, 0.94°C—2013) compared to HT stress (3.13°C—2012, 4.05°C—2013). Cultivars in control (0.69 to 0.74 Fv/Fmax) had significantly higher ChFl compared to HT (0.58 to 0.74 Fv/Fmax). HT treatment resulted in higher EW (1.28—2012, 4.59 mg dm?2—2013) compared to control treatment (1.04—2012 to 4.56 mg dm?2—2013). Leaves devoid of EW showed significant variation among cultivars at reproductive stages for water index (WI), normalized phaeophytinization index (NPQI) and simple ratio index (SRI). In HT stress conditions, significant correlations were observed between EWL and SRI only at 3DAFE (days after full emergence), suggesting that increased EWL induced by HT and irradiation in early development may provide relief and prevent grain loss. EWL significantly associated with the physiological traits ChFl, gs, LTD and spike temperature depression (SpTD). These observations suggest that EWL may lessen the effect of high irradiance, thereby, effectively adjusting stomatal conductance, ChFl and leaf temperature, limiting the risk of over excitation of photosystem II.  相似文献   

18.
Potatoes (Solanum tuberosum L.) are drought‐sensitive and more efficient water use, while maintaining high yields is required. Here, water‐use efficiency (WUE) of a mapping population comprising 144 clones from a cross between 90‐HAF‐01 (Solanum tuberosum1) and 90‐HAG‐15 (S. tuberosum2 × S. sparsipilum) was measured on well‐watered plants under controlled‐environment conditions combining three levels of each of the factors: [CO2], temperature, light, and relative humidity in growth chambers. The clones were grouped according to their photosynthetic WUE (pWUE) and whole‐plant WUE (wpWUE) during experiments in 2010. Two offspring groups according to pWUE and wpWUE were identified on the basis of experiments conducted in 2010, which in experiments in 2011 again showed significant differences in pWUE (46 %, P < 0.001) and wpWUE (34 %, P < 0.001). The high‐WUE group had a higher net photosynthesis rate (34 %) and dry matter accumulation (55 %, P < 0.001) rather than leaf‐level transpiration rate (?4 %, no significant difference) or whole‐plant water use (16 %). The pWUE correlated negatively to the ratio between leaf‐internal and leaf‐external [CO2] (R2 = ?0.86 in 2010 and R2 = ?0.83 in 2011, P < 0.001). The leaf chlorophyll content was lower in the high‐WUE group indicating that the higher net photosynthesis rate was not due to higher leaf‐N status. Less negative value of carbon isotope discrimination (δ13C) in the high‐WUE group was only found in 2011. A modified Ball‐Berry model was fitted to measured stomatal conductance (gs) under the systematically varied environmental conditions to identify parameter differences between the two groups, which could explain their contrasting WUE. Compared to the low‐WUE group, the high‐WUE group showed consistently lower values of the parameter m, which is inversely related to WUE. Differences related specifically to the dependence of gs on humidity and net photosynthesis rate were only found in 2010. The lower ratio between leaf‐internal and leaf‐external [CO2] and higher WUE of the high‐WUE group was consistent over a wide range of air vapour pressure deficits from 0.5 to 3.5 kPa. The mapping population was normally distributed with respect to WUE suggesting a multigenic nature of this trait. The WUE groups identified can be further employed for quantitative trait loci (QTL) analysis by use of gene expression studies or genome resequencing. The differences in population WUE indicate a genetic potential for improvement of this trait.  相似文献   

19.
Fusarium head blight (FHB) in triticale (× Triticosecale Wittmack) results in yield losses and mycotoxin contamination, for example, by deoxynivalenol (DON). This study aimed to analyse the correlation between FHB severity and DON content in a DH population of 146 entries across environments. Additionally, Fusarium damaged kernel (FDK) rating, heading stage and plant height were recorded. Highly significant (P < 0.001) genotypic variances were found throughout, but also significant (P < 0.001) genotype–environment interaction variances occurred. Correlation between FHB severity and heading stage or plant height was low (r = 0.144 and r = ?0.153, P < 0.10). A prediction of DON content from FHB severity or FDK rating is not possible caused by low correlations (r = 0.315 and 0.572, respectively, P < 0.001). A common quantitative trait locus (QTL) for all FHB‐related traits was found on wheat chromosome 2A being of minor importance for FHB severity, but of high importance for DON content and FDK rating. Another QTL on rye chromosome 5R was more important for FHB severity. In conclusion, DON content has to be measured in triticale after selection for FHB severity to gain for healthy and mycotoxin‐reduced feed.  相似文献   

20.
A field experiment was conducted from 1985–1986 to 2002–2003 on Vertisols under rainfed conditions to evaluate the effect of cropping systems and application of fertilizers and manure on seed cotton yield. To determine the long‐term effects, trends and stability analyses were performed. Soil samples (0–0.15 and 0.15–0.30 m) were collected at the end of year 18 and analysed for available P and AB‐DTPA extractable Zn. Among cropping systems, Asiatic diploid cotton (Gossypium arboreum) yielded 233 kg ha?1 more seed cotton than the upland tetraploid cotton (Gossypium hirsutum). Yield trend was positive for G. arboreum compared with G. hirsutum. However, the slope was not significant. Stability analyses indicated overall higher yield stability for G. arboreum than G. hirsutum. Compared with monocropping G. hirsutum, G. hirsutum–sorghum (Sorghum bicolor L.) (H‐S) rotation was significantly more stable. Soil samples (0–0.30 m) of the manure‐amended plots had significantly greater P and Zn content (above the critical limit) compared to those receiving inorganic fertilizers alone. With regard to nutrient management practices, seed cotton yield was the highest for the integrated nutrient management (INM) treatment receiving a combination of organic and inorganic fertilizers. Among primary nutrients, the effect of P was significant while that of K was not. Balanced fertilizer application was significantly better than treatments receiving N and NK. Yield trends were, in general, not significant. However, a positive trend was noticed for treatments receiving manure compared to fertilizer alone. Stability analysis, on the other hand, indicated that the slopes were, in general, significant. Among the nutrients, mean yield response with and without P was 1007 and 672 kg ha?1 respectively. Combined application of manure and fertilizer (INM) resulted in the highest mean yield response (1218 kg ha?1) and the slope was highly significant (P < 0.004). In the manure‐amended plots, a better nutrient status probably imparted a greater degree of yield stability. The present study suggests that compared to trend analysis, stability analysis being sensitive as it recognizes the treatment × environment interaction, is a better option to interpret results from long‐term agronomic experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号