首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Inhibition of S-cysteinyl-hydroxychlorpropham transferase from oat (Avena sativa L.) by various compounds was studied. The β-O-glucoside of the substrate, isopropyl-3′-chloro-4′-hydroxycarbanilate (4-hydroxychlorpropham), and isopropyl-3′-chlorocarbanilate (chlorpropham) did not inhibit the enzyme. Isopropyl-5′-chloro-2′-hydroxycarbanilate (2-hydroxy-5-chlorpropham), was a competitive inhibitor with respect to 4-hydroxychlorpropham, but 2-β-O-glucosyl-5-chlorpropham was not an inhibitor. The inhibition patterns exhibited by 2-hydroxy-5-chlorpropham and other aryl-hydroxylated analogs suggested that the site of aryl-cysteine thioether conjugation might be the ortho (2′) aromatic carbon. Inhibitions by 3-chloro-4-hydroxyaniline and ferulic acid suggest that related phenols and/or naturally occurring phenolic plant acids could serve as substrates for the enzyme system. Glutathione was a competitive inhibitor with respect to cysteine and could also form a conjugate with 4-hydroxychlorpropham. Atypical inhibitions of cysteine conjugation by cysteine ethyl ester or firefly d-luciferin were described. Similarities between S-cysteinyl-hydroxychlorpropham transferase and firefly luciferase were noted.  相似文献   

2.
Isopropyl-3′-chlorocarbanilate (chlorpropham) forms phenolic metabolites, isopropyl-3′-chloro-4′-hydroxycarbanilate (I), and isopropyl-5′-chloro-2′-hydroxycarbanilate (II), in several plant species. In oat, which is a chlorpropham-susceptible plant, I was converted to an S-cysteinyl-conjugate (III). The reaction in vitro was catalyzed by a partially purified, soluble enzyme. The formation of III by the enzyme preparation and by oat shoot sections was compared. Mass spectral data indicated the presence of an aryl-thioether bond, and chloro-, hydroxy-, and isopropylcarbanilate groups in III. The results of this investigation indicate that III was isopropyl-[(2-amino-2-carboxyethyl)thio]-chloro-hydroxycarbanilate (S-cysteinyl-hydroxychlorpropham).  相似文献   

3.
The effects of the herbicide, isopropyl-3-chlorocarbanilate, and its hydroxylated metabolites, isopropyl-5-chloro-2-hydroxycarbanilate and isopropyl-3-chloro-4-hydroxycarbanilate, upon NADH oxidation, Pi uptake or release, and ATP formation were studied in corn mitochondria. The results indicated that 0.1 mM isopropyl-3-chlorocarbanilate and the 2-hydroxy-metabolite inhibited NADH oxidation by 30% whereas only the 2-hydroxy-metabolite inhibited NADH-linked ATP formation (85–100%). Dinitrophenol and the 2-hydroxy-metabolite exerted similar effects upon respiration, phosphorylation, and ATPase activity. The 4-hydroxy-metabolite (0.1 mM) exerted no effect upon respiration, phosphorylation, or ATPase activity. The β-O-glucoside conjugates of the hydroxymetabolities of isopropyl-3-chlorocarbanilate did not inhibit NADH-linked respiration or phosphorylation at 0.1 mM concentrations. Comparative studies with corn, cucumber, and soybean mitochondria indicated that the parent herbicide and its metabolites affected respiration and phosphorylation activities in a similar manner.  相似文献   

4.
Pentachloromethylthiobenzene (PCTA) was synthesized in vitro from pentachloronitrobenzene (PCNB) at pH 7.9 by an enzyme system from onion root that required dithiothreitol, glutathione, and S-adenosylmethionine. The soluble enzyme system was isolated from onion root by ammonium sulfate fractionation and differential centrifugation. The system contained glutathione S-transferase activity with PCNB, C-S lyase activity with S-(pentachlorophenyl)cysteine, S-adenosylmethionine methyl transferase activity with pentachlorothiophenol (PCTP), and presumably several peptidase activities. All activities were stable when the crude enzyme system was stored at ?25°C. Evidence for the following sequence of reactions in PCTA synthesis was presented: PCNB→1S-(pentachlorophenyl)glutathione→2S-(pentachlorophenyl)-γ-glutamylcysteine→3S-(pentachlorophenyl)cysteine→4 PCTP→5 PCTA. The first reaction was studied with [14C]PCNB. Reactions 2–4 were studied with S-([14C]pentachlorophenyl)glutathione, S-([14C]pentachlorophenyl)cysteine, and peptide inhibitors. Reaction 5 was studied with [14C]PCTP, S-[14C]adenosylmethionine, and inhibitors. The possible use of the enzyme system in the characterization of other glutathione conjugates was discussed.  相似文献   

5.
The relationship between glutathione S-transferase activity toward 3,4-dichloronitrobenzene and O-alkyl or O-aryl conjugation of diazinon was investigated in eight strains of house flies. No significant difference was found in the amount of O-aryl conjugation. In contrast, house flies which had higher glutathione S-transferase activity toward 3,4-dichloronitrobenzene also had higher O-alkyl conjugating activity toward diazinon. The glutathione S-transferase(s) in phenobarbital-pretreated flies degraded diazinon faster than those in the nontreated ones. The present results showed that the formation of the O-alkyl conjugate was enhanced by phenobarbital pretreatment, while the formation of the O-aryl conjugate was not affected by induction. Based on these findings, it would appear that one of the multiple forms of glutathione S-transferase is specifically induced and responsible for the increase in O-alkyl conjugation.  相似文献   

6.
Methyl bromide was metabolized by susceptible and resistant strains of adult granary weevil, Sitophilus granarius (L.), mainly by conjugation with glutathione. S-Methyl glutathione and S-methyl cysteine were produced by both strains and S-methyl glutathione sulfoxide was identified as a metabolite in the resistant strain. In the untreated insects, no significant difference was observed in glutathione S-transferase activity but the resistant contained approximately twice as much glutathione per insect as the susceptible strain. When the insects were treated with methyl bromide, the glutathione content of both strains was lowered; proportionally, however, the decrease was considerably higher in the susceptible than in the resistant strain. These results indicate that conjugation of methyl bromide with glutathione is a major detoxication pathway and tolerance to this fumigant is related, in part at least, to the level of glutathione in the granary weevil.  相似文献   

7.
Chlorimuron ethyl (2-([(4-chloro-6-methoxypyrimidine-2-yl)amino carbonyl]amino sulfonyl)benzoic acid, ethyl ester) is a highly active sulfonylurea herbicide for preemergence and postemergence use in soybeans. Excised soybean (Glycine max. cv. ‘Williams’) seedlings rapidly metabolized [14C]chlorimuron ethyl with a half-life of 1–3 hr. Common cocklebur (Xanthium pensylvancium Wallr.) and redroot pigweed (Amaranthus retroflexus L.), which are sensitive to chlorimuron ethyl, metabolized this herbicide much more slowly (half-life >30 hr). The major metabolite of chlorimuron ethyl in soybean seedlings is its homoglutathione conjugate, formed by displacement of the pyrimidinyl chlorine with the cysteine sulfhydryl group of homoglutathione. A minor metabolite is chlorimuron, the deesterified derivative of chlorimuron ethyl. Each of these metabolites is inactive against plant acetolactate synthase, the herbicidal target site of chlorimuron ethyl. Thus, soybean tolerance to chlorimuron ethyl results from its rapid metabolism in soybean seedlings to herbicidally inactive products.  相似文献   

8.
The metabolism of atrazine and 6 possible metabolites by rat liver subcellular fractions was studied in vitro. The dealkylation reaction predominated over the conjugation reaction with glutathione; the isopropyl group being more easily dealkylated than the ethyl group. With the compounds investigated, the reactions involved dealkylation in the microsomal fraction and conjugation with glutathione in the soluble fraction. All of the chloro-s-triazines were able to form conjugates with glutathione. No evidence for the dechlorination of the chloro-s-triazines to hydroxy-s-triazines was observed in vitro.  相似文献   

9.
The herbicide, 2,4′-dinitro-4-trifluoromethyl diphenylether (fluorodifen), is eleaved in peanut to give the metabolite, S-(2-nitro-4-trifluoromethylphenyl)-glutathione. A comparison of the glutathione conjugate isolated from treated peanut leaves and from in vitro pea epicotyl glutathione S-transferase reaction showed that both metabolites were identical. Other polar metabolites were also isolated, but not identified. The structure of the glutathione conjugate was confirmed by amino acid analysis and by mass, NMR, and infrared spectroscopy. The p-nitrophenyl moiety is also conjugated to natural products and is released as the free p-nitrophenol upon acid hydrolysis.  相似文献   

10.
An enzyme that possesses the glutathione S-transferase (GST) activity was found in the rice leaffolder moth, Cnaphalocrocis medinalis. The enzyme was purified to homogeneity for the first time by ammonium sulfate fractionation and affinity chromatography. The resultant enzyme revealed a single band with a molecular mass of 24 kDa by SDS-polyacrylamide gel electrophoresis under reduced conditions. When assayed with 1-chloro-2,4-dinitrobenzene, a universal substrate for GST, the purified GST had an optimum pH at 8.0, and was fairly stable at pH 3-10 and at temperatures below 50 °C. The enzyme was also able to conjugate glutathione to 4-hydroxynonenal, a cytotoxic lipid peroxidation product. The present GST was inhibited by fenitrothion, permethrin, and deltamethrin, suggesting that the GST could be involved in metabolizing these organophosphorus and pyrethroid insecticides.  相似文献   

11.
An enzyme that possesses the glutathione S-transferase (GST) activity was found in the rice leaffolder moth, Cnaphalocrocis medinalis. The enzyme was purified to homogeneity for the first time by ammonium sulfate fractionation and affinity chromatography. The resultant enzyme revealed a single band with a molecular mass of 24 kDa by SDS–polyacrylamide gel electrophoresis under reduced conditions. When assayed with 1-chloro-2,4-dinitrobenzene, a universal substrate for GST, the purified GST had an optimum pH at 8.0, and was fairly stable at pH 3–10 and at temperatures below 50 °C. The enzyme was also able to conjugate glutathione to 4-hydroxynonenal, a cytotoxic lipid peroxidation product. The present GST was inhibited by fenitrothion, permethrin, and deltamethrin, suggesting that the GST could be involved in metabolizing these organophosphorus and pyrethroid insecticides.  相似文献   

12.
Diazinon toxicity to a susceptible strain of house fly (Musca domestica L.) was synergized by tridiphane [2-(3,5-dichlorophenyl)-2-(2,2,2-trichloroethyl)oxirane], a herbicide synergist. Both diazinon and tridiphane were partially metabolized in the house fly by glutathione (GSH) conjugation. Synergism appeared to be due to inhibition of diazinon metabolism/detoxification. Crude glutathione S-transferase (GST) preparations from the house fly catalyzed GSH conjugation of diazinon, tridiphane, 3,4-dichloronitrobenzene (DCNB), and chloro-2,4-dinitrobenzene (CDNB). Tridiphane and the GSH conjugate of tridiphane appeared to inhibit diazinon GSH conjugation, but diazinon did not inhibit tridiphane GSH conjugation. The enzymatic rate of tridiphane GSH conjugation was 22 times the rate of diazinon GSH conjugation; therefore, attempts to assay tridiphane as an inhibitor of diazinon GSH conjugation were inconclusive because of the high concentration of tridiphane GSH conjugate produced during the assay. CDNB underwent enzymatic GSH conjugation at a rate 240 times faster than that of tridiphane and 5000 times faster than that of diazinon. GSH conjugation of CDNB was not inhibited by tridiphane, but was inhibited by the GSH conjugate of tridiphane. In vivo, the GSH conjugate of tridiphane was produced in sufficient concentration to cause the observed inhibition of diazinon metabolism and synergism of diazinon toxicity. However, the possibility that parent tridiphane caused or contributed to the inhibition of diazinon metabolism and synergism of diazinon toxicity could not be excluded. Inhibition of diazinon metabolism did not appear to be due to depletion of either GSH or GST.  相似文献   

13.
The effects of the herbicide antidotes CGA-92194 (α-[(1,3-dioxolan-2-yl-methoxy)-imino]benzeneacetonitrile), flurazole [phenylmethyl 2-chloro-4-(trifluoromethyl)-5-thiazolecarboxylate], dichlormid (2,2-dichloro-N,N-di-2-propenylacetamide), and naphthalic anhydride (1H,3H-naphtho(1,8-cd)-pyran-1,3-dione) on nonprotein thiol content, glutathione content, and glutathione S-transferase (GST) activity in etiolated sorghum (Sorghum bicolor L.) Moench) shoots were examined. CGA-92194 and naphthalic anhydride had no effect on nonprotein thiol or reduced glutathione (GSH) content of sorghum shoots. In contrast, dichlormid and flurazole increased nonprotein thiol content of sorghum shoots by 24 and 48%, respectively. These increases were largely attributable to an increase in GSH. The antidotes increased GST activity less than twofold when using CDNB (1-chloro-2,4-dinitrobenzene) as a substrate. In contrast, when using metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] as a substrate, the increase in GST activity in response to antidote treatment was much greater: flurazole (30-fold), CGA-92194 (20-fold), naphthalic anhydride (17-fold), dichlormid (5-fold). The degree of protection from metolachlor injury conferred by a particular antidote was strongly correlated (R2 = 0.95) with its ability to enhance GST activity, as evaluated with metolachlor as substrate. A comparison of GST activity in untreated and CGA-92194-treated seedlings, over a range of metolachlor concentrations (0.5–500 μM), indicated that the relative enhancement of enzyme activity by CGA-92194 was greater at lower metolachlor concentrations. The rate of nonenzymatic conjugation of metolachlor and GSH in vitro was much less (on a gram fresh weight equivalent basis) than the enzymatic rate. These results are consistent with the hypothesis that the above antidotes protect sorghum by enhancing GST activity which results in accelerated detoxification of metolachlor via GSH conjugation.  相似文献   

14.
Glutathione S-transferase in the Australian sheep blowfly, Lucilia cuprina, was studied using 3,4-dichloronitrobenzene (DCNB) and 1-chloro-2,4-dinitrobenzene (CDNB) as substrates. The optimum pHs for enzyme activity were 7.5–8.0 and 6.7–7.4 for DCNB and CDNB conjugations, respectively. Inclusion of glutathione and bovine serum albumin in the homogenizing buffer protected the glutathione S-transferase from inhibition by endogenous compounds present in extracts of final instar larvae and of adults less than 7–8 days old. Conjugation activities for DCNB and CDNB increased throughout larval development to reach a peak early in the pupal stage. Activity then decreased through the remainder of the pupal stage and for the first 6–7 days after emergence of the adult. Almost all of the decrease in activity during the first 6 days of the adult occurred in the abdomen, which accounted for 85% of total activity in the adult female at emergence but only 47% at 6 days. Larval DCNB conjugation activity was localized almost entirely in the fat body (94%), whereas only 50% of the CDNB conjugation activity was in the fat body with the remainder in the cuticle (25%), gut (15%), and blood (10%). Adult and larval enzyme was induced ca. three- to four-fold by sodium phenobarbital. The induction was associated with changes in apparent Vmax rather than apparent Km, suggesting that phenobarbital caused increased production of forms of enzymes already present rather than inducing synthesis of altered or new forms.  相似文献   

15.
Glutathione S-alkyl- and S-aryltransferase activities and the glutathione-dependent reactions involved in the metabolism of diazinon, parathion, DDT and γ-BHC were determined in two susceptible and three resistant housefly strains. The relative rate of formation of desethyl diazinon and desethyl parathion and the degradation of γ-BHC paralleled the activities of the alkyl and aryltransferases in the various strains of houseflies suggesting that a single enzyme might be involved. DDT-dehydrochlorinase showed different relative rates among the strains indicating that the dechlorination was catalyzed by a different enzyme. The enzyme responsible for the conjugation of the pyrimidinyl moiety of diazinon appears to be different from the one which catalyzes the conjugation of the p-nitrophenyl moiety of parathion. The dearylation reactions were not mediated by the glutathione S-aryltransferase in the various housefly strains.  相似文献   

16.
Glutathione transferase (GST) was purified from the hindgut of grasshopper (Zonocerus variegatus) a polyphagous insect. The purified enzyme had a native molecular weight of 40 kDa and a subunit molecular weight of 19 kDa. The purified enzyme could conjugate glutathione (GSH) with 1-chloro-2,4-dinitrobenzene (CDNB), paranitrobenzylchloride, paranitrophenylacetate, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBDCl), and 1,2-dichloro-4-nitrobenzene (DCNB) with specific activities of 3.3 ± 0.3, 0.49 ± 0.10, 0.10 ± 0.002, 1.2 ± 0.2, and 1.7 ± 0.4 μmol/min/mg protein, respectively. CDNB appears to be the best substrate with a specificity constant, kcat/Km, of 1.8 ± 0.1 × 10−4 M−1 S−1. The kinetic mechanism of Z. variegatus GST (zvGST) in the conjugation of GSH with some electrophilic substrates appears complex. Conjugation of GSH with DCNB was inhibited by high DCNB concentration, while with NBDCl, as the electrophilic substrates, different values of Km were obtained at high and low concentrations of the substrates. Cibacron blue, hematin, S-hexylglutathione, and oxidized glutathione inhibited the enzyme with I50 values of 0.057 ± 0.004, 0.80 ± 0.2, 33 ± 2 μM, and 5.2 ± 0.3 mM, respectively. The nature of inhibition by each of these inhibitors is either competitive or non-competitive at varying GSH or CDNB as substrates. NADH and NAD+ inhibited the enzyme with an I50 value of 0.4 ± 0.01 and 11 ± 1 mM, respectively. NADH at a concentration of 0.54 mM completely abolished the activity. As part of its adaptation, the flexible kinetic pathway of detoxication by zvGST may assist the organism in coping with various xenobiotics encountered in its preferred food plants.  相似文献   

17.
In the Japanese quail, cytochrome P-450, A- and B-esterase, amidase, and glutathione S-aryl transferase were assayed in postmitochondrial centrifugal fractions, in microsomes, and supernatant fractions of liver, lungs, kidneys, and testes. Liver microsomes contained the highest A-esterase activity and P-450 levels. B-esterase was more generally distributed and higher in the microsomal tissue fractions. Microsomal amidase activity was highest in quail lung and kidney, and lowest in the liver (per mg protein). Very little difference in glutathione S-aryl transferase activity was noted among the tissues assayed. In vitro metabolism of carbaryl, phosphamidon, and chlorotoluron by the various centrifugal fractions revealed that the production of 1-naphthyl-N-hydroxymethylcarbamate and 1-naphthol, the major metabolites, was greatest in the postmitochondrial fraction of the liver. The major carbaryl metabolite in all other quail tissue fractions was 1-naphthol. Phosphamidon metabolism in postmitochondrial preparations of quail liver was higher than in the supernatant and microsomes. Chlorotoluron metabolism occurred only in the postmitochondrial fractions of quail liver. The major products were the oxidative metabolites, N-(3-chloro-4-methylphenyl)-N′-methylurea and N-(3-chloro-4-hydroxymethylphenyl)-N′-methylurea.  相似文献   

18.
In vivo and in vitro metabolism of pyraclofos labeled with 14C on benzene ring was studied in the pyraclofos-resistant and -susceptible female houseflies. In vivo metabolism studies, the metabolic rate of pyraclofos was the same in both strains. Pyraclofos primarily undergoes metabolic detoxification by cleavage of P-S-alkyl bond, and cleavage of the P-O-aryl bond followed by CHP [1-(4-chlorophenyl)-4-hydroxypyrazole]]-glucose conjugation. Cleavage of P-O-aryl bond and CHP-glucose conjugation is more predominant in the resistant strain whereas the cleavage of P-S-propyl bond resulting in EHP-CHP [O-1-(4-chlorophenyl)pyrazol-4-yl ethyl hydrogen phosphate] is more preferred in the susceptible strain. CHP production by P-O-aryl bond cleavage was controlled by P450 monooxygenase and esterase. UDP-glucosyltransferase appeared to play an important role in the pyraclofos metabolism of the resistant strain. Production of CHP-glucose conjugate was largely reduced by piperonyl butoxide and S,S,S-tributylphosphorotrithioate in both strains. EHP-CHP production seemed to be controlled by P450 monooxygenase and stimulated by UDP-glucose.  相似文献   

19.
The correlation between the natural levels of glutathione S-transferase (GST) and the tolerance to the organophosphorus insecticides parathion-methyl and paraoxon-methyl, as well as the interaction of affinity-purified enzyme and the insecticides were investigated in order to collect further information on the role of the glutathione S-transferase system as a mechanism of defence against insecticides in insects. The studies were carried out on the larvae and pupae of the coleopteran Tenebrio molitor L, which exhibit varying natural levels of GST activity. Stage-dependent susceptibility of the insect against insecticides was observed during the first 24 h. However, 48 h after treatment, the KD50 value increased significantly due to the recovery of some individuals. Simultaneous injection of insecticide with compounds which inhibit GST activity in vitro caused an alteration in susceptibility of insects 24 or 48 h post-treatment, depending on stage and insecticide used. Inhibition studies combined with competitive fluorescence spectroscopy revealed that the insecticides probably bind to the active site of the enzyme, thus inhibiting its activity towards 1-chloro-2,4-dinitrobenzene in a competitive manner. High-performance liquid chromatography and gas chromatography revealed that T molitor GST catalyses the conjugation of the insecticides studied to a reduced form of glutathione (GSH). From the above experimental results, it is considered that GST offers a protection against the organophosphorus insecticides studied by active site binding and subsequent conjugation with GSH. © 2001 Society of Chemical Industry  相似文献   

20.
The metabolism of propetamphos by insecticide-resistant and susceptible houseflies, in vivo, was investigated. Two major pathways of propetamphos degradation were found. The first is the major route of detoxification for both resistant and susceptible strains at low doses and involves a hydrolysis of the P–O-vinyl bond, ultimately resulting in the formation of carbon dioxide. The second major pathway involves conjugation. As the dose increases, so does the importance of this pathway. Those strains of houseflies with greater conjugative capacity are able to tolerate greater doses of propetamphos than those strains with lesser conjugative capacity. The properties exhibited by this conjugate are consistent with those of glutathione conjugates. This is further supported by a parallel between reported values of glutathione S-transferase activity in the houseflies tested and tolerance to propetamphos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号