首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Proliferative kidney disease (PKD) of salmonids caused by Tetracapsuloides bryosalmonae causes high mortalities of wild brown trout (Salmo trutta fario) and farmed rainbow trout (Oncorhynchus mykiss) at elevated water temperatures. Here the aim was to compare the temperature‐dependent modulation of T. bryosalmonae in the two salmonid host species, which display different temperature optima. We used a novel experimental set‐up in which we exposed brown trout and rainbow trout to an identical quantified low concentration of T. bryosalmonae for a short time period (1 hr). We followed the development of the parasite in the fish hosts for 70 days. PKD prevalence and parasite kinetics were assessed using qPCR. Exposures were performed at temperatures (12°C and 15°C) that reflect an environmental scenario that may occur in the natural habitat of salmonids. T. bryosalmonae infection was confirmed earliest in brown trout kept at 15°C (day 7 post‐exposure) while, in all other groups, T. bryosalmonae was not confirmed until day 15 post‐exposure. Moreover, significantly greater infection prevalence and a faster increase of parasite intensity were observed in brown trout kept at 15°C than in all other groups. These results indicate that PKD is differentially modulated by water temperature in related host species.  相似文献   

2.
The malacosporean Tetracapsuloides bryosalmonae was detected in kidneys from Atlantic salmon parr in 64 of 91 sampled Norwegian rivers. Using real‐time PCR, this parasite was found to be present in Atlantic salmon parr in rivers along the whole coast, from the northernmost and southernmost areas of the country. In addition, T. bryosalmonae was found in kidneys from brown trout parr in 17 of 19 sampled rivers in south‐east Norway, and in Arctic charr sampled in the River Risfjordelva, located at the northernmost edge of the European mainland. In conclusion, T. bryosalmonae has a widespread distribution in salmonids in Norwegian watercourses. Proliferative kidney disease (PKD) caused by T. bryosalmonae and PKD‐induced mortality has been observed in salmonids in several Norwegian rivers and it can be speculated that more PKD outbreaks will occur as a result of climate change.  相似文献   

3.
Proliferative kidney disease (PKD), caused by the myxozoan endoparasite Tetracapsuloides bryosalmonae, is of serious ecological and economical concern to wild and farmed salmonids. Wild salmonid populations have declined due to PKD, primarily in rivers, in Europe and North America. Deep lakes are also important habitats for salmonids, and this work aimed to investigate parasite presence in five deep Norwegian lakes. Kidney samples from three salmonid species from deep lakes were collected and tested using real-time PCR to detect PKD parasite presence. We present the first detection of Tbryosalmonae in European whitefish in Norway for the first time, as well as the first published documentation of the parasite in kidneys of Arctic charr, brown trout and whitefish in four lakes. The observed prevalence of the parasite was higher in populations of brown trout than of Arctic charr and whitefish. The parasite was detected in farmed, but not in wild, charr in one lake. This suggests a possible link with a depth of fish habitat and fewer Tbryosalmonae-infected and PKD-affected fish. Towards a warmer climate, cold hypolimnion in deep lakes may act as a refuge for wild salmonids, while cold deep water may be used to control PKD in farmed salmonids.  相似文献   

4.
The first evidence of proliferative kidney disease (PKD) in an Austrian river (the River Kamp) was documented in 2016, and no information on the PKD infection status of trout in other rivers was available. Since then, brown trout (Salmo trutta fario) and rainbow trout (Oncorhynchus mykiss) have been collected from rivers in Upper and Lower Austria for different diagnostic purposes. In this study, we summarize the recent findings of a first survey concerning the distribution of Tetracapsuloides bryosalmonae, the causative agent of proliferative kidney disease (PKD), from these samples. Between September 2015 and October 2017, a total of 280 brown trout and 39 rainbow trout were collected from 21 rivers in the provinces of Upper and Lower Austria. T. bryosalmonae was detected by PCR of kidney tissue in 17 of 21 sampled rivers and in 138 of 280 brown trout as well as in 11 of 39 rainbow trout. Pathological signs of PKD (e.g., hypertrophy of the kidney) were observed in 33 analysed brown trout and six rainbow trout samples. No correlations between fish infected by Tbryosalmonae and the parameters size and age class, condition factor, geological origin of the streams and distribution within the river course were found, while positively tested fish are significantly increased at sampling sites exceeding water temperatures of 15°C for median periods of 115 days. The prevalence within the affected streams or stream sections is highly variable, and in single rivers, infection rates of up to 90% are confirmed.  相似文献   

5.
Tetracapsula bryosalmonae, previously referred to as PKX, causes proliferative kidney disease (PKD) in salmonids and is an economically important myxozoan pathogen in salmonid culture. A variety of molecular and immunological tools have been developed to detect the parasite. To determine the specificity of four monoclonal antibodies (MAbs) raised against T. bryosalmonae, archive material of fish infected with various myxosporean species was obtained and immunostained. Wild fish were also collected from enzootic waters and examined for T. bryosalmonae infection using immunohistochemistry and the polymerase chain reaction (PCR). Three of the MAb probes appear to be specific for T. bryosalmonae while only two of the five sets of primers tested appeared to specifically amplify T. bryosalmonae DNA. The results of the immunostaining and the PCR demonstrate that T. bryosalmonae occurs in the tubules of grayling Thymallus thymallus L., brown trout, Salmo trutta L. and Atlantic salmon, Salmo salar L. outside of the PKD season (June‐September) in the UK. This confirms the results of previous studies that these species are the preferred fish hosts for the parasite in the UK.  相似文献   

6.
7.
Tetracapsuloides bryosalmonae (Myxozoa: Malacosporea) is the causative agent of proliferative kidney disease (PKD), which affects both wild and farmed salmonid fish. The objective of this study was to outline differences in susceptibility to PKD in different salmonid species, hybrids and breeding lineages. Susceptibility to T. bryosalmonae infection was established based on cumulative mortality, pathological findings and detection of T. bryosalmonae in the kidney using immunohistochemistry and molecular methods. Determination of pure and hybrid individuals of different species in the genus Salvelinus, and dissimilarity of rainbow trout lineages, was performed using traditional polymerase chain reaction (PCR) and microsatellite analyses. Rainbow trout displayed higher disease severity compared with brook trout and Alsatian charr. Moreover, the results indicated differences in infection susceptibility, not only among different salmonid species but also among different lineages of charr and rainbow trout. Our study indicated that some salmonid species and even different lineages of the same species are more suitable for farming under PKD pressure.  相似文献   

8.
Piscine reovirus (PRV) was common among wild and farmed salmonids in British Columbia, western Canada, from 1987 to 2013. Salmonid tissues tested for PRV by real‐time rRT‐PCR included sections from archived paraffin blocks from 1974 to 2008 (n = 363) and fresh‐frozen hearts from 2013 (n = 916). The earliest PRV‐positive sample was from a wild‐source steelhead trout, Oncorhynchus mykiss (Walbaum), from 1977. By histopathology (n = 404), no fish had lesions diagnostic for heart and skeletal muscle inflammation (HSMI). In some groups, lymphohistiocytic endocarditis affected a greater proportion of fish with PRV than fish without PRV, but the range of Ct values among affected fish was within the range of Ct values among unaffected fish. Also, fish with the lowest PRV Ct values (18.4–21.7) lacked endocarditis or any other consistent lesion. From 1987 to 1994, the proportion of PRV positives was not significantly different between farmed Atlantic salmon, Salmo salar L. (44% of 48), and wild‐source salmonids (31% of 45). In 2013, the proportion of PRV positives was not significantly different between wild coho salmon, Oncorhynchus kisutch (Walbaum), sampled from British Columbia (5.0% of 60) or the reference region, Alaska, USA (10% of 58).  相似文献   

9.
The freshwater bryozoan Fredericella sultana (Blumenbach) is the most common invertebrate host of the myxozoan parasite Tetracapsuloides bryosalmonae, the causative agent of proliferative kidney disease in salmonid fish. Culture media play an important role in hatching of statoblasts and maintaining clean bryozoan colonies for Malacosporea research. We developed a novel culture medium, Bryozoan Medium C (BMC), for the cultivation and maintenance of Fsultana under laboratory conditions. Statoblasts of F. sultana were successfully hatched to produce transparent‐walled, specific pathogen‐free (SPF) colonies that were maintained >12 months in BMC at pH 6.65. Tetracapsuloides bryosalmonae was successfully transmitted from infected brown trout, Salmo trutta L., to newly hatched F. sultana colonies in BMC, then from the infected bryozoan to SPF brown trout. This study demonstrated the utility of BMC (pH 6.65) for hatching statoblasts, long‐term cultivation of clean and transparent bryozoan colonies and maintenance of the Tetracapsuloides bryosalmonae life cycle in the laboratory for molecular genetic research and other studies such as host–parasiteinteraction.  相似文献   

10.
Many studies have documented that hatchery‐reared salmonids generally have inferior survival after being stocked compared with wild conspecifics, hatchery and wild salmonids have been observed to differ in their antipredator responses. The response of brown trout (Salmo trutta) juveniles (0+) of differing backgrounds to a live predator was compared in two experiments. First, the antipredator behaviour of predator‐naïve hatchery‐reared brown trout and wild‐exposed brown trout were assessed in behavioural trials which lasted for eight days. Second, predator‐naïve and predator‐conditioned hatchery‐reared brown trout were assessed in identical behavioural trials. Brown trout were ‘predator‐conditioned’ by being held in a stream‐water aquarium with adult Atlantic salmon (Salmo salar) and adult brown trout for two days prior to behavioural trials. Predator‐conditioned hatchery‐reared brown trout spent more time in shelters in the trial aquaria than predator‐naïve hatchery‐reared fish, but did not differ in time spent in the predator‐free area. Predator conditioning may account for the increased time spent in the shelter, but does not appear to have affected time spent in the predator‐free area. However, even if significant alteration in behaviour can be noted in the laboratory, the response might not be appropriate in the wild.  相似文献   

11.
Abstract. In an investigation of the occurrence of proliferative kidney disease (PKD) in freshwater fish other than rainbow trout, 18 species of wild fish and seven species of fish raised in cultivation wore sampled from waters where the disease occurred annually in rainbow trout, Oncorhynchus mykiss (Richardson). Results revealed that certain wild stocks of brown trout. Salmo trutta L., grayling, Thymallus thymallus L., and pike, Esox lucius L., were infected with PKD, as were cultivated Atlantic salmon, Salmo salar L., parr, brown trout and char, Salvelinus alpinus (L.). Microscopical examination revealed the presence of the PKX cell in these species and also intraluminal protozoa possibly related to the PKX cell, which were not found in the rainbow trout. Other species of freshwater fish had myxosporidan infections but, unlike PKD infection, there was little host/parasite tissue response. The PKX cell as a myxosporidan stage is discussed and the presence of the disease in wild fish is reported.  相似文献   

12.
Bacterial coldwater disease, caused by Flavobacterium psychrophilum, remains one of the most significant bacterial diseases of salmonids worldwide. A previously developed and reported live‐attenuated immersion vaccine (F. psychrophilum; B.17‐ILM) has been shown to confer significant protection to salmonids. To further characterize this vaccine, a series of experiments were carried out to determine the cross‐protective efficacy of this B.17‐ILM vaccine against 9 F. psychrophilum isolates (representing seven sequence types/three clonal complexes as determined by multilocus sequence typing) in comparison with a wild‐type virulent strain, CSF‐259‐93. To assess protection, 28‐day experimental challenges of rainbow trout (Oncorhynchus mykiss) fry were conducted following immersion vaccinations with the B.17‐ILM vaccine. F. psychrophilum strains used in challenge trials were isolated from several fish species across the globe; however, all were found to be virulent in rainbow trout. The B.17‐ILM vaccine provided significant protection against all strains, with relative percent survival values ranging from 51% to 72%. All vaccinated fish developed an adaptive immune response (as measured by F. psychrophilum‐specific antibodies) that increased out to the time of challenge (8 weeks postimmunization). Previous studies have confirmed that antibody plays an important role in protection against F. psychrophilum challenge; therefore, specific antibodies to the B.17‐ILM vaccine strain appear to contribute to the cross‐protection observed to heterologous strain. The ability of such antibodies to bind to similar antigenic regions for all strains was confirmed by western blot analyses. Results presented here support the practical application of this live‐attenuated vaccine, and suggest that it will be efficacious even in aquaculture operations affected by diverse strains of F. psychrophilum.  相似文献   

13.
In 2017, a PCR‐based survey for Piscine orthoreovirus‐3 (PRV‐3) was conducted in wild anadromous and non‐anadromous salmonids in Norway. In seatrout (anadromous Salmo trutta L.), the virus was present in 16.6% of the fish and in 15 of 21 investigated rivers. Four of 221 (1.8%) Atlantic salmon (Salmo salar L.) from three of 15 rivers were also PCR‐positive, with Ct‐values indicating low amounts of viral RNA. All anadromous Arctic char (Salvelinus alpinus L.) were PCR‐negative. Neither non‐anadromous trout (brown trout) nor landlocked salmon were PRV‐3 positive. Altogether, these findings suggest that in Norway PRV‐3 is more prevalent in the marine environment. In contrast, PRV‐3 is present in areas with intensive inland farming in continental Europe. PRV‐3 genome sequences from Norwegian seatrout grouped together with sequences from rainbow trout (Oncorhynchus mykiss Walbaum) in Norway and Coho salmon (Oncorhynchus kisutch Walbaum) in Chile. At present, the origin of the virus remains unknown. Nevertheless, the study highlights the value of safeguarding native fish by upholding natural and artificial barriers that hinder introduction and spread, on a local or national scale, of alien fish species and their pathogens. Accordingly, further investigations of freshwater reservoirs and interactions with farmed salmonids are warranted.  相似文献   

14.
A disease outbreak in farmed Atlantic cod caused by Yersinia ruckeri is reported. Mortality started following vaccination of cod reared in two tanks (A and B). The accumulated mortality reached 1.9% in A and 4.8% in B in the following 30 days when treatment with oxytetracycline was applied. Biochemical and molecular analysis of Y. ruckeri isolates from the cod and other fish species from fresh and marine waters in Iceland revealed a high salinity‐tolerant subgroup of Y. ruckeri serotype O1. Infected fish showed clinical signs comparable with those of Y. ruckeri ‐infected salmonids, with the exception of granuloma formations in infected cod tissues, which is a known response of cod to bacterial infections. Immunohistological examination showed Y. ruckeri antigens in the core of granulomas and the involvement of immune parameters that indicates a strong association between complement and lysozyme killing of bacteria. Experimental infection of cod with a cod isolate induced disease, and the calculated LD50 was 1.7 × 104 CFU per fish. The results suggest that yersiniosis can be spread between populations of freshwater and marine fish. Treatment of infected cod with antibiotic did not eliminate the infection, which can be explained by the immune response of cod producing prolonged granulomatous infection.  相似文献   

15.
A retrospective study was conducted using 250 clinical records of brown trout (Salmo trutta L.) with saprolegniosis by Saprolegnia parasitica, which had been collected from 8 rivers and 1 fish farm in the province of León (Spain). A geographic information system (GIS) was used to obtain skin lesion distribution patterns in males and females. Lesions in wild brown trout affected 15.31 ± 13.33% of the body surface, with a mean of 12.76 ± 6.56 lesions per fish. In addition, 51.23% of wild trout presented lesions with necrosis of the skin or fins. The pattern obtained when not distinguishing between sexes indicated that saprolegniosis lesions are mainly located above the lateral line and most frequently affect the dorsal cephalic region, the adipose fin, the peduncle and the caudal fin. However, differences were observed between males and females. Farmed trout presented a lower percentage of affected body surface (2.06 ± 4.36) and a lower number of lesions with and without necrosis because they received preventive treatment for saprolegniosis.  相似文献   

16.
Flavobacterium psychrophilum, the causative agent of bacterial cold‐water disease (BCWD) in freshwater‐reared salmonids, is also a common commensal organism of healthy fish. The virulence potential of F. psychrophilum isolates obtained from BCWD cases in Ontario between 1994 and 2009 was evaluated. In preliminary infection trials of rainbow trout juveniles, significant differences (0% to 63% mortality) in the virulence of the 22 isolates tested were noted following intraperitoneal injection with 10cfu/fish. A highly virulent strain, FPG 101, was selected for further study. When fish were injected intraperitoneally with a 106, 107 or 10cfu/fish of F. psychrophilum FPG 101, the 108 cfu/fish dose produced significantly greater mortality (p < 0.05). The bacterial load in spleen samples collected from fish every 3 days after infection was determined using rpoC quantitative polymerase chain reaction amplification and by plate counting. Bacterial culture and rpoC qPCR were highly correlated (R2 = 0.92); however, culture was more sensitive than the qPCR assay for the detection of F. psychrophilum in spleen tissue. Ninety‐seven per cent of the asymptomatic and the morbid fish had splenic bacterial loads of <2.8 log10 gene/copies and >3.0 log10 gene copies/reaction, respectively, following infection with 108 cfu/fish.  相似文献   

17.
The results from a survey for proliferative kidney disease (PKD) and renal myxosporidiosis in wild salmonids from rivers in England and Wales are presented. One hundred and eighty-five salmon, Salmo salar , 235 brown trout, Salmo trutta , 16 charr, Salvelinus alpinus, and five grayling, Thymallus thymallus, were obtained from 23 locations on 16 rivers between July and October 1997. They were examined for the presence of clinical PKD and for histological evidence of infections with Tetracapsula bryosalmonae and other renal myxozoans. Prevalence of infection with T. bryosalmonae detected histologically in brown trout varied from 11 to 43% in enzootic rivers and was only found in salmon in two rivers at low prevalence. Nephromegaly was positively associated with PKD in brown trout but in salmon mild nephromegaly was only associated with infection with an unidentified Chloromyxum sp.  相似文献   

18.
This is the first study to isolate, identify and characterize Streptococcus iniae as the causative disease agent in two tilapia (Oreochromis aureus) populations. The populations were geographically isolated, of distinct origins, and did not share water sources. Affected fish showed various external (e.g., exophthalmia and cachexia, among others) and internal (e.g., granulomatous septicaemia and interstitial nephritis, among others) signs. All internal organ samples produced pure cultures, two of which (one from each farm, termed S‐1 and S‐2) were subjected to biochemical, PCR and 16S rRNA sequencing (99.5% similarity) analyses, confirming S. iniae identification. The two isolates presented genetic homogeneity regardless of technique (i.e., RAPD, REP‐PCR and ERIC‐PCR analyses). Pathogenic potentials were assessed through intraperitoneal injection challenges in rainbow trout (Oncorhynchus mykiss) and zebrafish (Danio rerio). Rainbow trout mortalities were respectively 40% and 70% at 104 and 106 CFU per fish with the S‐1 isolate, while 100% mortality rates were recorded in zebrafish at 102 and 104 CFU per fish with the S‐2 isolate. The obtained data clearly indicate a relationship between intensified aquaculture activities in Mexico and new disease appearances. Future studies should establish clinical significances for the tilapia industry.  相似文献   

19.
The bacterium Edwardsiella ictaluri is considered to be one of the most significant pathogens of farmed catfish in the United States of America and has also caused mortalities in farmed and wild fishes in many other parts of the world. E. ictaluri is not believed to be present in wild fish populations in Australia, although it has previously been detected in imported ornamental fishes held in quarantine facilities. In an attempt to confirm freedom from the bacterium in Australian native fishes, we undertook a risk‐based survey of wild catfishes from 15 sites across northern Australia. E. ictaluri was detected by selective culturing, followed by DNA testing, in Wet Tropics tandan (Tandanus tropicanus) from the Tully River, at a prevalence of 0.40 (95% CI 0.21–0.61). The bacterium was not found in fishes sampled from any of the other 14 sites. This is the first report of E. ictaluri in wild fishes in Australia.  相似文献   

20.
Flavobacterium psychrophilum is responsible for significant economic losses in rainbow trout aquaculture. Antimicrobial treatment remains the primary means of control; however, there are limited choices available for use. The objectives of the study were therefore to determine the minimum inhibitory concentrations for erythromycin and florfenicol in selected F. psychrophilum isolates and to evaluate their clinical treatment efficacy in experimentally infected rainbow trout. All isolates tested had moderate susceptibility to florfenicol and erythromycin except one isolate, which had low susceptibility to erythromycin. Two isolates (one with moderate and one with low susceptibility to erythromycin) were used in an experimental infection trial. Rainbow trout juveniles were injected intraperitoneally with 108 cfu/fish and after mortality had begun, fish were given erythromycin‐ and florfenicol‐medicated feed at a rate of 75 mg kg?1 day?1 and 10 mg kg?1 day?1 fish body weight, respectively, for 10 consecutive days. The splenic F. psychrophilum load was determined using an rpoC quantitative PCR throughout the 30‐day trial. Relative to antibiotic‐free controls, erythromycin treatment significantly (p < 0.05) reduced mortality of rainbow trout juveniles infected with FPG101, even when treatment was initiated after clinical signs developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号