首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Z. Luthar    S. Rogl    B. Kump    B. Javornik 《Plant Breeding》2008,127(3):322-324
The inheritance of buckwheat (Fagopyrum esculentum Moench) seed storage proteins was investigated by control crosses between accessions containing different SDS‐PAGE protein patterns in the range of 38–48 kDa. Analysis of segregation of individual F1 and F2 seeds obtained by 17 crosses showed segregation of eight electrophoretic bands, from which 12‐banding variants were inferred. Two variants contained one band, nine contained two bands and one variant contained three bands and behaved as a single co‐dominant unit. The segregation of banding variants fits the expected ratios and thus supports the hypothesis of single Mendelian gene inheritance and that alleles are co‐dominant. The results therefore suggest that the genes controlling globulin subunits are tightly linked and inherited as a single locus. The locus was designated Glob‐1 and the twelve segregated protein variants as alleles a‐l. This is the first buckwheat globulin locus identified with multiple alleles, phenotypically expressed as groups of protein bands and thus applicable as a functional marker in buckwheat genomic studies.  相似文献   

2.
The wheat progenitors and other wild relatives continue to be important sources of genes for agronomically desirable traits, which can be transferred into durum wheat (Triticum turgidum; 2n = 4x = 28; AABB genomes) cultivars via hybridization. Chromosome pairing in durum × alien species hybrids provides an understanding of genomic relationships, which is useful in planning alien gene introgression strategies. Two durum cultivars, ‘Lloyd’ and ‘Langdon’, were crossed with diploid wheatgrass, Thinopyrum bessarabicum (2n = 2x = 14; JJ), to synthesize F1 hybrids (2n = 3x = 21; ABJ) with Ph1. ‘Langdon’ disomic substitution 5D(5B) was used as a female parent to produce F1 hybrids without Ph1, which resulted in elevation of pairing between durum and grass chromosomes – an important feature from the breeding standpoint. The F1 hybrids were backcrossed to respective parental cultivars and BC1 progenies were raised. ‘Langdon’ 5D(5B) substitution × Th. bessarabicum F1 hybrids were crossed with normal ‘Langdon’ to obtain BC1 progeny. Chromosome pairing relationships were studied in F1 hybrids and BC1 progenies using both conventional staining and fluorescent genomic in situ hybridization (fl‐GISH) techniques. Multicolour fl‐GISH was standardized for characterizing the nature and specificity of chromosome pairing: A–B, A–J and B–J pairing. The A–J and B–J pairing will facilitate gene introgression in durum wheat. Multicolour fl‐GISH will help in characterizing alien chromosome segments captured in the durum complement and in their location in the A and/or B genome, thereby accelerating chromosome engineering research.  相似文献   

3.
M. A. Hossain    M. A. K. Mian    M. G. Rasul 《Plant Breeding》2002,121(4):354-356
In a series of three experiments during 1998‐99 and 1999‐2000 at Gazipur, Bangladesh, the causes of segregation of Ogura cytoplasmic genetic male sterility in local cultivars of radish were studied. Male‐sterile populations at the BC5 and BC6 generations were grown under a range of field temperatures for 2 years and the results on pollen fertility tests revealed that the expression of male sterility was not affected by temperature. Neither was a genotype‐year interaction found. The unexpected segregation observed in the male‐sterile backcross generations might be due to the presence of restorer alleles in the maintainer parents.  相似文献   

4.
Creeping bentgrass (Agrostis stolonifera L. or A. palustris Huds.) is a highly outcrossing allotetraploid species. It can form hybrids with a number of other Agrostis species and Polypogon genus. However, cytology and pollen grain fertility of the creeping bentgrass interspecific and intergeneric hybrids are not well known. In this research, chromosome pairing behaviors during meiosis I in F1 and pollen viability of F1 hybrids, as well as seed set rate and seed germination rate of backcrosses were studied in hybrids between creeping bentgrass, and other bentgrass species and three species of Polypogon genus. Abnormal chromosome pairing, laggard chromosomes, and premature segregation in F1 hybrids were found. Pollen viability ranged from 1.6 to 48.5% amongst F1 hybrids, significantly lower than that of the parents (85.5–94.1%). Some hybrids produced pollens of different sizes within the same anther. Seed set following backcrosses using F1 hybrids as the male parent and creeping bentgrass as the recurrent parent was significantly lower than their parents. The study of chromosome paring behaviors and progeny fecundity are important in utilizing the alien genes to improve bio-stress and abio-stress resistance, and in assessing the potential transgene risks of creeping bentgrass.  相似文献   

5.
M. H. Rahman   《Plant Breeding》2001,120(3):197-200
The inheritance of petal (flower) colour and seed colour in Brassica rapa was investigated using two creamy‐white flowered, yellow‐seeded yellow sarson (an ecotype from Indian subcontinent) lines, two yellow‐flowered, partially yellow‐seeded Canadian cultivars and one yellow‐flowered, brown‐seeded rapid cycling accession, and their F1, F2, F3 and backcross populations. A joint segregation of these two characters was examined in the F2 population. Petal colour was found to be under monogenic control, where the yellow petal colour gene is dominant over the creamy‐white petal colour gene. The seed colour was found to be under digenic control and the yellow seed colour (due to a transparent coat) genes of yellow sarson are recessive to the brown/partially yellow seed colour genes of the Canadian B. rapa cvs.‘Candle’ and ‘Tobin’. The genes governing the petal colour and seed colour are inherited independently. A distorted segregation for petal colour was found in the backcross populations of yellow sarson × F1 crosses, but not in the reciprocal backcrosses, i.e. F1× yellow sarson. The possible reason is discussed in the light of genetic diversity of the parental genotypes.  相似文献   

6.
The common ‘three‐pistil’ (TP) wheat mutation line expresses TPs in a floret normally containing TPs forming three grains set close back‐to‐back. The developmental origin of the TP trait in common wheat had been diagnosed non‐destructively using the blue aleurone trait. The aleurone colour of F2 seeds grown in F1 plants of cross TP/UC66049 was evaluated. Due to xenia, the hue of blue grain colour depended on dose of the Ba1 gene for blue aleurone in the triploid endosperm. The TP trait produced four types of segregation in three‐seed clusters: (i) white grain only, (ii) two white grains and one blue, (iii) one white grain and two blue, and (iv) three blue grains only. The observed frequency of blue–white seed within clusters followed the binominal distribution 3Cr (0.75)r·(0.25)3–r, where r is the number of colour variants in three‐seed clusters (r = 0–3). Intrafloret segregation of seed colour and F2 segregation derived from aleurone colour of F3 seeds indicated an independent origin of the TP trait.  相似文献   

7.
Genetic analysis of presence and absence of lint and fuzz in cotton   总被引:4,自引:0,他引:4  
X. M. Du    J. J. Pan    R. H. Wang    T. Zh.  Zhang Y. Zh.  Shi 《Plant Breeding》2001,120(6):519-522
Cotton fibre mutants that were fuzzless and/or lintless were crossed with each other and a normal genotype (fuzzy, linted) to produce F2 and BC1 generations. F2 segregation ratios from the cross of fuzzless‐lintless × fuzzy‐linted, for fuzzy‐linted, fuzzless‐linted and fuzzless‐lintless were 45 : 15 : 4. From the cross of fuzzless‐lintless × fuzzy‐linted, the F2 segregation ratios were 9 : 39 : 16 whereas the BC1F1 segregation ratios from the F1 backcrossed to fuzzless‐lintless were 1 : 3 : 4. These data suggest that the presence or absence of lint and fuzz are controlled by the interaction of four gene loci on non‐homologous chromosomes. We designate these loci as N1, N2, Li3 and Li4, where N1 N1 confers the presence of fuzzy, N2N2 confers inhibition of fuzzy initiation and development, and duplicate gene pairs, Li3Li3 and Li4Li4, determine the presence of lint. Homozygosity for li3li3 and li4li4 might also inhibit fuzz from development. In other words, they were recessive epistatic to fuzz genes.  相似文献   

8.
The objectives of this study were to determine genetics of Al tolerance and whether the Al tolerance observed is governed by the same gene. The lines ‘L‐7903’ and ‘L‐4602’ have been developed through breeding programme as Al‐tolerant lines. These lines showed maximum root regrowth and minimum accumulation of Al and callose as compared to sensitive genotypes (‘BM‐4’ and ‘L‐4147’). Al tolerance in the parents, F1, F2 and backcross generations was estimated using the regrowth of the primary root after staining and scoring of fluorescent signals. The F1 hybrids responded similarly to the tolerant parents, indicating dominance of Al tolerance over sensitivity. The segregation ratios obtained for Al tolerance and sensitivity in the F2 and backcross generations were 3 : 1 and 1 : 1, respectively. Test of allelism confirmed the same gene was conferring Al tolerance in both genotypes (‘L‐7903’ and ‘L‐4602’) as the F1 was also tolerant and no segregation of tolerant : sensitive was recorded. These results indicated that Al tolerance is a monogenic dominant trait that can be easily transferred to agronomic bases through backcross breeding technique.  相似文献   

9.
利用荧光原位杂交技术分析新合成异源四倍体拟南芥   总被引:1,自引:0,他引:1  
位芳  张改生 《作物学报》2010,36(7):1216-1220
在植物异源倍化育种中或者通过异源多倍化导入有利基因时,初级杂交后代异源多倍体减数分裂期间,避免部分同源染色体干扰,使同源染色体正常联会和配对以及正确分离是产生功能性雌雄配子的细胞学基础。本研究通过种间杂交技术,获得初级杂交后代异源四倍体拟南芥A. suecica,并重点分析其花粉母细胞减数分裂期同源染色体联会和配对情况。利用DAPI技术染色证明了花粉母细胞减数分裂期间核内染色体数目的正确性和均等分裂;而用荧光原位杂交技术进一步证明了核内染色体组的来源的正确性和同源染色体联会和配对的精准性。该结果证实新合成异源多倍体能进行正常的减数分裂和产生功能性雌雄配子,为种属间杂交和异源多倍体育种以及植物杂种优势利用提供了有利的细胞遗传学证据。  相似文献   

10.
G. Belay  A. Merker 《Plant Breeding》1998,117(6):537-542
Three tetraploid (2n= 4x= 28) wheat Triticum turgidum L. landrace morphotypes (= genotypes) from Ethiopia were found to carry a variant karyotype directly discernible under the microscope. This was possible because the rearrangement involved one of the satellited chromosomes. Giemsa C-banding revealed that the rearrangement resulted from a 5BS.6BS(5BL.6BL) centric reciprocal translation. The banding pattern on 5BL was polymorphic, suggesting that this translocation might have occurred more than once. There was little C-band polymorphism for the remaining chromosomes, except for 2A. As pure lines, all three morphotypes showed normal chromosome pairing at metaphase I (MI) in pollen mother cells (PMCs). indicating that they are genomically stable. Meiotic analyses of F1 hybrids and F2 segregates derived from crosses with tester varieties clearly indicated that one of them (B-l–9) carried another translocation. However, we were not successful in delecting the chromosomes involved, presumably the interchanged segments did nol include C-banding regions. By using T5BS.6BS, direct evidence for segregation distortion against translocation homozygotes in intervarietal hybrids was obtained. The distorted segregation was attributed lo zygotic selection. No aneuploid plants were obtained from the F2 segregates. However, translocation heterozygotes resulting in unstable meiosis were abundant in the F2 generation. The implications of the results in using the indigenous landraces in hybridization breeding are discussed.  相似文献   

11.
A study was conducted under controlled environment conditions in a phytotron to determine the nature of the inheritance of resistance Helminthosporium leaf blight (HLB) in a synthetic hexaploid wheat line, ‘Chirya‐3’, against the isolate KL‐8 of Bipolaris sorokiniana from the major wheat growing region of India. Crosses were made between two susceptible lines ‘WH 147’ and ‘Chinese Spring’. Analyses of F1 and F2 populations of these two crosses (‘WH 147’בChirya‐3’ and ‘Chinese Spring’בChirya‐3’) showed that resistance against the isolate in ‘Chirya‐3’ was governed by two recessive genes functioning in a complementary interaction giving an F2 segregation pattern of 1 : 15 (resistant : susceptible). The segregation pattern of the resistant F2 progenies in F3 families from both crosses confirmed that two homozygous recessive genes were responsible for resistance to the isolate of Bipolaris sorokiniana in the synthetic line ‘Chirya‐3’. It is proposed that the genes be designated as hlbr1 and hlbr2.  相似文献   

12.
E. Domon    T. Yanagisawa    A. Saito  K. Takeda 《Plant Breeding》2004,123(3):225-228
A high‐throughput single nucleotide polymorphism (SNP) genotyping procedure was developed to select amylose‐free barley mutants whose waxy genes had a C‐ to T‐base substitution in exon 5, which converted Gln‐89 of the wild‐type gene into a termination codon. An F2 population carrying an amylose‐free waxy gene was checked for segregation. Polymerase chain reaction with confronting two‐pair primers (PCR‐CTPP) produced allele‐specific PCR products that have different sizes and are inherited in a co‐dominant manner. Two alleles of the barley waxy gene with SNP were correctly identified in parental strains using the PCR‐CTPP procedure. Segregation of the SNP as detected by PCR‐CTPP in an F2 population fitted the expected 1:2:1 ratio. The PCR‐CTPP procedure can provide a time saving and cost‐effective alternative to derived cleaved amplified polymorphic sequence in marker‐assisted selection.  相似文献   

13.
Seven wheat‐Thinopyrum amphiploids, AT 3425, AgCs, PI 550710, PI 550711, PI 550712, PI 550713 and PI 550714, were evaluated for perennial growth habit in the field. Three of them, AgCs, AT 3425, and PI 550713, were identified as perennials. Fluorescent genomic in situ hybridization (FGISH) patterns of mitotic chromosomes indicated that AgCs had seven pairs of Thinopyrum chromosomes and 21 pairs of wheat chromosomes. PI 550713 and AT 3425 showed similar FGISH patterns of mitotic chromosomes with three pairs of wheat‐Thinopyrum translocated chromosomes, seven pairs of Thinopyrum chromosomes, and 18 pairs of wheat chromosomes. Thinopyrum chromosome pairing in the Fi hybrid of AT 3425 with AgCs demonstrated differences between Thinopyrum genomes in these two amphiploids. Based on chromosome constitutions, pairing and reported pedigrees, AgCs and AT 3425 were identified as a wheat‐Thinopyrum elongatum amphiploid and partial wheat‐Thinopyrum ponticum amphiploid, respectively. Chromosome pairing in the F1 hybrid between AT 3425 and PI 550713 revealed that these two amphiploids contained the same Thinopyrum genome. Two different Thinopyrum genomes conferring perennial growth habit were identified from the perennial amphiploids and characterized cytogenetically.  相似文献   

14.
The inheritance of siliqua locule number and seed coat colour in Brassica juncea was investigated, using three lines each of tetralocular brown seeded and bilocular yellow seeded. Three crosses of tetralocular brown seeded × bilocular yellow seeded lines were attempted and their F1, F2 and backcross generations were examined for segregation of these two traits. Brown seed colour and bilocular siliqua characters were found to be dominant over yellow seed and tetralocular siliqua, respectively. Chi‐square tests indicated that each trait is controlled by different sets of duplicate pairs of genes. Bilocular siliquae or brown seeds can result from the presence of either of two dominant alleles, whereas tetralocular siliquae or yellow seeds are produced when alleles at both loci are recessive. A joint segregation analysis of F2 data indicated that the genes governing siliqua locule number and seed colour were inherited independently.  相似文献   

15.
Barley (Hordeum vulgare L.) is often grown on alkaline zinc (Zn)‐deficient soils where reductions in yield and grain quality are frequently reported. Currently, the use of Zn‐based fertilizer along with Zn‐deficiency‐tolerant genotypes is considered the most thorough approach for cropping the Zn‐deficient soils; however, developing or breeding genotypes with higher Zn efficiency requires a good understanding of the inheritance of tolerance to Zn deficiency. This study was conducted to determine genetic control of this trait in barley. Two parental cultivars ('Skiff, moderately tolerant; and ‘Forrest’, sensitive), 185 F2 plants, and 48 F2‐derived F3 families from this cross were screened to determine inheritance of tolerance to Zn deficiency using a visual score of deficiency symptoms. The segregation ratios observed indicated that greater tolerance to Zn deficiency in ‘Skiff compared with ‘Forrest’ at the seedling stage is controlled by a single gene with no dominance. The results also indicate that visual scores are useful for genetic analysis of tolerance to Zn deficiency.  相似文献   

16.
Genetic male sterility (GMS) exists naturally in safflower (Carthamus tinctorius L.). In the existing safflower GMS lines, sterile and fertile plants are distinguishable at flowering. This causes delay in fertile plants rouging and reduction in hybrid purity. In this investigation, a cross between a spiny GMS parent 13‐137 and a spiny non‐GMS parent ‘A1’ was effected. One sib cross, SC‐67, producing non‐parental‐type non‐spiny sterile and spiny fertile plants in F3 was advanced to F9 through sib crossing between non‐spiny sterile and spiny fertile plants. Mendelian digenic segregation was not observed for non‐spiny trait and male sterility. The results revealed strong linkage between these traits. The linkage was confirmed in F2 generations of crosses between a non‐spiny marker‐linked GMS line (MGMS) and five elite lines. Male sterility–linked non‐spiny trait could distinguish sterile and fertile plants at elongation stage. The MGMS would be useful in production of pure F1 hybrid seed and development of elite populations.  相似文献   

17.
Inheritance of Karnal bunt-free trait in bread wheat   总被引:1,自引:0,他引:1  
A Karnal bunt (KB)‐free wheat stock (‘KBRL22’) obtained from a cross of two resistant lines (‘HD29’ and ‘W485’) was used as a donor to introgress the KB‐free trait into ‘PBW343’(an ‘Attila’ sib), the most widely grown wheat cultivar in India. The number of KB‐free and KB‐affected plants in BC 1, BC2, BC3 and BC4 as well the F2 was recorded after artificial inoculations. The segregation pattern in these generations clearly indicated two independently segregating, dominant genes which jointly confer the KB‐free attribute. The importance of the KB‐free line generated in this experiment is discussed.  相似文献   

18.
CAS‐12 is a sunflower mutant with increased levels of palmitic (C16: 0 = 30%) and oleic (C18: 1 = 55%) acids in its seed oil, hence it has a reduced linoleic acid content (C18: 2 < 5%). This study was conducted to determine the inheritance of high C16: 0 content and its relationship with high C18: 1 content in CAS‐12. Reciprocal crosses involving CAS‐12, CAS‐5 (high C16: 0 content), HAOL‐9 (high C18: 1 content) and HA‐89 (standard fatty acid profile) were made. The F1, F2 and BC1F1 generations were obtained. The genetic control of the high C16: 0 trait in CAS‐12 was partially recessive and gametophytic. In all cases, this character segregated in the ratio 19: 38: 7 (low: intermediate: high C16: 0 content) in the F2 generation. These results, together with the lack of segregation for C16: 0 content in crosses between CAS‐12 and CAS‐5, indicated that the genetic control of the high C16: 0 trait in CAS‐12 was similar to that in CAS‐5 in being controlled by partially recessive alleles (p1, p2, and p3) at three loci. Crosses between HA‐89 and CAS‐12, and HAOL‐9 and CAS‐5 (segregating for C16: 0 and C18: 1) demonstrated that the high C16: 0 and the high C18: 1 traits were independently inherited. However, C18: 1 segregation in these crosses exhibited reversal of dominance. Apparently, the low C18: 1 parental lines carried modifier genes causing the deviation.  相似文献   

19.
A set of 21 monosomic (2n ‐ 1) and the disomic (2n) lines of the ‘Chinese Spring’ cultivar were crossed with ‘Chirya‐3′, the CIMMYT synthetic wheat line which has been identified as highly resistant for Helminthosporium leaf blight disease (HLB), in order to locate the genes governing disease resistance. The F1 and segregating populations were challenged and screened against the most virulent pure mono‐conidial HLB isolate KL‐8 (Karnal, India). The F1 progenies of the crosses were found to be susceptible because of the recessive nature of resistance. The F2 progeny of the control cross (‘Chinese Spring’בChirya‐3’), segregated in the ratio of 1: 15 (resistant: susceptible), indicating that resistance to HLB was controlled by a pair of recessive genes. While the F2 progeny of 19 monosomic crosses segregated in the ratio of 1: 15 (resistant: susceptible), the progeny of the remaining two crosses, 7B and 7D, deviated significantly from the ratio, revealing that 7B and 7D were the critical chromosomes for resistance genes that were located one on each chromosome. Moreover, the critical lines, 7B and 7D, confirmed the digenic complementary recessive nature of gene action by fitting well with the overall pooled F2 segregation ratio of 13: 51 (resistant: susceptible) as expected for digenic complementary recessive resistance. The F3 segregation ratios of the critical crosses, based on their pooled F2 analysis, was estimated as 19: 32: 13 (non‐segregating susceptible: segregating as susceptible and resistant: non‐segregating resistant). F3 progenies when tested with these ratios showed goodness‐of‐fit, confirming that the two pairs of recessive resistance genes were located on chromosomes 7B and 7D.  相似文献   

20.
The inheritance patterns of rust resistance genes and molecular markers in microspore‐derived populations of flax were investigated. Plants were produced from anther culture of F1 plants from two crosses. Microspore‐derived plants in anther culture of flax were identified using molecular markers. Two rust resistance genes and three out of six molecular markers were inherited in expected Mendelian ratios in microspore‐derived populations. Distorted segregation for the other three molecular markers was shown to be the result of over‐representation of genomic fragments from the more responsive parent in the F1 donor plant. The implication of this study in relation to androgenesis and flax breeding using anther culture is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号