首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于Meta分析的大豆百粒重的QTLs定位   总被引:7,自引:2,他引:7  
 【目的】百粒重是控制大豆产量性状的主要数量性状,对大豆产量性状进行基因定位具有重要的研究和应用价值。现有百粒重QTL定位结果分散,需选择合适的公共图谱,整合前人的研究结果,使其真正应用到实践中。【方法】以2004年发布大豆公共遗传连锁图谱soymap2为参考图谱,将近20年不同试验中的大豆百粒重的QTLs进行映射整合,构建百粒重QTL综合图谱。利用BioMercator2.1的映射功能将国内外常用的大豆图谱上的百粒重QTLs通过公共标记映射整合到大豆公共遗传连锁图谱soymap2上,并利用Meta分析,通过对比已经报道的QTLs的95%的置信区间来推断QTL位置,从而提取真正有效的QTL标记。【结果】在已经发表的文献中共找到65个百粒重QTLs定位信息,其中有53个QTLs定位区间与公共图谱有共有标记,包括36个增效效应的QTLs和17个减效效应的百粒重QTLs,共得到12个QTL簇,通过Meta分析,发掘出6个增效效应和6个减效效应的百粒重“通用QTLs”及其连锁标记。【结论】本研究得到的“通用QTLs”其置信区间最小可达到1.52 cM,为辅助选择分子标记、QTL精细定位以及数量性状基因的克隆奠定基础。  相似文献   

2.
【目的】通过Meta分析,利用数学模型整合与优化猪后腿腿臀质量、腿臀肉质量和腿臀比性状的QTL,提高QTL定位的准确度和有效性,为猪后腿性状QTL的精细定位和分子辅助育种奠定基础。【方法】收集猪后腿腿臀质量,腿臀肉质量和腿臀比性状的QTL及其相关信息,利用BioMercator2.1,将原始QTL映射到美国肉畜研究中心(USDA-MARC 2.0)公布的猪遗传连锁图谱,构建新的整合图谱,分析得到QTL簇。进一步对各QTL簇进行Meta分析,定位“真实”QTL(MQTL),缩短95%置信区间,减少定位误差。【结果】收集了93个猪后腿性状的QTL及其相关信息,经比对、映射,构建了新的整合图谱,发现19个QTL簇。通过Meta分析,得到19个MQTL,其图距比原平均图距缩短16.19%~78.96%,其中,MQTL1、MQTL5、MQTL6、MQTL8、MQTL9、MQTL10、MQTL11、MQTL12和MQTL17等9个MQTL图距的缩短比例均超过50%。【结论】Meta分析得到的MQTL图距均有不同程度缩短,最小的仅1.75 cM,缩短比例最大可达78.96%,提高了QTL定位的准确度和有效性。  相似文献   

3.
【目的】通过Meta分析,用数学模型分析与优化定位分散的猪肌内脂肪QTL,提高QTL定位的准确度和有效性,为猪肌内脂肪相关基因的精细定位和基因挖掘奠定基础。【方法】收集猪肌内脂肪QTL及其相关信息,以美国肉畜研究中心(USDA-MARC 2.0)公布的猪遗传连锁图谱为参考图谱,利用BioMercator2.1将各QTL映射到参考图谱上,构建新的整合图谱,得到QTL簇。对得到的QTL簇进行Meta分析,缩短置信区间,定位“真实”QTL(MQTL),减少QTL的定位误差。【结果】收集了67个猪肌内脂肪QTL及相关信息,经比对、映射,构建新的整合图谱,发现了12个QTL簇。通过Meta分析,得到12个MQTL(MQTL1~MQTL12),其图距比原平均图距缩小29.16%~87.40%,其中,MQTL3、MQTL5、MQTL6、MQTL7、MQTL9、MQTL12图距较原平均图距缩小比例均超过50%,其图距分别为7.76,6.72,5.20,19.45,15.61,9.37 cM。【结论】得到了12个猪IMF的MQTL,其图距比原平均图距均有不同程度缩小,最小仅5.20 cM,图距缩小比例最大可达87.40%,提高了QTL定位的准确度和有效性。  相似文献   

4.
【目的】单性结实性是影响设施黄瓜产量和品质的重要性状。深入解析黄瓜单性结实性状遗传规律并对其进行QTL定位,有助于提高设施专用黄瓜品种育种效率。【方法】以强单性结实自交系‘6457’和弱单性结实自交系‘6426’构建的重组自交系F2:8为材料,基于3年表型数据,采用黄瓜基因组测序SSR分子标记构建黄瓜遗传连锁图谱,结合QTL-Seq分析,对黄瓜单性结实性进行QTL定位。【结果】黄瓜单性结实性状符合数量遗传特征。利用SSR标记构建了1张包含11个连锁群的遗传图谱,覆盖基因组555.0 cM,平均图距为6.8 cM。2016—2018年春季在3号染色体上均检测到1个与黄瓜单性结实性相关的QTL位点,位于标记SSR19430和SSR15419之间(3.33—5.57 Mb),遗传距离6.6 cM,贡献率分别为11%、12.5%和6.3%。进一步进行QTL-Seq分析,发现4个与黄瓜单性结实性相关的QTL,分别位于1号(4.38—11.00 Mb)、3号(2.24—10.66 Mb)、6号(15.67—17.93 Mb,26.33—27.49 Mb)染色体上。其中在3号染色体上检测到的QTL与Map QTL所得的QTL区间重叠。推测Csa3G047740、Csa3G073810、Csa3G043910和Csa6G362930为与黄瓜单性结实性状相关的候选基因。【结论】分别在1、3、6号染色体上检测到4个与黄瓜单性结实性相关的QTL位点,其中3号染色体上的QTL年度间稳定,贡献率较高。  相似文献   

5.
黄瓜单性结实性状遗传与QTL定位   总被引:2,自引:1,他引:1  
【目的】单性结实性是影响设施黄瓜产量和品质的重要性状。深入解析黄瓜单性结实性状遗传规律并对其进行QTL定位,有助于提高设施专用黄瓜品种育种效率。【方法】以强单性结实自交系‘6457’和弱单性结实自交系‘6426’构建的重组自交系F2:8为材料,基于3年表型数据,采用黄瓜基因组测序SSR分子标记构建黄瓜遗传连锁图谱,结合QTL-Seq分析,对黄瓜单性结实性进行QTL定位。【结果】黄瓜单性结实性状符合数量遗传特征。利用SSR标记构建了1张包含11个连锁群的遗传图谱,覆盖基因组555.0 cM,平均图距为6.8 cM。2016—2018年春季在3号染色体上均检测到1个与黄瓜单性结实性相关的QTL位点,位于标记SSR19430和SSR15419之间(3.33—5.57 Mb),遗传距离6.6 cM,贡献率分别为11%、12.5%和6.3%。进一步进行QTL-Seq分析,发现4个与黄瓜单性结实性相关的QTL,分别位于1号(4.38—11.00 Mb)、3号(2.24—10.66 Mb)、6号(15.67—17.93 Mb,26.33—27.49 Mb)染色体上。其中在3号染色体上检测到的QTL与Map QTL所得的QTL区间重叠。推测Csa3G047740Csa3G073810、Csa3G043910Csa6G362930为与黄瓜单性结实性状相关的候选基因。【结论】分别在1、3、6号染色体上检测到4个与黄瓜单性结实性相关的QTL位点,其中3号染色体上的QTL年度间稳定,贡献率较高。  相似文献   

6.
采用强优势玉米杂交种苏玉16(JB×Y53)的两个亲本自交系,配置F2和相应F2∶3作图群体。利用154个SSR标记构建了分子标记连锁图谱,覆盖全基因组1 735.0 cM,标记间平均图距为11.3 cM。同时考察F2和F2∶3群体的株高、穗位高、抽穗期和散粉期等共10个重要农艺性状,采用联合F2和F2∶3群体的作图方法定位有关QTL。此外,采用QTL Cartographer V2.5软件分别对F2和F2∶3群体进行了有关QTL的重演性验证。结果表明,采用联合作图方法在调查的10个性状上共定位到93个QTL,采用QTL Cartographer V2.5软件共定位到96个QTL,其中56个能用两种方法重演验证。  相似文献   

7.
多环境条件下大豆倒伏性相关形态性状的QTL分析(英文)   总被引:1,自引:0,他引:1  
[目的]定位大豆倒伏性相关形态性状的QTL为培育抗倒伏性高的品种提供依据。[方法]以美国大豆品种Charleston为母本,东北农业大学大豆品系东农594为父本及其F2:16-F2:18的重组自交系的147个株系为试验材料,164个SSR引物经亲本筛选后用于群体扩增,并构建遗传图谱。在三年两个地点对大豆的主茎节数、茎粗和茎秆重性状进行调查及QTL分析。[结果]共检测到16个主茎节数QTL,分别位于A1、B1、C2、D1a、D2、F、G、H和N连锁群上;检测到10个茎粗QTL,分别位于A1、B1、C2、D1a、E和G连锁群上;检测到15个茎秆重QTL,分别位于A1、A2、C2、D1a、D1b和G连锁群上。在得到的这些QTL中,2种算法都能检测到5个主茎节数QTL,解释表型变异范围为8.6%—27.0%;1个茎粗QTL,解释表型变异范围为9.0%-11.0%;6个茎秆重QTL,解释表型变异范围为6.0%-39.0%。在2年以上能被检测到3个主茎节数QTL,解释表型变异范围为8.0%-60.2%;2个茎秆重QTL,解释表型变异范围为10.0%-23.0%;2年以上未重复检测到茎粗QTL。[结论]通过比较定位的主茎节数、茎粗和茎秆重QTL,发现这些性状之间存在较大的遗传相关性。  相似文献   

8.
多环境条件下大豆倒伏性相关形态性状的QTL分析   总被引:1,自引:0,他引:1  
【目的】定位大豆倒伏性相关形态性状的QTL为培育抗倒伏性高的品种提供依据。【方法】以美国大豆品种Charleston为母本,东北农业大学大豆品系东农594为父本及其F2:16-F2:18的重组自交系的147个株系为试验材料,164个SSR引物经亲本筛选后用于群体扩增,并构建遗传图谱。在三年两个地点对大豆的主茎节数、茎粗和茎秆重性状进行调查及QTL分析。【结果】共检测到16个主茎节数QTL,分别位于A1、B1、C2、D1a、D2、F、G、H和N连锁群上;检测到10个茎粗QTL,分别位于A1、B1、C2、D1a、E和G连锁群上;检测到15个茎秆重QTL,分别位于A1、A2、C2、D1a、D1b和G连锁群上。在得到的这些QTL中,2种算法都能检测到5个主茎节数QTL,解释表型变异范围为8.6%-27.0%;1个茎粗QTL,解释表型变异范围为9.0%-11.0%;6个茎秆重QTL,解释表型变异范围为6.0%-39.0%。在2年以上能被检测到3个主茎节数QTL,解释表型变异范围为8.0%-60.2%;2个茎秆重QTL,解释表型变异范围为10.0%-23.0%;2年以上未重复检测到茎粗QTL。【结论】通过比较定位的主茎节数、茎粗和茎秆重QTL,发现这些性状之间存在较大的遗传相关性。  相似文献   

9.
氮元素是植物生长所需的重要营养元素之一,生物固氮是大豆生长所需氮元素的重要来源。结瘤数目与重量等是研究共生结瘤的主要性状,对共生结瘤相关性状进行基因定位具有重要的意义。鉴于根瘤相关性状的QTL定位结果比较分散,需要选择合适的公共图谱并整合前人结果,将其真正应用于实践中。故对大豆结瘤相关性状的47个QTL进行Meta分析,得到2个"通用QTL",并将得到的"通用QTL"进行大豆基因组注释,在置信区间内找到8个可能与调节大豆结瘤相关的基因。通过转录表达分析发现,有6个大豆基因受根瘤菌诱导表达,其中有4个基因表达变化幅度较大,并且在绥农14与野生豆ZYD00006中表达均有差异;另2个基因未检测到信号。进一步的蛋白结构域分析发现,这些基因分别含有糖基水解酶、酪氨酸蛋白激酶、亮氨酸重复序列型类受体蛋白激酶和钙钠交换蛋白等结构域,结合已有研究结果表明这些差异表达基因编码蛋白的结构域均与植物抗病、植物免疫反应有关,这为研究大豆与根瘤菌间的共生关系提供理论基础。  相似文献   

10.
【目的】通过构建整合图谱和Meta分析,利用数学模型整合与优化猪肉色相关QTL,分析已知候选基因与“真实”QTL(MQTL)的关联性,为肉色性状的分子标记辅助选择奠定基础。【方法】收集猪肉色相关QTL,包括明度系数(L值,MCOLORL)、红度值(a值,MCOLORa)和黄色度(b值,MCOLORb)等指标,利用BioMercator2.1软件,将原始QTL映射到美国肉畜研究中心(USDA-MARC 2.0)公布的猪遗传连锁图谱中,构建整合图谱,分析得到QTL簇;对各QTL簇进行Meta分析,定位MQTL;进一步将已知候选基因映射到整合图谱,比较候选基因与各MQTL在染色体上的位置关系,分析其关联性。【结果】将176个猪肉色相关QTL进行比对、映射后,构建成新的整合图谱。通过Meta分析,将原本分散的QTL定量合并为37个MQTL,其中MQTL2、MQTL3、MQTL8~MQTL11、MQTL13~MQTL16、MQTL18~MQTL20、MQTL24、MQTL25、MQTL29、MQTL31、MQTL32、MQTL35~MQTL37共 21个MQTL的缩短比例均超过50%,MQTL9、MQTL19、MQTL11、MQTL28、MQTL35、MQTL8、MQTL2、MQTL3等8个MQTL的置信区间在5 cM内。【结论】获得了37个猪肉色性状,图距1.16~22.68 cM,较原QTL图距均有不同程度地缩短,缩短比例为25.19%~90.33%,提高了QTL定位的准确度和有效性。  相似文献   

11.
干旱条件下玉米耐旱相关性状的QTL一致性图谱构建   总被引:40,自引:2,他引:40  
 发掘玉米耐旱基因及其连锁分子标记是构建耐旱分子育种技术的重要基础。通过生物信息学手段整理玉米基因组数据库中已有耐旱相关性状的QTL信息,借助高密度玉米分子标记连锁图谱IBM和临近分子标记,建立耐旱相关性状的QTL一致性图谱,进而发掘通用QTL。研究显示,在干旱条件下于10个定位群体中共发现与9个玉米农艺及生理性状有关的181个QTL,建立了全长3582.1cM的耐旱相关性状的QTL一致性图谱,发掘出15个"通用耐旱QTL"及其连锁标记。研究结果为确定玉米耐旱基因位点和建立分子标记辅助育种技术创造了条件。  相似文献   

12.
为提高水稻根系性状QTL分子标记辅助选择利用效率,利用饱和分子标记连锁图谱,对已发表的水旱稻根系性 QTL进行了整合,并对这些QTL的贡献率、分布特点和真实性进行了分析.结果如下:通过对QTL贡献率分析得到11个主效QTL;根据QTL在染色体上的位置,确定1,2,3,5,11号染色体上共11个分子标记区域为"一因多效"可能性较大区域;通过对这些QTL的真实性分析共得到35个"真实"QTL和3个"热点"QTL.这些主效QTL、成簇分布QTL及"热点"QTL可作为水稻根系性状分子育种的重要候选区域.  相似文献   

13.
生育期是决定绿豆熟性的重要农艺性状,对其产量形成有重要的影响。以VC2917×鹦哥绿绿豆RIL群体为材料,筛选SSR引物,并利用QTL IciMaping V4.0软件对现有绿豆遗传连锁图谱进行补充;利用复合区间作图法,通过1点3年大田试验对生育期相关性状进行QTL定位。结果表明,2个亲本间共筛选出了20对新的多态性引物,分布在除LG4、LG9外的其余9个连锁群上,连锁群总长由原来的1 010.18 cM增加至1417.29 cM,平均图距由原来的3.37 cM增加至4.26 cM。在新的遗传连锁图上共检测到15个生育期性状QTL位点,分布在LG1、LG2、LG6、LG9、LG11,其中LG6上分布最多,检测到5个QTL位点,LG9上分布最少,检测到1个QTL位点,LG1、LG6、LG11各检测到4、2、3个QTL位点。分枝期、始花期、始花期-分枝期、开花期-分枝期QTL位点各1个,贡献率在5.95%~11.61%之间;三叶期、开花期QTL位点各2个,贡献率在10.29%~51.30%;出苗期QTL位点3个,贡献率在6.97%~63.85%之间;成熟期QTL位点4个,贡献率在6.19%...  相似文献   

14.
【目的】在云南生境下挖掘甘蓝型油菜含油量QTL位点,为高含油量性状遗传机制研究和分子标记辅助高含油量育种提供理论基础。【方法】以高含油量材料G28为母本,低含油量材料H008为父本,通过小孢子培养技术创建包含175份株系的F_1 DH群体,利用60K SNP芯片构建高密度遗传连锁图谱,结合2016-2017年丽江与临沧点DH群体含油量数据采用完备区间作图法,以LOD=2.5为阈值扫描含油量性状QTL。【结果】DH群体含油量性状呈现正态分布,表现出单向超亲分离。2个环境下共检测到6个含油量QTL,分别可解释6.29%~10.36%的表型变异。通过Blast分析将这6个QTL分别映射到参考基因组-Darmor-bzh ChrA01,ChrA10,ChrC05与ChrC08染色体物理图谱上。与前人研究比较分析推测位于C05染色体上的qOCc05.1与qOCc05.2为新的含油量性状相关的QTL。【结论】在云南生境下检测到6个含油量性状QTL并明确了其在染色体的物理区间,定位结果可用于下一步主效QTL的精细定位和分子标记辅助高含油量油菜育种。  相似文献   

15.
【目的】通过构建整合图谱及Meta分析,利用数学模型整合优化猪肉系水力相关数量性状位点(QTL),并比较已知候选基因与“真实”QTL(MQTL)的位置,分析其相关性,为猪肉系数力的分子标记辅助选择奠定基础。【方法】收集2000年至今发表的猪肉系水力相关QTL信息,以美国肉畜研究中心(USDAMARC 2.0)公布的猪遗传连锁图谱为参考图谱,利用BioMercater 2.1软件将已报道的猪肉系水力相关QTL映射到参考图谱,构建新的整合图谱,分析其中存在的QTL簇;对各QTL簇进行Meta分析,将原始QTL整合为“真实”QTL(MQTL);将已知的候选基因促红细胞生成素受体基因(EPOR)、锚定蛋白1基因(ANK1)、碳酸酐酶Ⅲ基因(CAⅢ)和氟烷基因(HAL)映射到整合图谱,比较其与MQTL的位置关系,并分析二者的关联性。【结果】共收集到80个猪肉系水力相关QTL,将其进行比对、映射后,成功构建了新的整合图谱,并通过Meta分析定位了12个MQTL,这些MQTL的图距与原始QTL的平均图距相比均有不同程度的缩短。EPOR基因、ANK1基因分别定位在MQTL3、MQTL12的置信区间内,其中ANK1基因映射到整合图谱后与MQTL12的中心位置一致。【结论】整合定位的12个MQTL的图距为3.66~28.98 cM,较原始QTL缩短35.82%~78.81%,提高了QTL定位的准确度和有效性。  相似文献   

16.
利用株型差异显著的特大粒粳稻品系TD70和籼稻小粒品种Kasalath为亲本配制组合,以单粒传方法构建含240个株系的重组自交系(RIL)群体。选用838对SSR引物进行亲本多态性筛选,共检测到302对具有多态性的引物,频率为36.04%。从中选择带型清晰且在基因组中均匀分布的141个SSR标记对RIL群体进行基因型分析,结果表明:群体中父母本基因频率分别为53%和47%,群体结构平衡性好。构建的水稻分子连锁图谱共包含141个标记座位,总图距约1 832.47 cM,标记间平均图距为12.7 cM,标记间图距范围为0.43~36.11 cM,符合QTL作图的基本要求。除第1、第8染色体个别标记位置外,其他染色体上标记顺序和位置与已公布的日本晴遗传图谱序列基本一致。以该群体为材料,对分蘖角度进行了QTL检测,共检测到控制分蘖角度的3个QTL位点,分别是qTA8、qTA9和qTA11,贡献率分别为4.10%、26.08%和4.35%,其中qTA9包含控制水稻分蘖角度基因TAC1。该图谱的构建为研究籼粳交后代各种性状的遗传规律及QTL定位打下了基础。  相似文献   

17.
利用株型差异显著的特大粒粳稻品系TD70和籼稻小粒品种Kasalath为亲本配制组合,以单粒传方法构建含240个株系的重组自交系(RIL)群体选用838对SSR引物进行亲本多态性筛选,共检测到302对具有多态性的引物,频率为36.04%从中选择带型清晰且在基因组中均匀分布的141个SSR标记对RIL群体进行基因型分析,结果表明:群体中父母本基因频率分别为53%和47%,群体结构平衡性好构建的水稻分子连锁图谱共包含141个标记座位,总图距约1832.47cM,标记间平均图距为12.7cM,标记间图距范围为0.43~36.11cM,符合QTL作图的基本要求除第1、第8染色体个别标记位置外,其他染色体上标记顺序和位置与已公布的日本晴遗传图谱序列基本一致以该群体为材料,对分蘖角度进行了QTL检测,共检测到控制分蘖角度的3个QTL位点,分别是qTA8、qTA9和qTA11,贡献率分别为4.10%、26.08%和4.35%,其中qTA9包含控制水稻分蘖角度基因TAC1。该图谱的构建为研究籼粳交后代各种性状的遗传规律及QTL定位打下了基础。  相似文献   

18.
【目的】以西双版纳黄瓜与北京截头黄瓜为亲本构建的F9重组自交系群体为作图材料进行遗传图谱的构建,并对叶绿素含量、果实大小、侧枝多少及其第一分枝节位等重要农艺性状进行QTL定位分析,为黄瓜品种的选育及高产、稳产育种提供有益参考和帮助。【方法】以北京截头黄瓜与西双版纳黄瓜为亲本杂交得到F1,之后按单粒传方式得到含有124个F9重组自交系(RILs)群体。以该F9重组自交系(RILs)群体为作图群体,以995对SSR标记为筛选引物,采用joinmap4.0软件进行遗传图谱的构建。并利用构建的遗传图谱,采用WinQTLcart2.5软件复合区间作图法,结合统计的叶片叶绿素含量,商品瓜的瓜长、瓜粗,种瓜的瓜长、瓜粗、瓜把,以及侧枝数、第一分枝节位等相关的共12个黄瓜重要农艺性状的QTL位点进行检测。【结果】构建了含有7个连锁群,137个SSR标记的遗传图谱,图谱总长591.2 cM,平均图距为4.3 cM;共检测到与12个黄瓜农艺性状相关的QTL位点29个,分布在第1、2、3、4、6、7染色体上。其中,叶绿素性状相关的QTL有6个,商品瓜性状相关的QTL有7个,种瓜性状相关的QTL有9个,侧枝性状相关的QTL有7个,单个QTL位点的可解释的表型变异范围为5.30%-19.24%。Ldr4.2的贡献率最小,为5.30%,Lbn1.2的贡献率最大,为19.24%。【结论】构建了西双版纳黄瓜RIL群体遗传图谱,并对叶片叶绿素含量、果实及侧枝等相关的12个农艺性状进行了QTL定位分析,共获得29个相关QTL。  相似文献   

19.
兰科植物俗称兰花,是最重要的观赏花卉,构建遗传图谱,特别是高密度遗传图谱有助于提高育种水平,本研究主要对兰科植物遗传图谱与重要性状的QTL定位进行了综述。结果表明:1)2007年报道出兰科石斛属第一张遗传图谱以来,累计发表了13张兰科植物遗传连锁图谱。2)从图谱类型来看,5张为品种间图谱,8张为种间图谱;从图谱用途来分,7张可以用于QTL定位,3张可用于精细定位或基因克隆,另3张为基础参考图谱。3)从已构建的兰科植物遗传图谱看,总图距越来越高且平均图距越来越小,为图谱的实际应用奠定了基础,但作图群体较小始终是个问题。4)虽然在蝴蝶兰叶片、花色,石斛兰萼片大小及石斛茎及多糖含量等相关性状上进行了QTL定位,但在花朵大小、花朵数、花香、花型、花斑和植株抗性等方面均未涉及。因此,构建遗传图谱,特别是高密度遗传图谱能够为兰花的生物学研究及分子标记辅助育种提供参考依据。  相似文献   

20.
大豆产量相关性状的多年多点QTL分析   总被引:4,自引:0,他引:4  
目前大豆和其他高产作物相比,相对产量偏低,提高大豆产量潜力是大豆育种的重要任务。产量是一个综合性状,受多个形态、生理以及农艺性状的影响。定位大豆产量性状QTL,具有重要的研究和应用价值。以美国大豆品种Charleston为母本,东北农业大学大豆品系东农594为父本及其F2:14代重组自交系的154个株系为试验材料,164个SSR引物经亲本筛选后用于群体扩增,并构建遗传图谱。在两年同一地点下对亲本间表现多态的12个与产量相关的农艺性状进行了调查及QTL分析。产量相关性状包括荚数、荚长、荚宽、百粒重等。QTL检测结果表明,在两年的种植环境下,12个产量相关性状共检测到QTL 33个。每个性状的QTLs在两种环境下共检出个数1~9个不等,其中6个QTLs在2个环境下被检测到,它们受环境的影响较小,为较稳定的QTLs。其他产量QTLs只在单一环境下被检测到,说明产量相关QTLs与环境之间存在明显的互作。与国内外对应农艺性状QTLs检测结果相比,多个性状的QTLs位点均一致,说明QTLs检测准确率较高。利用分子标记遗传图谱,定位控制产量相关性状的QTL,为利用分子标记改良大豆产量潜力提供了有力手段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号