首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Drought is a major constraint for rice production and yield stability in rainfed ecosystems, especially when it occurs during the reproductive stage. Combined genetic and physiological analysis of reproductive-growth traits and their effects on yield and yield components under drought stress is important for dissecting the biological bases of drought resistance and for rice yield improvement in water-limited environments. A subset of a doubled haploid (DH) line population of CT9993-5-10-1-M/IR62266-42-6-2 was evaluated for variation in plant water status, phenology, reproductive-growth traits, yield and yield components under reproductive-stage drought stress and irrigated (non-stress) conditions in the field. Since this DH line population was previously used in extensive quantitative trait loci (QTLs) mapping of various drought resistance component traits, we aimed at identifying QTLs for specific reproductive-growth and yield traits and also to validate the consensus QTLs identified earlier in these DH lines using meta-analysis. DH lines showed significant variation for plant water status, reproductive-growth traits, yield and yield components under drought stress. Total dry matter, number of panicles per plant, harvest index, panicle harvest index, panicle fertility, pollen fertility, spikelet fertility and hundred grain weight had significant positive correlations with grain yield under drought stress. A total of 46 QTLs were identified for the various traits under stress and non-stress conditions with phenotypic effect ranging from 9.5 to 35.6% in this study. QTLs for panicle exsertion, peduncle length and pollen fertility, identified for the first time in this study, could be useful in marker-assisted breeding (MAB) for drought resistance in rice. A total of 97 QTLs linked to plant growth, phenology, reproductive-growth traits, yield and its components under non-stress and drought stress, identified in this study as well as from earlier published information, were subjected to meta-analysis. Meta-analysis identified 23 MQTLs linked to plant phenology and production traits under stress conditions. Among them, four MQTLs viz., 1.3 for plant height, 3.1 for days to flowering, 8.1 for days to flowering or delay in flowering and 9.1 for days to flowering are true QTLs. Consensus QTLs for reproductive-growth traits and grain yield under drought stress have been identified on chromosomes 1 and 9 using meta-QTL analysis in these DH lines. These MQTLs associated with reproductive-growth, grain yield and its component traits under drought stress could be useful targets for drought resistance improvement in rice through MAB and/or map-based positional analysis of candidate genes.  相似文献   

2.
《Field Crops Research》1988,19(2):103-111
The nature and magnitude of genetic variability and component analysis was assessed in 50 diverse genotypes of soybean grown in monoculture and in association with maize. Cropping system effects and interaction of cropping systems with genotypes were significant for all traits except 100-seed weight, oil % and protein %. Branches/plant, total pods/plant, pod clusters/plant, harvest index and seed yield/plant decreased under intercropping. There was no effect of cropping system in the manifestation of phenotypic and genotypic variability. The estimates of heritability and genetic advance for seed yield components were less in the associated cropping system than in the sole crop. Genotypes interacted differentially to the different cropping systems. The performance of as many as 30 genotypes was comparable under both cropping systems. Fourteen genotypes recorded reduction in seed yield/plant under intercropping. However, the performance of six genotypes was higher under intercropping. Among the commercial varieties, the performance of ‘Bragg’ and ‘Hardee’ was comparable under both cropping systems. ‘Punjab-1’ performed better in associated cropping, while ‘Shilajeet’ and ‘Lee’ performed better under sole-crop.The correlation coefficients between traits were found to differ, both in nature and magnitude, between monoculture and intercropping. In monoculture, seed size, harvest index and oil % were positively related with seed yield. By contrast, plant height, branches/plant, pods/plant and pod clusters/plant, besides 100-seed weight and harvest index, were correlated with seed yield under intercropping. Seed size followed by branches/plant appeared to be the important characters to undertake selection for higher seed yield under sole-crop. Yield improvements in intercrop were associated with increased harvest index. Genotypes and the characters to be utilized to develop varieties suitable for sole-crop and intercropping have been suggested.  相似文献   

3.
The experiment was conducted using simple lattice design with two replication and the trails was totally consisted fifty six genotypes. Data on seed yield and other Agronomic traits were used to estimate the genetic variability parameters, heritability and genetic advance (GA). Analysis of variance revealed highly significant and significant difference for all studied traits. Evaluated characters were exhibited different levels of variability, heritability and genetic advance among the studied genotypes. Low to high phenotypic coefficient of variation (PCV) and genotypic coefficient of variation (GCV) were recorded. The highest GCV and PVC values were found particularly for lodging percent (76.65% and 90.63%), harvest index (42.26% and 47.92%) yield per hectare (41.23% and 48.19%) and number of capsule per branch (30.81% and 37.25%) respectively, whereas low GCV and PCV (8.27% and 9.73% respectively) manifested for days to maturate. The highest broad sense heritability value manifested for harvest index (77.78%) followed by seed yield per hectare (73.21%), while lowest heritability (3.78%) revealed only for seed per capsule. In present study low to moderate genetic advance were manifested and high heritability and genetic advance as percentage of mean (>50) was recorded for lodging percentage, number of capsule per branch, seed yield per hectare and harvest index, indicating predominance of additive gene action for these characters. Therefore the result of this study suggests existence of variability for seed yield and other agronomic traits in these linseed genotypes, which should be exploited in future breeding.  相似文献   

4.
Grain sorghum (Sorghum bicolor L. Moench) is a genetically diverse cereal crop grown in many semiarid regions of the world. Improving drought tolerance in sorghum is of prime importance. An association panel of about 300 sorghum genotypes from different races, representative of sorghum globally, was assembled for genetic studies. The objectives of this research were to (i) quantify the performance of the association panel under field conditions in Kansas, (ii) characterize the association panel for phenological, physiological and yield traits that might be associated with tolerance to limited moisture (drought), and (iii) identify genotypes with higher yield potential and stability under different environments that may be used in the sorghum breeding program. Results show large diversity for physiological and yield traits such as chlorophyll content, leaf temperature, grain numbers and grain weight per panicle, harvest index and yield. Significant differences were found for plant height, grain weight and numbers per panicle, harvest index, and grain yield among and within races. The US elite lines had the highest number of grains and grain weight per panicle while the guinea and bicolor races recorded the lowest. Harvest index and yield was highest for the US elite lines and the caudatum genotypes. Overall, there was a negative correlation between plant height and grain weight, grain numbers and yield. Harvest index and grain numbers were negatively affected by moisture limitation for all the races. Among the races, the caudatum genotypes were more stable in grain yield across the different environments. Overall, there was a wide variability within the association panel for physiological and yield traits that may prove to be useful for improving drought tolerance in sorghum.  相似文献   

5.
This study has been conducted to determine the extent of genetic association between yield of Rice (Oryza sativa L.) and its components. The present experiment was carried out with 40 Rice (Oryza sativa L.) genotypes which were evaluated in a randomized block design with 3 replications during wet season of 2007 and 2008. Results showed that sufficient amount of variability was found in the entire gene pool for all traits studied. Higher magnitude of genotypic and phenotypic coefficients of variation was recorded for seed yield, harvest index, biological yield, number of spikelets per panicle, flag leaf length, plant height and number of tillers indicates that these characters are least influence by environment. High heritability coupled with high genetic advance as percent of mean was registered for seed yield, harvest index, number of spikelets per panicle, biological yield and flag leaf length, suggesting preponderance of additive gene action in the expression of these characters. Grain yield was significantly and positively associated with harvest index, number of tillers per hill, number of panicle per plant, panicle length, number of spikelet's per panicle and test weight at both genotypic and phenotypic levels. Path coefficient analysis revealed that harvest index, biological yield, number of tillers per hill, panicle length, number of spikelets per panicle, plant height and test weight had direct positive effect on seed yield, indicating these are the main contributors to yield. From this study it may be concluded that harvest index, number of tillers per hill, panicle length and number of spikelet per panicle and test weight are the most important characters that contributed directly to yield. Thus, these characters may serve selection criteria for improving genetic potential of rice.  相似文献   

6.
《Field Crops Research》2002,73(2-3):181-200
A series of experiments were conducted in drought-prone northeast Thailand to examine the magnitude of yield responses of diverse genotypes to drought stress environments and to identify traits that may confer drought resistance to rainfed lowland rice. One hundred and twenty eight genotypes were grown under non-stress and four different types of drought stress conditions.Under severe drought conditions, the maintenance of PWP of genotypes played a significant role in determining final grain yield. Because of their smaller plant size (lower total dry matter at anthesis) genotypes that extracted less soil water during the early stages of the drought period, tended to maintain higher PWP and had a higher fertile panicle percentage, filled grain percentage and final grain yield than other genotypes. PWP was correlated with delay in flowering (r=−0.387) indicating that the latter could be used as a measure of water potential under stress. Genotypes with well-developed root systems extracted water too rapidly and experienced severe water stress at flowering. RPR which showed smaller coefficient of variation was more useful than root mass density in identifying genotypes with large root system.Under less severe and prolonged drought conditions, genotypes that could achieve higher plant dry matter at anthesis were desirable. They had less delay in flowering, higher grain yield and higher drought response index, indicating the importance of ability to grow during the prolonged stress period.Other shoot characters (osmotic potential, leaf temperature, leaf rolling, leaf death) had little effect on grain yield under different drought conditions. This was associated with a lack of genetic variation and difficulty in estimating trait values precisely.Under mild stress conditions (yield loss less than 50%), there was no significant relationship between the measured drought characters and grain yield. Under these mild drought conditions, yield is determined more by yield potential and phenotype than by drought resistant mechanisms per se.  相似文献   

7.
In forage grasses, knowledge about the genetic basis of seed production and its association with related traits under water stress is very limited. Half‐sib families derived from the polycross of twenty five smooth bromegrass genotypes were evaluated in the field in well‐watered and water‐stressed environments during 2012 and 2013. Results showed that drought stress had a negative effect on seed yield and reduced phenotypic variation for seed yield and agro‐morphological traits. High genotypic variation was observed among families for seed yield and its components. Narrow‐sense heritabilities (h2) ranged from 0·22 (flag leaf weight) to 0·81 (days to anthesis). These moderate‐to‐high heritability estimates for seed yield and its components indicate that phenotypic selection can be successful to achieve genetic progress for these traits. Seed yield had a positive correlation with 1000‐seed weight, number of ears per plant, number of seeds per panicle, seed weight per panicle and panicle length.  相似文献   

8.
Drought is the most important constraint reducing rice yield in rainfed areas. Earlier efforts to improve rice yield under drought mainly focused on improving secondary traits because the broad-sense heritability (H) of grain yield under drought stress was assumed to be low, however gains in yield by selecting for secondary traits have not been clearly demonstrated in rice. In present study, the effectiveness of direct selection for grain yield was assessed under lowland reproductive stage stress at Raipur in eastern India and under upland reproductive stage drought stress at IRRI. The selection under severe stress (in both upland and lowland trials) resulted in greater gains under similar stress levels (yield reduction of 65% or greater under stress) in evaluation experiments than did selection under non-stress conditions, with no yield reduction under non-stress conditions. We observed similar H of grain yield under stress and non-stress conditions, indicating direct selection for yield under drought will be effective under both lowland and upland drought stresses. None of the secondary traits (panicle exsertion, harvest index, leaf rolling, leaf drying) included in our study showed a higher estimate for H than grain yield under stress. Secondary traits as well as indirect selection for grain yield under non-stress situation were predicted to be less effective in improving yield under drought in both lowland and upland ecosystem than direct selection for grain yield under the respective stress situations. The low, but positive values observed for genetic correlation (rG) between yield under stress and non-stress indicated that it is possible to combine drought tolerance with high-yield potential but low values also indicated that selection for grain yield needs to be carried under stress environments. The study also indicated that under lowland drought stress, the use of highly drought-tolerant donors, as parents in crosses to high yielding but susceptible varieties resulted in a much higher frequency of genotypes combining high-yield potential with tolerance than did crosses among elite lines with high-yield potential but poor tolerance. Breeding strategies that use drought-tolerant donors and that combine screening for yield under managed drought stress with screening for yield potential are likely to result in the development of improved cultivars for drought-prone rainfed rice producing areas.  相似文献   

9.
《Field Crops Research》2002,73(2-3):153-168
Responses of rice genotypes to drought stress may be different when characteristics of the drought stress environments differ. The performance of 128 genotypes was examined under irrigation and four different types of drought stress, to determine genotypic consistency in yield and factors determining yields under different drought stress conditions. The different drought conditions were mild drought during grain filling, short and severe drought at flowering, prolonged severe drought during the reproductive to grain filling, and prolonged mild drought during vegetative and grain filling.Genotypic grain yield under mild stress conditions was associated with yield under irrigated conditions, indicating the importance of potential yield in environments where the yield reduction was less than 50%. However, yields under irrigated conditions differed over time and locations.Under prolonged or severe drought conditions, flowering time was an important determinant of grain yield. Earlier flowering genotypes escaped the severe stress and had higher grain yields indicating large genotype by environment (G×E) interactions which have implications for plant breeding even for mild stress. It is suggested that variations in flowering time, potential yields and drought patterns need to be considered for development of drought-resistant cultivars using specific physiological traits.  相似文献   

10.
An experiment was conducted to estimate drought tolerance of some cocksfoot genotypes based on seed and forage yield and related indices (including tolerance index, mean productivity, geometric mean productivity, reduction percentage index, stress tolerance index and stress susceptibility index) and to identify relationships between measured traits. Twenty‐five genotypes were evaluated in the field under control and drought‐stress environments over 2 years. The results revealed a high variation for seed yield and forage yield and the measured indices under both moisture conditions. No correlation was observed between seed yield and forage yield under the control treatment, but this correlation was positively significant under the water‐stress treatment. Drought‐tolerant and susceptible genotypes were identified based on seed and forage yield performance. Genotypes 2, 4 and 7 had high seed yield, while genotypes 7 and 10 had high forage yield under both stressed and non‐stressed conditions and were identified as the most tolerant genotypes in each category. The results also revealed that genotypes 1, 2, 4, 6, 7, 8 and 24 had relatively high seed and forage yield in both control and drought‐stressed conditions. These genotypes can be used for further studies to improve both seed and forage yields concurrently.  相似文献   

11.
大豆品种鼓粒期田间抗旱鉴定   总被引:1,自引:0,他引:1  
大豆鼓粒期缺水是制约大豆产量形成的重要因素之一。在鼓粒期对大豆品种进行抗旱性鉴定,可为大豆抗旱育种和抗旱节水栽培提供依据。选取不同地区育成的代表性品种(品系)46份,在鼓粒期田间干旱与灌水条件下,分析其产量、产量性状、生育期与形态性状、籽粒品质性状等指标,并且对其进行抗旱性鉴定。结果表明,干旱区46份材料平均产量1 759.6 kg/hm²,灌水对照区平均产量2 223.1 kg/hm²,46个品种平均耗水系数1.079 t/kg。干旱对三粒荚影响显著,对单株荚数、单株粒数、生物产量、单株粒重、百粒重影响极显著。干旱区的平均蛋白质含量极显著高于灌水区,比对照区提高幅度4.47 %;平均脂肪含量极显著低于灌水区,比正常灌水区降低幅度4.19 %。干旱条件下品种百粒重下降,生育期提早均属于品种抗旱性的适应反映,与抗旱性无关。适于呼伦贝尔的品种推荐为北豆14、黑河50、黑河43、华疆3、登科1号、蒙豆15、北豆37、黑河36、北豆38等。  相似文献   

12.
《Field Crops Research》2002,78(1):65-74
Alfalfa (Medicago sativa L.) is widely grown as a forage crop due to its good quality characteristics and high adaptability. However, seed yield is generally considered to be of secondary importance and is characterized by fluctuating yields with often poor seed quality. A field experiment using five alfalfa cultivars (Equipe, Iside, Lodi, Robot, Romagnola) was carried out in 1995, 1996 and 1997 at Foggia (southern Italy) to evaluate the effects of four defoliation practices (H1: crop mown during early plant growth; H2: plant desiccation by chemical agent at the end of February; H3: crop mown at early flowering; H4: never cut) and two irrigation treatments (I: irrigation applied from April to beginning of seed filling; NI: non-irrigated control) on seed yield, seed yield components and seed quality (as determined by seed germination with and without accelerated ageing (AA)). The relationships between yield components (stems per m2, pods per stem, seeds per pod, 1000-seed weight) were determined by path-coefficient analysis. Irrigation significantly increased seed yield; on average doubling the control yield over the three seasons. However, the potential seed yield (calculated from seed yield components) was, on average, five times the actual seed yield. The two mowing treatments produced consistently higher seed yields than either desiccated or untreated swards. Cultivar differences were evident for seed yield, with Equipe having the highest value (40% higher than the mean of the other cultivars). Irrigation improved the yield primarily because it led on average a greater than four fold increase in the density of stems (the most influential yield component). By contrast, seeds per pod and 1000-seed weight increased in the absence of irrigation. Defoliation treatments had little effect on stems per m2, seeds per pod and seed weight, whereas pods per stem were reduced by desiccation. Path analyses calculated across irrigation treatments and years revealed that stems per m2 had the largest positive direct effect on alfalfa seed yield under each harvest management (path-coefficient values ≥0.89), and its indirect effects on seed yield via other traits were negligible. Seed quality, as measured by germination percentage both before and after AA, remained relatively consistent across both defoliation and irrigation treatments and cultivars, but was anomalously low in the 1997 irrigated crops. Overall, the highest seed yields were obtained under irrigated conditions when crops were mown during early growth or at early flowering. The potential seed yield of alfalfa varieties is sufficient to guarantee a profitable seed harvest. However, the harvest efficiency of the combine-harvester was low (20% of the potential seed yield); thus, more appropriate harvest techniques should be used.  相似文献   

13.
The present research characterized yield and yield components of 42 wheat genotypes after terminal drought stress. The experiment was in twice replicated simple rectangular lattice design, conducted at irrigated and terminal stress conditions during 2006-2007. These study genotypes had significant differences for grain yield at level of 1%. Genotypes 4057, Viking/5/Gds/4.., Sabalan and 5041 respectively with 6.313, 6.159, 5.793 and 5.774 t ha(-1) had the highest yield and Gascogen has the lowest yield with 2.561 t ha(-1). Mean of total grain yield for under study genotypes was 5.628 t ha(-1) in non-stress and 3.305 t ha(-1) in drought stress conditions. Drought stress decreased amount of grain yield 2.323 t ha(-1) that was noticeable. Interaction of Genotype x environmental conditions was significant at probability level of 1% for grain yield. Yield of all genotypes in drought condition was lower than non-stress condition. Genotypes Viking/5/Gds/4/Anza/3/Pi.., Sabalan, 4061,4057 and 4041 had more yield in non-stress condition and MV17/Zrn, Sabalan, Saysonz and 4032 in stress condition. Stress intensity pay attention to total grain yield was 42%. Genotypes Viking/5/Gds/4/.. and Sabalan had high grain yield and was better than other genotypes and controls (Toos and Crosse Shahi), according to GMP, STI and MSTI. And had the most amount of stress tolerance index as compared with other genotypes confirms this subject. Correlation of yield with other traits was not significant in non-stress condition. In drought condition, correlation of grain yield with 1000 grain weight and total number of tillers per plant was positively significant. ANOVA showed significant differences between osmotic pressures for coleoptile length, between genotypes for mean and maximum coleoptile length and between interactions of genotypes x osmotic pressures for mean and maximum coleoptile length. Mean comparisons showed the highest total, mean and maximum coleoptile length in -7 bar PEG+I ml L(-1) potassium humate treatments. Genotypes Sardari and Sabalan had the highest amounts of total, mean and maximum coleoptile length. With due attention to interaction genotype x osmotic pressures, genotypes Sardari, Sabalan and 4057 in -7 bar PEG+1 ml L(-1) potassium humate had the most amounts of noted characters than others. In conditions of this experiment, potassium humate caused increase in tolerance rate of genotypes against drought stress.  相似文献   

14.
为筛选适宜间作的大豆品种,以早、中、晚熟三种类型共16个大豆品种(系)为试验材料,在玉米大豆间作和大豆净作(为对照)模式下比较研究其农艺性状和产量构成因素。结果表明,各熟期类型品种在间作条件下的株高、平均节间长、倒伏率均显著高于净作对照,且早熟品种的株高、底荚高、主茎节数、平均节间长以及倒伏率显著低于中、晚熟品种。早、中熟品种在间作下的有效分枝数与对照差异不显著,而晚熟品种显著高于对照。各熟期类型品种在间作模式下的产量都显著低于相应的对照,早熟类型品种的单株有效荚、单株粒数、百粒重、单株产量以及公顷单产均极显著低于中、晚熟类型品种,而这些性状在中、晚熟品种间差异不显著。早、中熟品种在间作下的单株有效荚率均显著高于对照,晚熟品种的单株有效荚率显著高于中熟品种,中熟品种显著高于早熟品种。然而各品种类型间作下的完整粒率与净作对照无显著差异,中、晚熟品种的完整粒率显著高于早熟品种。通过相关性分析,间作下倒伏率与株高、主茎节数、平均节间长呈极显著正相关;单株有效荚率、单株粒重、完整粒率、产量均与生育期呈极显著正相关;玉豆共生期占全生育期比重与有效荚率、完整粒率、产量呈极显著负相关。上述结果表明,在玉米大豆间作模式下,中、晚熟大豆品种相比早熟品种有较长的光补偿时期,能获得较高的产量,是适宜与玉米间作种植的大豆品种类型。  相似文献   

15.
Development of a standard evaluation protocol has been a pressing problem for the selection of drought‐resistant genotypes of tall fescue (Festuca arundinacea). This study was conducted to evaluate the association of forage yield with specific phenological and morphological traits to find a proper model for indirect selection under irrigated (normal) and drought‐stress conditions in tall fescue. A random sample of seventy‐five genotypes were clonally propagated and evaluated in normal and drought‐stress environments in the field during 2009 and 2010. Results showed that water stress had a negative effect on forage yield and most of the morphological traits measured and reduced genotypic variation for most of them. Forage yield had the highest genotypic variation, whereas days to pollination had the lowest variation. Low broad‐sense heritability estimates were obtained for dry‐matter yield, but heritability for the traits of number of stems per plant, plant height and crown diameter was moderately high. These traits were identified as the main components of forage yield. The importance of these components and their direct and indirect effects on forage yield was different in normal and drought‐stress conditions. This suggests that indirect selection for developing high‐yielding, drought‐tolerant varieties should be performed under drought‐stress conditions with a specific model.  相似文献   

16.
覆膜红花单株种子产量相关性状的通径分析   总被引:3,自引:1,他引:3  
以新红花1号、吉红1号等10个红花品种为材料,在地膜覆盖条件下进行单株种子产量相关性状通径分析.结果表明,10个相关性状对单株种子产量影响的顺序为:单株有效果球数>单株总粒数>每果球粒数>百粒重>一级分枝数>单株无效果球数>单株总叶片数>株高>主茎种子重量>二级分枝数.单株总粒数与单株有效果球数的互作效应对单株种子产量的影响在所有的性状互作中为最大,单株有效果球数、单株总粒数、每果球粒数及百粒重是影响红花单株种子产量的4个主要因素.所研究的10个农艺性状中,两两性状间的互作效应对红花单株种子产量的影响极大,在红花育种、地膜栽培时应注意考虑这些性状间的影响.单株种子产量高的株型特征为单株无效果球数少,一级分枝数多,单株有效果球数多,单株总粒数和每果球粒数多,百粒重大等.  相似文献   

17.
Evaluations of common bean cultivars in the highlands of Mexico indicated that land races from that region experience less reduction in seed yield and seed size in late sowings than do lines from other regions. Introduced materials are of interest as sources of increased disease and pest resistance and tolerance to edaphic constraints, however. To quantify effects of sowing date and determine possible underlying causes, germplasm of diverse origins was evaluated at two sites in the highlands using multiple sowing dates. In all trials, seed yield, seed weight, harvest index and canopy dry weight decreased with late sowings. Large effects of sowing date, cultivar and their interaction were found for the four traits. The possible importance of phenology per se and of weather conditions was first examined using regression analyses. Variation in seed yield, seed weight, harvest index and canopy dry weight was more closely associated with time to maturity than with time to flowering. Of three weather variables examined, minimum temperature during seed filling revealed the strongest relations with the four traits. Few interactions of any parameter with line were significant, indicating that the cultivars did not have a strong differential response to a specific weather condition such as night temperature. Simulation analyses comparing photoperiod-sensitive and day-neutral cultivars indicated that radiation and temperature explained part of the yield reduction with late sowings. Daylength also had an influence, however, even in the day-neutral cultivar. Given that phenology had a strong effect on yield and that its inheritance is better understood than that of other physiological traits, priority should be given to understanding the genetic basis of the response of cultivar phenology to sowing date in the region.  相似文献   

18.
为打破瓶颈,提高收获指数从而提高油菜籽粒产量,利用甘蓝型油菜矮秆新品系DW871为材料,解析它在2个不同环境下(思南和花溪)收获指数的构成因素,分析在思南和花溪环境下各相关性状的变异,利用相关分析和通径分析研究产量收获指数与农艺性状的关系。结果表明,思南环境下DW871株高、主花序长度、主花序角果数、分枝角果数、单株角果数和收获指数均值显著高于花溪环境,但二次有效分枝数、角果长度和单株生物产量则显著低。思南环境下,油菜收获指数较高的主要原因是相对湿度和温度较高,导致生物产量较低、角果多、单株产量较高,对产量贡献较大,单株角果数和单株生物产量与收获指数呈极显著负相关;而在花溪环境,单株角果数与收获指数呈极显著正相关,单株生物产量无显著相关性。两种环境下,千粒重和单株产量都与收获指数呈极显著正相关。综合分析表明,高温高湿环境下,将角果长度、主序角果数和二次分枝数与单株产量有效结合,且适当控制生物产量才能实现较高的收获指数;多日照、降雨量充足环境下,则可通过提高单株角果数、角果长度和单株产量来提高,同时也需对生物产量进行适当控制。  相似文献   

19.
Selection for yield per se has greatly contributed to yield improvement in many crops. It is expected that selection based on plant traits is more effective in increasing crop yield potential. This study was conducted to compare the effectiveness of trait-based and yield-based selection in increasing rice yield and to determine whether lines with ideotype traits have the potential to express higher yield under optimal crop management conditions. Lines were selected based on plant traits or on grain yield measured in a breeder's replicated yield trial. The main target traits for selection were plant height, leaf and panicle morphology, grain size, total dry weight, and grain-filling percentage. Yield performance of trait-based selection was compared with that of yield-based selection in an agronomic trial with optimum crop management for three seasons. Trait-based selection increased leaf area index and total dry weight but reduced spikelet number per m2 and harvest index compared with yield-based selection. Consequently, selection based on plant traits did not increase grain yield compared with selection based on yield per se. In one of the three seasons, yield of trait-based selection was significantly lower than that of yield-based selection. Among all tested breeding lines, maximum yield was produced by yield-based selection and minimum yield came from trait-based selection. These results suggest that lines with ideotype traits did not express higher grain yield than lines selected based on yield per se under optimal crop management conditions, and yield-based selection was as effective in increasing rice grain yield as trait-based selection in the late generations of the breeding cycle.  相似文献   

20.
A field experiment was conducted during 2001-2003 to evaluate the effect of water stress on the yield and yield components of four rice cultivars commonly grown in Mazandaran province, Iran. In northern Iran irrigated lowland rice usually experiences water deficit during the growing season include of land preparation time, planting, tillering stage, flowering and grain filing period. Recently drought affected 20 of 28 provinces in Iran; with the southeastern, central and eastern parts of the country being most severely affected. The local and improved cultivars used were Tarom, Khazar, Fajr and Nemat. The different water stress conditions were water stress during vegetative, flowering and grain filling stages and well watered was the control. Water stress at vegetative stage significantly reduced plant height of all cultivars. Water stress at flowering stage had a greater grain yield reduction than water stress at other times. The reduction of grain yield largely resulted from the reduction in fertile panicle and filled grain percentage. Water deficit during vegetative, flowering and grain filling stages reduced mean grain yield by 21, 50 and 21% on average in comparison to control respectively. The yield advantage of two semidwarf varieties, Fajr and Nemat, were not maintained under drought stress. Total biomass, harvest index, plant height, filled grain, unfilled grain and 1000 grain weight were reduced under water stress in all cultivars. Water stress at vegetative stage effectively reduced total biomass due to decrease of photosynthesis rate and dry matter accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号