首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Little is known about the metabolism of acetylenic (C&tbd1;C) compounds commonly used in the formulation of pesticides. To better understand the in vivo reactivity of this bond, we examined the metabolism of propargyl alcohol (PA), 2-propyn-1-ol, used extensively in the chemical industry. [1,2,3-(13)C, 2,3-(14)C]PA was administered orally to male Sprague-Dawley rats. Approximately 56% of the dose was excreted in urine by 96 h. Major metabolites were characterized, directly, in the whole urine by one- and two-dimensional (13)C NMR. To determine the complete structures of metabolites of PA, rat urine was also subjected to TLC followed by purification of separated TLC bands on HPLC. The purified metabolites were identified by (13)C NMR and mass spectrometry and by comparison with available synthetic standards. The proposed metabolic pathway involves oxidation of propargyl alcohol to 2-propynoic acid and further detoxification via glutathione conjugation to yield as final products: 3, 3-bis[(2-(acetylamino)-2-carboxyethyl)thio]-1-propanol, 3-(carboxymethylthio)-2-propenoic acid, 3-(methylsulfinyl)-2-(methylthio)-2-propenoic acid, 3-[[2-(acetylamino)-2-carboxyethyl]thio]-3-[(2-amino-2-carboxyethyl)t hio]-1-propanol and 3-[[2-(acetylamino)-2-carboxyethyl]sulfinyl]-3-[2-(acetylamino)-2-car boxyethyl]thio]-1-propanol. These unique metabolites have not been reported previously and represent the first example of multiple glutathione additions to the carbon-carbon triple bond.  相似文献   

2.
[(1)(4)C]Prometryn, 2, 4-bis(isopropylamino)-6-(methylthio)-s-triazine, was orally administered to male and female rats at approximately 0.5 and 500 mg/kg; daily urine and feces were collected. After 3 or 7 days rats were sacrificed, and blood and selected tissues were isolated. The urine and feces extracts were characterized for metabolite similarity as well as for metabolite identification. Over 30 metabolites were observed, and of these, 28 were identified mostly by mass spectrometry and/or cochromatography with available reference standards. The metabolism of prometryn was shown to occur by N-demethylation, S-oxidation, S-S dimerization, OH substitution for NH(2) and SCH(3), and conjugation with glutathione or glucuronic acid. Rat liver microsomal incubations of prometryn were conducted and compared to the in vivo metabolism. Both in vivo and in vitro phase I metabolisms of prometryn were similar, with S-oxidation and N-dealkylation predominating. The involvement of cytochrome P-450 and flavin-containing monooxidase in the in vitro metabolism of prometryn was investigated.  相似文献   

3.
Cysteine conjugates, resulting from the addition of cysteine to alpha,beta-unsaturated carbonyl compounds, are important precursors of odorant sulfur compounds in food flavors. The aim of this work was to better understand this chemistry in the light of the unexpected double addition of cysteine to two unsaturated aldehydes. These reactions were studied as a function of pH. When (E)-2-methyl-2-butenal (tiglic aldehyde, 4) was treated with cysteine in water at pH 8, the major product formed was the new compound (4R)-2-(2-[[(2R)-2-amino-2-carboxyethyl]thio]methylpropyl)-1,3-thiazolidine-4-carboxylic acid (6). Under acidic conditions (pH 1), we also observed a double addition, but the second cysteine was linked by a vinylic sulfide bond to form the previously unreported major product, (2R,2'R,E)-S,S'-(2,3-dimethyl-1-propene-1,3-diyl)bis-cysteine (7). When (E)-2-hexenal (12) was treated with cysteine under acidic conditions, the major product was the novel (4R,2' 'R)-2-[2'-(2' '-amino-2' '-carboxyethylthio)pentyl]-1,3-thiazolidine-4-carboxylic acid (13), and the formation of an vinylic sulfide compound analogous to 7 was not observed. Reduction of the acidic crude reaction mixture with NaBH(4) afforded 13 and the cysteine derivative (R)-S-[1-(2-hydroxyethyl)butyl]cysteine (14) in 14% yield. Treating (E)-2-hexenal with cysteine at pH 8 followed by NaBH(4) reduction yielded the new product (3R)-7-propylhexahydro-1,4-thiazepine-3-carboxylic acid (15). Addition of cysteine to mesityl oxide (16), at pH 8, followed by reduction with NaBH(4) furnished (R)-S-(3-hydroxy-1,1-dimethylbutyl)cysteine (3) and the new compound (3R)-hexahydro-5,7,7-trimethyl-1,4-thiazepine-3-carboxylic acid (18).  相似文献   

4.
The volatiles formed from [1-(13)C]-ribose and cysteine during 4 h at 95 degrees C in aqueous phosphate buffer (pH 5) were analyzed by headspace SPME in combination with GC-MS. The extent and position of the labeling were determined using MS data. The identified volatiles comprised sulfur compounds such as 2-[(13)C]methyl-3-furanthiol, 2-[(13)CH(2)]furfurylthiol, [1-(13)C]-3-mercaptopentan-2-one, [1-(13)C]-3-mercaptobutan-2-one, [4-(13)C]-3-mercaptobutan-2-one, and 3-mercaptobutan-2-one. The results confirm furan-2-carbaldehyde as an intermediate of 2-furfurylthiol, as well as 1,4-dideoxypento-2,3-diulose as an intermediate of 2-methyl-3-furanthiol and 3-mercaptopentan-2-one. Loss of the C-1 and C-5 carbon moieties during the formation of 3-mercaptobutan-2-one suggests two different mechanisms leading to the key intermediate butane-2,3-dione.  相似文献   

5.
Analysis of a methanolic extract of marc from Boronia megastigma (Nees) using LC-MS (APCI, nominal mass) provided strong evidence for the presence of both glycosides and malonyl glycosides of methyl cucurbates, C13 norisoprenoids including megastigmanes, and monoterpene alcohols. Subsequent fractionation of an extract from the marc using XAD-2 and LH 20 chromatography followed by LC-UV/MS-SPE-NMR and accurate mass LC-MS resulted in the isolation and identification of (1R,4R,5R)-3,3,5-trimethyl-4-[(1E)-3-oxobut-1-en-1-yl]cyclohexyl β-D-glucopyranoside (3-hydroxy-5,6-dihydro-β-ionone-β-D-glucopyranoside); 3,7-dimethylocta-1,5-diene-3,7-diol-3-O-β-D-glucopyranoside; and a methyl {(1R)-3-(β-D-glucopyranosyloxy)-2-[(2Z)-pent-2-en-1-yl]cyclopentyl}acetate stereoisomer (a methyl cucurbate-β-D-glucopyranoside); and provided evidence for 3,7-dimethylocta-1,5-diene-3,7-diol-3-O-(6'-O-malonyl)-β-D-glucopyranoside in boronia flowers.  相似文献   

6.
An aminopeptidase, Jc-peptidase, was purified from Japanese cedar pollen by seven steps, including precipitation with ammonium sulfate, ion-exchange chromatography, gel filtration, hydrophobic interaction chromatography on phenyl-agarose, and high-performance liquid chromatography. Purified Jc-peptidease has a molecular weight of 42 kDa and hydrolyzes the synthetic substrates of L-phenylalanyl-4-methylcoumaryl-7-amide (Phe-MCA) with Km = 5 x 10(-5) M, Tyr-MCA with Km = 7 x 10(-4) M, Leu-MCA with Km = 1 x 10(-3) M, and Met-MCA with Km = 1 x 10(-3) M. Other MCA analogues such as Arg-MCA or Glu-MCA failed to serve as its substrates. The activity was inhibited in the presence of phebestin, [(2S,3R)-3-amino-2-hydroxy-4-phenylbutanoyl-L-valyl]-L-phenylalanine, with Ki = 4.7 x 10(-5) M, or bestatin, [(2S,3R)-3-amino-2-hydroxy-4-phenylbutanoyl]-L-leucine, with Ki = 1.1 x 10(-4) M. According to amino acid sequence analysis, the N-terminal amino group seems to be blocked. The physiological function of the aminopeptidase (Jc-peptidase) has not been clarified in vivo.  相似文献   

7.
It has been shown that oxidation at the alpha-carbon of N-(4-chloro-3-methyl-5-isothiazolyl)-2-[p-[(alpha,alpha, alpha-trifluoro-p-tolyl)oxy]phenyl]acetamide (1) is conveniently brought about using dimethylformamide dimethylacetal to give N-(4-chloro-3-methyl-5-isothiazolyl)-beta-(dimethylamino)-p-[(alpha, alpha,alpha-trifluoro-p-tolyl)oxy]atropamide (2), which has served as a common starting point for a variety of functional group transformations. These transformations were found to proceed in moderate to good yields to give derivatives of 1 that retained much of the efficacy associated with the parent amide and have allowed for an expansion of the SAR to be developed. Examples of enamines, enols, enol (thio)ethers, oximes, and hydrazones were prepared. In particular, the enamines derived from low molecular weight amines and amino acids were most active as broad-spectrum insecticides and were found to be even more active than 1 on root-knot nematode.  相似文献   

8.
The metabolism and fate of ethametsulfuron-methyl ?methyl 2-[[[[[4-ethoxy-6-(methylamino)-1,3, 5-triazin-2-yl]amino]carbonyl]amino]sulfonyl]benzoate? in rutabaga were investigated. After 72 h, absorption and translocation of [(14)C]ethametsulfuron-methyl in rutabaga did not change for the duration of the study (50 days). Less than 4% of recovered radioactivity was present in the rutabaga root. Ethametsulfuron-methyl was metabolized through a proposed unstable alpha-hydroxy ethoxy intermediate that dissipated 3 days after treatment to two major metabolites, O-desethylethametsulfuron-methyl and N-desmethyl-O-desethylethametsulfuron-methyl, as determined by liquid chromatography-mass spectrometry. It was estimated that at a spray dose of 30 g of active ingredient ha(-)(1) and a harvest weight of 0.5 kg, the edible portion of the rutabaga root would contain no ethametsulfuron-methyl and approximately 1.3 ppb total of both identified metabolites. Residue analysis and toxicological assessment show that ethametsulfuron-methyl and its metabolites should pose little or no risk to consumers of rutabagas.  相似文献   

9.
Fenoxaprop-p-ethyl (FE), 2-[4-[(6-chloro-2-benzoxazolyl)oxy]phenoxy] propanoate, ethyl ester (R), is an aryloxyphenoxypropionate herbicide for postemergence control of annual and perennial grasses in paddy fields; its site of action is acetyl-coenzyme A carboxylase (ACCase), an enzyme in fatty acids biosynthesis. The possible mechanism(s) of resistance to FE in a resistant biotype of Echinochloa phyllopogon was examined, namely, absorption, translocation, and metabolism of FE and ACCase susceptibility to fenoxaprop acid (FA). Studies of the in vitro inhibition of ACCase discounted any differential active site sensitivity as the basis of resistance to FE. There were differences in absorption rates between biotypes from 3 to 48 h after application (HAA). Biotypes did not differ in either the amounts or the rates of FE translocated; 98% of applied [14C]FE remaining in the treated leaf. However, there was a good correlation between the rate of herbicide metabolism and the plant resistance. The R biotype produced 5-fold less FA and approximately 2-fold more nontoxic (polar) metabolites 48 HAA than the S biotype. Moreover, the higher rate of GSH conjugation in the resistant biotype as compared to the susceptible one indicates that GSH and cysteine conjugation is the major mechanism of resistance of the R biotype against FE toxicity.  相似文献   

10.
The L-cysteine derivatives (R)-2-amino-3-(methyldisulfanyl)propanoic acid (S-methylthio-L-cysteine), (R)-2-amino-3-(propyldisulfanyl)propanoic acid (S-propylthio-L-cysteine), (R)-2-amino-3-(1-propenyldisulfanyl)propanoic acid (S-(1-propenylthio)-L-cysteine), and (R)-2-amino-3-(2-propenyldisulfanyl)propanoic acid (S-allylthio-L-cysteine) were prepared from 3-[(methoxycarbonyl)dithio]-L-alanine, obtained from the reaction of L-cysteine with methoxycarbonylsulfenyl chloride. The occurrence of these S-(+)-alk(en)ylthio-L-cysteine derivatives in onion (Allium cepa L.) was proven by using UPLC-MS-ESI(+) in SRM mode. Their concentrations in fresh onion were estimated to be 0.19 mg/kg S-methylthio-L-cysteine, 0.01 mg/kg S-propylthio-L-cysteine, and 0.56 mg/kg (S-(1-propenyllthio)-L-cysteine, concentrations that are about 3000 times lower than that of isoalliin (S-(1-propenyl-S-oxo-L-cysteine). These compounds were treated with Fusobacterium nucleatum, a microorganism responsible for the formation of mouth malodor. These L-cysteine disulfides were demonstrated to predominantly produce tri- and tetrasulfides. Isoalliin is almost entirely consumed by the plant enzyme alliin lyase (EC 4.4.1.4 S-alk(en)yl-S-oxo-L-cysteine lyase) in a few seconds, but it is not transformed by F. nucleatum. This example of flavor modulation shows that the plant produces different precursors, leading to the formation of the same types of volatile sulfur compounds. Whereas the plant enzyme efficiently transforms S-alk(en)yl-S-oxo-L-cysteine, mouth bacteria are responsible for the transformation of S-alk(en)ylthio-L-cysteine.  相似文献   

11.
The concentrations of heterocyclic aromatic amines (HAAs) were determined, by liquid chromatography-electrospray ionization/tandem mass spectrometry (LC-ESI-MS/MS), in 26 samples of beef, pork, and chicken cooked to various levels of doneness. The HAAs identified were 2-amino-3-methylimidazo[4,5- f]quinoline, 2-amino-1-methylimidazo[4,5- b]quinoline, 2-amino-1-methylimidazo[4,5- g]quinoxaline (I gQx), 2-amino-3-methylimidazo[4,5- f]quinoxaline, 2-amino-1,7-dimethylimidazo[4,5- g]quinoxaline (7-MeI gQx), 2-amino-3,8-dimethylimidazo[4,5- f]quinoxaline, 2-amino-1,6-dimethyl-furo[3,2- e]imidazo[4,5- b]pyridine, 2-amino-1,6,7-trimethylimidazo[4,5- g]quinoxaline, 2-amino-3,4,8-trimethylimidazo[4,5- f]quinoxaline, 2-amino-1,7,9-trimethylimidazo[4,5- g]quinoxaline, 2-amino-1-methyl-6-phenylimidazo[4,5- b]pyridine (PhIP), 2-amino-9 H-pyrido[2,3- b]indole, and 2-amino-3-methyl-9 H-pyrido[2,3- b]indole. The concentrations of these compounds ranged from <0.03 to 305 parts per billion (micrograms per kilogram). PhIP was the most abundant HAA formed in very well done barbecued chicken (up to 305 microg/kg), broiled bacon (16 microg/kg), and pan-fried bacon (4.9 microg/kg). 7-MeI gQx was the most abundant HAA formed in very well done pan-fried beef and steak, and in beef gravy, at concentrations up to 30 microg/kg. Several other linear tricyclic ring HAAs containing the I gQx skeleton are formed at concentrations in cooked meats that are relatively high in comparison to the concentrations of their angular tricyclic ring isomers, the latter of which are known experimental animal carcinogens and potential human carcinogens. The toxicological properties of these recently discovered I gQx derivatives warrant further investigation and assessment.  相似文献   

12.
Diplodiosis is a neuromycotoxicosis of cattle and sheep caused by ingestion of maize infected with the ear-rot fungus Stenocarpella (= Diplodia ) maydis . Apart from ataxia, paresis, and paralysis, the toxin is responsible for stillbirths and neonatal losses characterized by the presence of spongiform degeneration in the white matter of the brain in the offspring of dams exposed to infected maize cobs. In the present study a toxin, named diplonine, which induced neurological signs in guinea pigs resembling some of those occurring in cattle and sheep, was isolated from S. maydis cultures. Purification of diplonine was achieved by methanol extraction followed by chromatographic separation on silica gel and RP-18 stationary phases. The structure and relative configuration of diplonine were defined by analysis of NMR and MS data as (S)-2-amino-2-[(1R,2S)-1-hydroxy-2-methylcyclopropyl]acetic acid or the (S)-2-amino-2-[(1S,2R)-diastereomer.  相似文献   

13.
Covalently cross-linked proteins are among the major modifications caused by the advanced Maillard reaction. So far, the chemical nature of these aggregates is largely unknown. Investigations are reported on the isolation of 6-[2-[[(4S)-4-amino-4-carboxybutyl]amino]-6,7-dihydroxy-6,7-dihydroimidazo[4,5-b]azepin-4(5H)-yl]-L-norleucine (10) and N-acetyl-6-[(6R,7R)-2-[[4-(acetylamino)-4-carboxybutyl]amino]-6,7,8a-trihydroxy-6,7,8,8a-tetrahydroimidazo[4,5-b]azepin-4(5H)-yl]-L-norleucine (12) formed by oxidation of the major Maillard cross-link glucosepane 1. Independent synthesis and unequivocal structural characterization are given for 10 and 12. Spiro cross-links, representing a new class of glycoxidation products, were obtained by dehydrogenation of the amino imidazolinimine compounds N6-[2-[[(4S)-4-ammonio-5-oxido-5-oxopentyl]amino]-5-[(2S,3R)-2,3,4-trihydroxybutyl]-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysinate (DOGDIC 2) and N6-[2-[[(4S)-4-ammonio-5-oxido-5-oxopentyl]amino]-5-[(2S)-2,3-dihydroxypropyl]-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysinate (DOPDIC 3). These new oxidation products were synthesized, and their unambiguous structural elucidation proved the formation of the spiro imidazolimine structures N6-[(7R,8S)-2-[[(4S)-4-ammonio-5-oxido-5-oxopentyl]amino]-8-hydroxy-7-(hydroxymethyl)-6-oxa-1,3-diazaspiro[4.4]non-1-en-4-ylidene]-L-lysinate (16), N6-(8R,9S)-2-[(4S)-4-ammonio-5-oxido-5-oxopentyl]amino]-8,9-dihydroxy-6-oxa-1,3-diazaspiro[4.5]dec-1-en-4-ylidene)-L-lysinate (19), and N6-[(8S)-2-[(4-amino-4-carboxybutyl)amino]-8-hydroxy-6-oxa-1,3-diazaspiro[4.4]non-1-en-4-ylidene]-L-lysinate (18), respectively. It was shown that reaction of the imidazolinone 15 led to the formation of spiro imidazolones, structurally analogous to 16 and 19.  相似文献   

14.
A method for the simultaneous quantitation of total glutathione and total cysteine in wheat flour by a stable isotope dilution assay using high-performance liquid chromatography/tandem mass spectrometry (HPLC-MS/MS) was developed. As internal standards, L-[(13)C3, (15)N]cysteine and L-gamma-glutamyl-L-[(13)C3, (15)N]cysteinyl-glycine were used. The method consisted of the extraction and reduction of flour with tris(2-carboxyethyl) phosphine after the addition of internal standards, protection of free thiol groups with iodoacetic acid, derivatization of free amino groups with dansyl chloride, and HPLC-MS/MS. The limits of detection and quantitation for glutathione were 0.75 nmol/g and 2.23 nmol/g flour, respectively. For cysteine, the limits of detection and quantitation were 0.72 nmol/g and 2.12 nmol/g flour, respectively. The developed method was found to be sensitive enough for quantitation of total glutathione and cysteine levels in wheat flour. This method was then utilized to investigate the effect of sulfur (S) deficiency on the amount of total glutathione and cysteine in flour. In S-deficient wheat, the concentrations of total glutathione and cysteine were proportional to the amount of S supplied during growth. The calculation of correlations revealed that GSH and Cys concentrations influenced the rheological dough properties and the baking performance at least as much as protein parameters. Thus, the low concentration of GSH and Cys in flour from S-deficient wheat had a similar effect on the technological properties as the altered composition of gluten proteins.  相似文献   

15.
Sulfuric acid hydrolysis of steroidal glycosides of Amber fenugreek was studied by capillary gas chromatographic analysis of diosgenin [(25R)-spirost-5-en-3-ol] and isomeric spirostadiene artifacts from 100 mg samples of seed material. Following extraction with 80% ethanol, highest recoveries of diosgenin occurred when hydrolyses were conducted in sulfuric acid, prepared at 1 molar (M) concentration in water containing 60-80% 2-propanol. Compared to a previous method with aqueous hydrochloric acid, the selected conditions of hydrolysis at 100 degrees C for 2 h with sulfuric acid in 70% 2-propanol reduced diene formation but did not completely eliminate these artifacts. Extraction of steroidal saponins with various alcohol/water mixtures prior to sulfuric acid hydrolysis gave similar recoveries of diosgenin. Application of the quantitative method to experimental samples of Amber, Quatro, and ZT-5 fenugreek, using 10 mg subsamples of crushed seed that had been defatted with petroleum ether and dried at 60 degrees C, gave diosgenin levels of 0.55, 0.42, and 0.75%, respectively. Levels of smilagenin and sarsasapogenin were very low in hydrolyzed seed extracts from ZT-5, a Canadian breeder line of fenugreek.  相似文献   

16.
This paper reports the development of an immunoassay for the specific analysis of doxycycline (DC), a congener of the tetracycline antibiotic family (TCs), in milk samples. This is the first time that DC antibody production is reported, based on a rationally designed and well-characterized immunizing hapten. The chemical structure of the immunizing hapten (13-[(2-carboxyethyl)thiol]-5-hydroxy-6-α-deoxytetracycline, TC1) was designed to maximize recognition of the tetracycline characteristic moiety defined as lower periphery of the TCs plus the region of the upper periphery composed by the hydroxyl group at position C(5) (B ring) and the dimethylamino group in ring A. Polyclonal antibodies raised against TC1 coupled to horseshoe crab hemocianyn (HCH) were used to develop a homologous indirect competitive enzyme-linked immunosorbent assay (ELISA). The microplate ELISA can detect DC in buffer down to 0.1 μg L(-1). The ELISA has been proven to tolerate a wide range of ionic strengths and pH values. The assay is very selective for DC with a minor recognition of methacycline (32% of cross-reactivity). Experiments performed with whole milk samples demonstrate that samples can be directly analyzed after a simple treatment method, reaching detectability values below 5 μg L(-1).  相似文献   

17.
The photochemical behavior of the neonicotinoid insecticide imidacloprid was studied with regard to different chemical environments. Different model solvents simulated the structure moieties mainly occurring in waxes and cutin of the plant cuticle. Cyclohexane and cyclohexene substituted saturated and unsaturated hydrocarbon chains, whereas ethanol and 2-propanol were models for primary and secondary alcohol groups of cuticular components. After 5 h of irradiation, imidacloprid was completely degraded in all solvents. With 88-96 mol% 1-[(6-chloropyridin-3-yl)methyl]imidazolidin-2-imine was formed as the main product, whereas 1-[(6-chloropyridin-3-yl)methyl]imidazolidin-2-one was identified as minor product in the range 4-6 mol%. By contrast, besides the photoproducts formed in organic solvents, irradiation of the solid imidacloprid on a glass surface delivered a complex variety of unidentified photoproducts. The nucleophilic addition reaction of the main photoproduct, 1-[(6-chloropyridin-3-yl)methyl]imidazolidin-2-imine, with both cyclohexene oxide and methyl 9,10-epoxystearate as model compounds indicates that epoxidized cutin acids are possible reaction partners for the formation of plant cuticle bound residues of imidacloprid, which could explain the reported findings of nonextractable residues of imidacloprid in plants.  相似文献   

18.
To deduce the structure of the large array of compounds arising from the transformation pathway of 6-methoxybenzoxazolin-2-one (MBOA), the combination of isotopic substitution and liquid chromatography analysis with mass spectrometry detection was used as a powerful tool. MBOA is formed in soil when the cereal allelochemical 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) is exuded from plant material to soil. Degradation experiments were performed in concentrations of 400 microg of benzoxazolinone/g of soil for MBOA and its isotopomer 6-trideuteriomethoxybenzoxazolin-2-one ([D3]-MBOA). Previously identified metabolites 2-amino-7-methoxyphenoxazin-3-one (AMPO) and 2-acetylamino-7-methoxyphenoxazin-3-one (AAMPO) were detected. Furthermore, several novel compounds were detected and provisionally characterized. The environmental impact of these compounds and their long-range effects are yet to be discovered. This is imperative due to the enhanced interest in exploiting the allelopathic properties of cereals as a means of reducing the use of synthetic pesticides.  相似文献   

19.
Esterification, catalyzed by papaya (Carica papaya) lipase (CPL), was studied with various alcohols and carboxylic acids under competitive conditions. Acids studied were straight-chain saturates of different chain lengths, with octanoic acid as the reference. Alcohols chosen were aliphatic straight-chain, branched, secondary, tertiary, terpene, and aromatic alcohols of different chain lengths, using 1-hexanol as the reference. The initial reaction rate increased with increasing chain length of the acid from C4:0 to C18:0, followed by a slight decrease with C20:0. In the case of alcohols, an optimum chain length of 8 carbon atoms was obtained for the straight-chain aliphatic group (C2 to C16). Ethanol, 1-propanol, and secondary and tertiary alcohols showed rather low reactivity. Branching of the alcohols was found not to affect the reactivity in esterification; among the terpenes, beta-citronellol [(2E)-3, 7-dimethyl-6-octenol] and geraniol [(2E)-3,7-dimethylocta-2, 6-dien-1-ol] were found to be more reactive than nerol [(2Z)-3, 7-dimethylocta-2,6-dien-1-ol]. The highest reaction rate was found for the aromatic benzyl alcohol (phenylmethanol).  相似文献   

20.
Agricultural pesticides should be free of side effects that may cause a lasting disruption of microbial processes that are essential for continued soil fertility. A test program is described here for the assessment of the potential effects of newly-developed pesticides on non-target soil micro-organisms. The pesticides to be tested are applied at the equivalent of their recommended field application concentration and, for a margin of safety, also at the tenfold thereof. The measurement of pesticide effects on the microbial cycling of C, N and S constitute the core of the test program. These measurements are, in some cases, complemented by evaluation of pesticide effects on total and viable microbial numbers, on the abundance of specific components of the soil microbial community, and on the growth rates of selected soil microorganisms. The above test program was applied to evaluate the safety of the herbicides N-(1-ethylpropyl)-3,4-dimethyl-2,6-clinitrobenzeneamine(pendimethalin) l,2-dimethyl-3,5-diphenyl-1H pyrazolium (difenzoquat), S-(4-chlorophenyl)-N,N-diethyldithiocarbamate (thiobencarb), and the fungicides N-[(trichloromethyl) thio]-phthalimide (folpet) and cis-N-[(l,l,2,2-tetrachloroethyl) thio]-4-cyclohexene-1,2-dicarboximide (captafol). No detectable adverse effects were caused by any of the tested herbicides. The fungicides inhibited some of the C cycling activities, but the inhibition was temporary and was associated with their effect on soil fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号