首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genomic information has a limited dimensionality (number of independent chromosome segments [Me]) related to the effective population size. Under the additive model, the persistence of genomic accuracies over generations should be high when the nongenomic information (pedigree and phenotypes) is equivalent to Me animals with high accuracy. The objective of this study was to evaluate the decay in accuracy over time and to compare the magnitude of decay with varying quantities of data and with traits of low and moderate heritability. The dataset included 161,897 phenotypic records for a growth trait (GT) and 27,669 phenotypic records for a fitness trait (FT) related to prolificacy in a population with dimensionality around 5,000. The pedigree included 404,979 animals from 2008 to 2020, of which 55,118 were genotyped. Two single-trait models were used with all ancestral data and sliding subsets of 3-, 2-, and 1-generation intervals. Single-step genomic best linear unbiased prediction (ssGBLUP) was used to compute genomic estimated breeding values (GEBV). Estimated accuracies were calculated by the linear regression (LR) method. The validation population consisted of single generations succeeding the training population and continued forward for all generations available. The average accuracy for the first generation after training with all ancestral data was 0.69 and 0.46 for GT and FT, respectively. The average decay in accuracy from the first generation after training to generation 9 was −0.13 and −0.19 for GT and FT, respectively. The persistence of accuracy improves with more data. Old data have a limited impact on the predictions for young animals for a trait with a large amount of information but a bigger impact for a trait with less information.  相似文献   

2.
Most genomic prediction studies fit only additive effects in models to estimate genomic breeding values (GEBV). However, if dominance genetic effects are an important source of variation for complex traits, accounting for them may improve the accuracy of GEBV. We investigated the effect of fitting dominance and additive effects on the accuracy of GEBV for eight egg production and quality traits in a purebred line of brown layers using pedigree or genomic information (42K single‐nucleotide polymorphism (SNP) panel). Phenotypes were corrected for the effect of hatch date. Additive and dominance genetic variances were estimated using genomic‐based [genomic best linear unbiased prediction (GBLUP)‐REML and BayesC] and pedigree‐based (PBLUP‐REML) methods. Breeding values were predicted using a model that included both additive and dominance effects and a model that included only additive effects. The reference population consisted of approximately 1800 animals hatched between 2004 and 2009, while approximately 300 young animals hatched in 2010 were used for validation. Accuracy of prediction was computed as the correlation between phenotypes and estimated breeding values of the validation animals divided by the square root of the estimate of heritability in the whole population. The proportion of dominance variance to total phenotypic variance ranged from 0.03 to 0.22 with PBLUP‐REML across traits, from 0 to 0.03 with GBLUP‐REML and from 0.01 to 0.05 with BayesC. Accuracies of GEBV ranged from 0.28 to 0.60 across traits. Inclusion of dominance effects did not improve the accuracy of GEBV, and differences in their accuracies between genomic‐based methods were small (0.01–0.05), with GBLUP‐REML yielding higher prediction accuracies than BayesC for egg production, egg colour and yolk weight, while BayesC yielded higher accuracies than GBLUP‐REML for the other traits. In conclusion, fitting dominance effects did not impact accuracy of genomic prediction of breeding values in this population.  相似文献   

3.
Economic values (EVs) of traits, accounting for environmental impacts and risk preferences of farmers, are required to design breeding goals that contribute to both economic and environmental sustainability. The objective of this study was to assess the effects of incorporating environmental costs and the risk preferences of farmers on the EVs of pig breeding goal traits. A breeding goal consisting of both sow efficiency and production traits was defined for a typical Brazilian farrow‐to‐finish pig farm with 1,500 productive sows. A mean‐variance utility function was employed for deriving the EVs at finishing pig level assuming fixed slaughter weight. The inclusion of risk and risk aversion reduces the economic weights of sow efficiency traits (17%) while increasing the importance of production traits (7%). For a risk‐neutral producer, inclusion of environmental cost reduces the economic importance of sow efficiency traits (3%) while increasing the importance of production traits (1%). Genetic changes of breeding goal traits by their genetic standard deviations reduce emissions of greenhouse gases, and excretions of nitrogen and phosphorus per finished pig by up to 6% while increasing farm profit. The estimated EVs could be used to improve selection criteria and thereby contribute to the sustainability of pig production systems.  相似文献   

4.
The accuracy of estimated breeding values (EBVs) is an important parameter in livestock genetic improvement. It is used to calculate response to selection and to express the credibility of individual EBVs. Although it is well-known that selection reduces accuracy, this effect is not well-studied and accuracies from genetic evaluations are not adjusted for selection. This work investigates the effect of selection on accuracy of EBVs estimated using best linear unbiased predictors. Results show that accuracies in a selected population may be considerably smaller than the ordinary accuracy from genetic evaluation. Accuracy of the parent average is dramatically reduced by selection, up to a factor of three. Expressions for equilibrium accuracies in selected populations are presented and depend only on the unselected accuracy and the intensity of selection. Thus, schemes with the same unselected accuracy and intensity of selection also have the same equilibrium accuracy and response to selection. At the same unselected accuracy, therefore, schemes based on between-family information do not show greater reduction in response and accuracy because of the Bulmer effect. An example shows that benefit of genomic selection may be underestimated when the effect of selection on accuracy is ignored. Finally, this work argues that the SE of an EBV and the correlation between true and EBVs are different things, and that accuracies should not be adjusted for selection when they primarily serve to indicate the SEs of EBVs.  相似文献   

5.
The present study evaluated the advantage of mixed‐model techniques over a selection index under different magnitudes of an additional systematic environmental effect (ASEE) in terms of accuracy of prediction and expected genetic gain. The data attempted to simulate a closed herd in a pig breeding program. The base population (G0) consisted of 10 males and 50 females. Six generations (G0 to G5) were selected by using a selection index of three traits without overlapping. Additional systematic environmental constants with four levels in a generation were assigned from a uniform distribution at different ranges. Breeding values of animals in the last generation (G5) were estimated on the basis of an index of individual phenotype (SI‐U), SI‐U adjusted for ASEE using a least‐squares mean (SI‐A), best linear unbiased prediction using an animal model excluding ASEE (AM‐E), and an animal model including ASEE (AM‐I). Accuracy of prediction and expected genetic gain were larger by the animal model than by the selection index, even if heritability of the traits selected was high and ASEE was set to zero. When ASEE was zero, the accuracy of prediction and expected genetic gain given by SI‐U and AM‐I were similar to those given by SI‐A and AM‐E, respectively. However, the differences in accuracy and expected gain between SI‐U and AI‐A and between AM‐I and AM‐E increased as the range of ASEE increased. It was concluded that selection based on an animal model was more effective than index selection, even if the herd environment was uniform and traits with high heritability were selected, and that it should be always included in an evaluation model, however slight any systematic environmental effect may be in a closed herd.  相似文献   

6.
The objective of this study was to compare and determine the optimal validation method when comparing accuracy from single‐step GBLUP (ssGBLUP) to traditional pedigree‐based BLUP. Field data included six litter size traits. Simulated data included ten replicates designed to mimic the field data in order to determine the method that was closest to the true accuracy. Data were split into training and validation sets. The methods used were as follows: (i) theoretical accuracy derived from the prediction error variance (PEV) of the direct inverse (iLHS), (ii) approximated accuracies from the accf90(GS) program in the BLUPF90 family of programs (Approx), (iii) correlation between predictions and the single‐step GEBVs from the full data set (GEBVFull), (iv) correlation between predictions and the corrected phenotypes of females from the full data set (Yc), (v) correlation from method iv divided by the square root of the heritability (Ych) and (vi) correlation between sire predictions and the average of their daughters' corrected phenotypes (Ycs). Accuracies from iLHS increased from 0.27 to 0.37 (37%) in the Large White. Approximation accuracies were very consistent and close in absolute value (0.41 to 0.43). Both iLHS and Approx were much less variable than the corrected phenotype methods (ranging from 0.04 to 0.27). On average, simulated data showed an increase in accuracy from 0.34 to 0.44 (29%) using ssGBLUP. Both iLHS and Ych approximated the increase well, 0.30 to 0.46 and 0.36 to 0.45, respectively. GEBVFull performed poorly in both data sets and is not recommended. Results suggest that for within‐breed selection, theoretical accuracy using PEV was consistent and accurate. When direct inversion is infeasible to get the PEV, correlating predictions to the corrected phenotypes divided by the square root of heritability is adequate given a large enough validation data set.  相似文献   

7.
Reasons for performing study: Lameness is highly prevalent in working horses, but published reports on the associated pathological abnormalities are lacking. With over 42 million horses in developing countries and the majority used for work, lameness has major welfare implications. Objectives: To describe the range and prevalence of pathological abnormalities associated with lameness in working horses. Methods: A standard lameness assessment was adapted for field use in working equids. Data on pathological abnormalities and pain responses in the feet, limbs and spine were collected through observation, palpation, manipulations and gait assessment in working horses from India (n = 110) and Pakistan (n = 117). Lameness at the walk was scored on a scale of 0–4 (sound‐nonweightbearing). Results: All horses examined were lame. Overall, 98% showed a gait abnormality in all 4 limbs and 87% had at least one limb scoring 3 or 4 on the lameness scale. Multiple pathological abnormalities within each limb were associated with lameness, with similar results in both countries. Chronic foot pathology was seen in every horse; 94% horses showed signs of chronic joint disease; 83% had digital flexor tendonitis in at least one limb. Lameness and pathological abnormalities were associated with specific pain responses in the feet, limbs and spine. Conclusions: The extremely high prevalence of multilimb lameness and its association with pain is of great concern. The multiple pathological abnormalities present in working horses makes lameness complex to address. Potential relevance: The results of this detailed study of lameness should facilitate the identification of risk factors and the implementation of interventions to reduce the prevalence of lameness in working equids.  相似文献   

8.
Genomic selection is based on breeding values that are estimated using genome-wide dense marker maps. The objective of this paper was to investigate the effect of including or ignoring the polygenic effect on the accuracy of total genomic breeding values, when there is coverage of the genome with approximately one SNP per cM. The importance of the polygenic effect might differ for high and low heritability traits, and might depend on the design of the reference dataset. Hence, different scenarios were evaluated using stochastic simulation. Accuracies of the total breeding value of juvenile selection candidates depended on the number of animals included in the reference data. When excluding polygenic effects, those accuracies ranged from 0.38 to 0.55 and from 0.73 to 0.79 for traits with heritabilities of 10 and 50%, respectively. Accuracies were improved by including a polygenic effect in the model for the low heritability trait, when the LD-measure r2 between adjacent markers became smaller than approximately 0.10, while for the high heritability trait there was already a small improvement at r2 between adjacent markers of 0.14. In all situations, the estimated total genetic variance was underestimated, particularly when the polygenic effect was excluded from the model. The haplotype variance was less underestimated when more animals were added in the reference dataset.  相似文献   

9.
We simulated a genomic selection pig breeding schemes containing nucleus and production herds to improve feed efficiency of production pigs that were cross‐breed. Elite nucleus herds had access to high‐quality feed, and production herds were fed low‐quality feed. Feed efficiency in the nucleus herds had a heritability of 0.3 and 0.25 in the production herds. It was assumed the genetic relationships between feed efficiency in the nucleus and production were low (rg = 0.2), medium (rg = 0.5) and high (rg = 0.8). In our alternative breeding schemes, different proportion of production animals were recorded for feed efficiency and genotyped with high‐density panel of genetic markers. Genomic breeding value of the selection candidates for feed efficiency was estimated based on three different approaches. In one approach, genomic breeding value was estimated including nucleus animals in the reference population. In the second approach, the reference population was containing a mixture of nucleus and production animals. In the third approach, the reference population was only consisting of production herds. Using a mixture reference population, we generated 40–115% more genetic gain in the production environment as compared to only using nucleus reference population that were fed high‐quality feed sources when the production animals were offspring of the nucleus animals. When the production animals were grand offspring of the nucleus animals, 43–104% more genetic gain was generated. Similarly, a higher genetic gain generated in the production environment when mixed reference population was used as compared to only using production animals. This was up to 19 and 14% when the production animals were offspring and grand offspring of nucleus animals, respectively. Therefore, in genomic selection pig breeding programmes, feed efficiency traits could be improved by properly designing the reference population.  相似文献   

10.
We investigated the importance of SNP weighting in populations with 2,000 to 25,000 genotyped animals. Populations were simulated with two effective sizes (20 or 100) and three numbers of QTL (10, 50 or 500). Pedigree information was available for six generations; phenotypes were recorded for the four middle generations. Animals from the last three generations were genotyped for 45,000 SNP. Single‐step genomic BLUP (ssGBLUP) and weighted ssGBLUP (WssGBLUP) were used to estimate genomic EBV using a genomic relationship matrix ( G ). The WssGBLUP performed better in small genotyped populations; however, any advantage for WssGBLUP was reduced or eliminated when more animals were genotyped. WssGBLUP had greater resolution for genome‐wide association (GWA) as did increasing the number of genotyped animals. For few QTL, accuracy was greater for WssGBLUP than ssGBLUP; however, for many QTL, accuracy was the same for both methods. The largest genotyped set was used to assess the dimensionality of genomic information (number of effective SNP). The number of effective SNP was considerably less in weighted G than in unweighted G . Once the number of independent SNP is well represented in the genotyped population, the impact of SNP weighting becomes less important.  相似文献   

11.
One of the main issues in genomic selection was the huge unbalance between number of markers and phenotypes available. In this work, principal component analysis is used to reduce the number of predictors for calculating direct genomic breeding values (DGV) for production and functional traits. 2093 Italian Holstein bulls were genotyped with the 54 K Illumina beadchip, and 39 555 SNP markers were retained after data editing. Principal Components (PC) were extracted from SNP matrix, and 15 207 PC explaining 99% of the original variance were retained and used as predictors. Bulls born before 2001 were included in the reference population, younger animals in the test population. A BLUP model was used to estimate the effect of principal component on deregressed proof (DRPF) for 35 traits and results were compared to those obtained by using SNP genotypes as predictors either with BLUP or with Bayes_A models. Correlations between DGV and DRPF did not substantially differ among the three methods except for milk fat content. The lowest prediction bias was obtained for the method based on the use of principal component. Regression coefficients of DRPF on DGV were lower than one for the approach based on the use of PC and higher than one for the other two methods. The use of PC as predictors resulted in a large reduction of number of predictors (approximately 38%) and of computational time that was approximately 2% of the time needed to estimate SNP effects with the other two methods. Accuracies of genomic predictions were in most of cases only slightly higher than those of the traditional pedigree index, probably due to the limited size of the considered population.  相似文献   

12.
The world is faced with the challenge to meet the increasing demand for livestock products while conserving animal genetic resource diversity and maintaining environmental integrity. Genetic improvement of local breeds can help to improve the livelihood of the livestock keepers, to increase the production of animal products and to conserve genetic diversity. Implementing breeding schemes in developing countries has proven to be very difficult. The objective of this paper is to discuss the role of reproductive technologies for the creation and dissemination of genetic improvement in livestock populations in developing countries. In the paper opportunities are discussed for implementing breeding schemes which minimize the need for extensive pedigree and performance recording. It is shown that genetic progress can be generated in a small population. Community-based breeding schemes offer a good starting point for involving farmers in improving local breeds. Artificial insemination to exchange genetic material between communities offers an opportunity to increase the rate of genetic improvement while restricting the rate of inbreeding. Furthermore, artificial insemination is a promising technique for dissemination of genetic gain to producers at a relatively low cost. Opportunities to use semen sexing in a crossbreeding scheme are presented. It is concluded that tailor-made solutions and long-term commitment are needed in order to meet the needs of farmers to increase their livelihoods and to meet the needs of the growing population of consumers.  相似文献   

13.
Reference populations for genomic selection usually involve selected individuals, which may result in biased prediction of estimated genomic breeding values (GEBV). In a simulation study, bias and accuracy of GEBV were explored for various genetic models with individuals selectively genotyped in a typical nucleus breeding program. We compared the performance of three existing methods, that is, Best Linear Unbiased Prediction of breeding values using pedigree‐based relationships (PBLUP), genomic relationships for genotyped animals only (GBLUP) and a Single‐Step approach (SSGBLUP) using both. For a scenario with no‐selection and random mating (RR), prediction was unbiased. However, lower accuracy and bias were observed for scenarios with selection and random mating (SR) or selection and positive assortative mating (SA). As expected, bias disappeared when all individuals were genotyped and used in GBLUP. SSGBLUP showed higher accuracy compared to GBLUP, and bias of prediction was negligible with SR. However, PBLUP and SSGBLUP still showed bias in SA due to high inbreeding. SSGBLUP and PBLUP were unbiased provided that inbreeding was accounted for in the relationship matrices. Selective genotyping based on extreme phenotypic contrasts increased the prediction accuracy, but prediction was biased when using GBLUP. SSGBLUP could correct the biasedness while gaining higher accuracy than GBLUP. In a typical animal breeding program, where it is too expensive to genotype all animals, it would be appropriate to genotype phenotypically contrasting selection candidates and use a Single‐Step approach to obtain accurate and unbiased prediction of GEBV.  相似文献   

14.
This observational study aimed to determine MRSA prevalence using strain‐specific real‐time PCR at the pig level, stratified by age groupings, within a pig enterprise. A total of 658 samples were collected from individual pigs (n = 618) and the piggery environment (n = 40), distributed amongst five different pig age groups. Presumptive MRSA isolates were confirmed by the presence of mecA, and MALDI‐TOF was performed for species verification. All isolates were tested against 18 different antimicrobials. MRSA was isolated from 75.2% (95% CI 71.8–78.6) of samples collected from pigs, and 71% of the MRSA isolates from this source were identified as community‐associated (CA)‐MRSA ST93, while the remainder were livestock‐associated (LA)‐MRSA ST398. Amongst environmental isolates, 80% (CI 64.3–95.7) were ST93 and the remainder ST398. All MRSA isolates from pigs and the environment were susceptible to ciprofloxacin, gentamicin, linezolid, mupirocin, rifampicin, sulfamethoxazole–trimethoprim, teicoplanin and vancomycin. Phenotypic rates of resistance were penicillin (100%), clindamycin (97.6%), erythromycin (96.3%), ceftiofur (93.7%), chloramphenicol (81.2%), tetracycline (63.1%) and amoxicillin–clavulanate (63.9%). A low prevalence of resistance (9.2%) was observed against neomycin and quinupristin–dalfopristin. The probability of MRSA carriage in dry sows (42.2%) was found to be significantly lower (p < .001) when compared to other age groups: farrowing sows (76.8%, RR1.82), weaners (97.8%, RR 2.32), growers (94.2%, RR 2.23) and finishers (98.3%, RR 2.33). Amongst different production age groups, a significant difference was also found in antimicrobial resistance for amoxicillin–clavulanate, neomycin, chloramphenicol and tetracycline. Using the RT‐PCR assay adopted in this study, filtering of highly prevalent ST93 and non‐ST93 isolates was performed at high throughput and low cost. In conclusion, this study found that weaner pigs presented a higher risk for CA‐MRSA and antimicrobial resistance compared to other age groups. These findings have major implications for how investigations of MRSA outbreaks should be approached under the One‐Health context.  相似文献   

15.
Conserving pig genetic resources and improving their productivity is important to increase returns over investment in developing countries. The purebred, first‐cross, rotational cross and backcross matings representing production systems based on pig breeds indigenous to the country and exotic pig breeds were investigated. The number of pigs in the nucleus and commercial herds necessary to produce a defined quantity of pork was considered. The amount of heterosis between the indigenous and exotic breeds, superiority in meat production, and degree of inferiority in reproductive performance of the exotic breed compared with that of the indigenous breed were investigated. The number of breeding pigs in the whole system was in the following order: pure breeding (PB) > first‐cross (F1) > rotational cross (RC) > backcross (BC) systems. The number of breeding pigs in the nucleus herds of the RC and BC systems was smaller than that in the nucleus herds of the PB and F1 systems. The degree of inferiority in reproductive performance of the exotic breed compared with that of the indigenous breed affected the efficiency of the production system.  相似文献   

16.
The objectives of this study were to estimate the additive and dominance variance component of several weight and ultrasound scanned body composition traits in purebred and combined cross‐bred sheep populations based on single nucleotide polymorphism (SNP) marker genotypes and then to investigate the effect of fitting additive and dominance effects on accuracy of genomic evaluation. Additive and dominance variance components were estimated in a mixed model equation based on “average information restricted maximum likelihood” using additive and dominance (co)variances between animals calculated from 48,599 SNP marker genotypes. Genomic prediction was based on genomic best linear unbiased prediction (GBLUP), and the accuracy of prediction was assessed based on a random 10‐fold cross‐validation. Across different weight and scanned body composition traits, dominance variance ranged from 0.0% to 7.3% of the phenotypic variance in the purebred population and from 7.1% to 19.2% in the combined cross‐bred population. In the combined cross‐bred population, the range of dominance variance decreased to 3.1% and 9.9% after accounting for heterosis effects. Accounting for dominance effects significantly improved the likelihood of the fitting model in the combined cross‐bred population. This study showed a substantial dominance genetic variance for weight and ultrasound scanned body composition traits particularly in cross‐bred population; however, improvement in the accuracy of genomic breeding values was small and statistically not significant. Dominance variance estimates in combined cross‐bred population could be overestimated if heterosis is not fitted in the model.  相似文献   

17.
Different modes of selection in dogs were studied with a special focus on the availability of disease information. Canine hip dysplasia (CHD) in the German shepherd dog was used as an example. The study was performed using a simulation model, comparing cases when selection was based on phenotype, true or predicted breeding value, or genomic breeding value. The parameters in the simulation model were drawn from the real population data. The data on all parents and 40% of their progeny were assumed to be available for the genetic evaluation carried out by Gibbs sampling. With respect to the use of disease records on progeny, three scenarios were considered: random exclusion of disease data (no restrictions, N), general exclusion of disease data (G) and exclusion of disease data for popular sires (P). One round of selection was considered, and the response was expressed as change of mean CHD score, proportion of dogs scored as normal, proportion of dogs scored as clearly affected and true mean breeding value in progeny of popular sires in comparison with all sires. When no restrictions on data were applied, selection on breeding value was three times more efficient than when some systematic exclusion was practised. Higher selection response than in the exclusion cases was achieved by selecting on the basis of genomic breeding value and CHD score. Genomic selection would therefore be the method of choice in the future.  相似文献   

18.
In pig breeding, as the final product is a cross bred (CB) animal, the goal is to increase the CB performance. This goal requires different strategies for the implementation of genomic selection from what is currently implemented in, for example dairy cattle breeding. A good strategy is to estimate marker effects on the basis of CB performance and subsequently use them to select pure bred (PB) breeding animals. The objective of our study was to assess empirically the predictive ability (accuracy) of direct genomic values of PB for CB performance across two traits using CB and PB genomic and phenotypic data. We studied three scenarios in which genetic merit was predicted within each population, and four scenarios where PB genetic merit for CB performance was predicted based on either CB or a PB training data. Accuracy of prediction of PB genetic merit for CB performance based on CB training data ranged from 0.23 to 0.27 for gestation length (GLE), whereas it ranged from 0.11 to 0.22 for total number of piglets born (TNB). When based on PB training data, it ranged from 0.35 to 0.55 for GLE and from 0.30 to 0.40 for TNB. Our results showed that it is possible to predict PB genetic merit for CB performance using CB training data, but predictive ability was lower than training using PB training data. This result is mainly due to the structure of our data, which had small‐to‐moderate size of the CB training data set, low relationship between the CB training and the PB validation populations, and a high genetic correlation (0.94 for GLE and 0.90 for TNB) between the studied traits in PB and CB individuals, thus favouring selection on the basis of PB data.  相似文献   

19.
Reasons for performing study: Rigorous evaluation of practicable methods for the objective assessment of foot conformation has not been performed. Objectives: To assess the practicability, precision and accuracy of the process of obtaining measurements of horses' feet using photography and image processing software. Methods: Precision study: Lateral photographs of horses' feet were obtained twice by 2 veterinary surgeons (image acquisition ‐ IAc). Photographs were analysed by 2 masked veterinary surgeons on 2 occasions (image analysis ‐ IAn). Measurements were compared within and between operators for self and non‐self acquired photographs. Agreement indices (AIs) and 95% limits of agreement (LOA) were calculated for the IAn process alone and for the combined IAc + IAn processes. Accuracy study: Measurements obtained from lateral photographs were compared with those obtained from lateromedial radiographs. AIs and 95% LOA were calculated for each measurement. Results: Precision study: Mean intra‐ and interoperator AIs for the IAn process alone were ≥0.90 while those for the combined IAc + IAn processes were ≥0.89 for all measurements. Similar mean AIs and 95% LOA were calculated regardless of image origin. The 95% LOA for hoof angle, heel height/toe height% and coronary band angle for all comparisons were within target values. Accuracy study: Mean AIs were ≥0.89 for all measurements. The 95% LOA for heel height/toe height% and coronary band angle were within target values. Conclusions: Excellent precision was identified within and between operators regardless of image origin. High levels of accuracy were also identified, especially for heel height/toe height% and coronary band angle, indicating that photography and radiography may be used interchangeably. Potential relevance: Acquisition and analysis of photographic images is an appropriate method for the objective measurement of foot conformation, both in clinical and research settings.  相似文献   

20.
A method of approximating estimated breeding values (EBV) from a multivariate distribution of true breeding values (TBV) and EBV is proposed for use in large-scale stochastic simulation of alternative breeding schemes with a complex breeding goal. The covariance matrix of the multivariate distributions includes the additive genetic (co)variances and approximated prediction error (co)variances at different selection stages in the life of the animal. The prediction error (co)variance matrix is set up for one animal at a time, utilizing information on the selection candidate and its offspring, the parents, as well as paternal and maternal half- sibs. The EBV are a regression on TBV taking individual uncertainty into account, but with additional 'free' variation drawn at random. With the current information included in the calculation of the prediction error variance of a selection candidate, it is concluded that the method can be used to optimize progeny-testing schemes, where the progeny-tested sires are utilized with large progeny groups, e.g. through artificial insemination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号