共查询到20条相似文献,搜索用时 11 毫秒
1.
This paper presents the results of a current research of the tensile properties: ultimate strength and stiffness modulus in
composites using natural reinforcements. Hemp short fibres and pine sawdust were randomly distributed in polypropylene matrices
to produce composite plates with 5 mm thickness by injection moulding technique. The specimens were cut from these plates
with bone dog shape or plane bars, and tested in tensile and four points bending, respectively. Stiffness modulus and ultimate
stresses were obtained for different weight fraction content of reinforcement and discussed taking in account the failure
modes. Four series of pine sawdust reinforced specimens were immersed in water in periods up to 20 days. Periodically, the
specimens were removed from the water recipient and immediately tested. The damage effect of water immersion time was discussed
based in the tensile results and in the water absorption curves. 相似文献
2.
Hye Jin Zo Seong Hwan Joo Tak Kim Pan Seok Seo Jin Hong Kim Jong S. Park 《Fibers and Polymers》2014,15(5):1071-1077
In this article, we demonstrated the preparation of carbon-fiber-reinforced composites using a polyamide 6 (PA6)/thermoplastic polyurethane (TPU) blend, in which the addition of TPU resulted in superior mechanical performances and increased thermal stability. According to various characterization techniques, these results are attributed to an enhanced adhesion and a homogeneous dispersion of long-carbon-fibers (LCFs) with TPU sizing in blended polymer matrix. Above all, dynamic-mechanical thermal analysis (DMTA) measurements clearly show that the dynamic storage modulus (E') of the blend composites is increased by threefold with temperature ranges below and above the glass transition temperature. The presence of LCFs in TPU systems induces effective fiber orientation, exhibiting simultaneous improvements in the tensile strength, flexural strength, and thermal stability. 相似文献
3.
Process parameters such as gelation and curing temperatures are parameters that influence the pultruded kenaf reinforced vinyl ester composites profile quality and performance. The effect of gelation and curing temperatures on mechanical (tensile, flexural and compression properties) and morphological properties of pultruded kenaf reinforced vinyl ester composites were analyzed. Obtained results indicated that increase of gelation and curing temperatures during the pultrusion process of kenaf reinforced vinyl ester composites influenced the mechanical properties of the composites. When the gelation and curing temperatures were increased, tensile strength, tensile modulus, flexural strength, flexural modulus and compressive strength were affected and they were either increased or decreased. The factors that influenced these results include improper curing, excessive curing, water diffusion, and the problems associated with interfacial bonding between fibre and matrices. The optimum values of the tensile strength for gelation and curing temperatures of kenaf pultruded composites were at 100 °C and 140 °C, tensile modulus at 80 °C and 180 °C, flexural strength at 100 ° and 140 °, flexural modulus at 120 ° and 180 °, and compressive strength at 120 °C and 180 °C, respectively. The scanning electron micrographs of tensile fractured samples clearly show that with the increase in gelation temperature, it creates the lumens between matrix and kenaf fibre thus reducing tensile properties whereas increasing the curing temperature caused less fibre pull out and enhanced fibre/matrix interfacial bonding. 相似文献
4.
Composites consisting of polyurethane (PU)/carbon nanotubes (CNTs) have been successfully prepared by solution mixing method. CNTs were modified through mechano-chemical reaction to increase the compatibility with PU via hydrogen bondings. SEM microphotographs proved that modified CNTs (M-CNTs) became shorter and FTIR spectra showed that hydroxyl groups had been introduced to the surface of M-CNTs. SEM images of PU/M-CNTs composites also proved that M-CNTs were effectively dispersed in PU matrix. Mechanical property tests showed that addition of M-CNTs could significantly improve the tensile properties of PU/M-CNTs composite (breaking strength enhancement ratio for composite with 5.0 wt% M-CNTs was 103.81 %). The thermal stability of composites with M-CNTs was also improved. The initial degradation temperature enhancement was 19.9 oC for the composite with 0.5 wt% M-CNTs. Electrical property tests showed that the electrical properties were improved by adding M-CNTs. The volume conductivities increased 3 and 5 orders of magnitude for the composites with 5.0 wt% and 10 wt% M-CNTs, respectively. The addition of M-CNTs had little effect on the elastic properties of the composites. 相似文献
5.
Most materials used in daily life are polymeric materials based on petrochemistry. The used polymeric materials can cause land pollution and air pollution after landfill or incineration. In contrast, natural fiber reinforced (NFR) composites are more suitable for the environment, however the reliability in terms of the durability and weatherability of NFR composites is still lacking. Thus, NFR composites require the reliability involved with durability and weatherability. In this work, poly(butylene terephthalate-co-glutarate) (PBTG), with a chemical structure similar to biodegradable PBAT, was used as the matrix in the composites, and hemp fibers were used as the reinforcement. Hemp/PBTG composites were fabricated by stacking hemp-fiberwebs and PBTG films with various fiber contents and thermal exposure times. Characteristics of the composites, such as the morphological structure, chemical structure, tensile properties, compressive properties, flexural properties, and impact strength, were analyzed to obtain the effects of fiber volume fraction and thermal exposure. As a result, hemp/PBTG composites were hardened in proportion to fiber volume fractions, and the hardening behavior of the composites increased tensile strength and flexural strength. However, the hardened structure of the composites decreased the impact strength and compressive strength of the composites. On the other hand, the mechanical properties of hemp/PBTG composites with thermal exposure times, were governed significantly by the brittleness behavior of the resin and the increased crystallinity of hemp fibers. Thus, the hemp fibers contributed to the improvements on structural stability, tensile strength and flexural strength of the hemp/PBTG composites, and increased the thermal durability of the composites with various thermal exposures. 相似文献
6.
Thanate Ratanawilai Kamonchanok Nakawirot Arsiwan Deachsrijan Chatree Homkhiew 《Fibers and Polymers》2014,15(10):2160-2168
This study aims to investigate the effects of two types of wood flour; oil palm mesocarp flour (OMF) and rubberwood flour (RWF), and their particle sizes on mechanical, physical, and thermal properties of wood flour reinforced recycled polypropylene (rPP) composites. The composite materials were manufactured into panels by using a twin-screw extruder. The rPP composites based on RWF significantly showed higher flexural, tensile, and compressive properties (both strength and modulus) as well as hardness and thermal stability than those composites based on OMF for the same particle sizes. However, distribution of RWF in the rPP matrix was less homogeneous than that of the rPP/OMF composites. Furthermore, a decrease of the particle sizes of filler for the rPP/OMF or RWF composites increased the flexural, tensile, compressive, and hardness properties. Likewise, the thermal stability of both OMF and RWF composites were insignificantly affected by the particle sizes. 相似文献
7.
Sisal fibres were subjected to a 2 % sodium hydroxide solution treatment for 2, 5 and 8 h at 35 °C. Change in chemical composition of the alkali treated fibres in comparison to that of the untreated fibres was evaluated. Fibres were characterized with respect to its FTIR, linear density, crystallinity, tenacity, modulus and % breaking strain. Tenacity of the fibres increased initially and then decreased as the time of alkali treatment was increased. Modulus of elasticity of the fibres increased with increase in alkali treatment time. Fibres lost breaking strain (%) gradually with increase in treatment time. Variation in mechanical properties of composites was studied with respect to the duration time of alkali treatment of fibres. The failure mode was particularly investigated before and after treatment for better understanding of the effect of alkali treatment. 相似文献
8.
Mohammad Farsi 《Fibers and Polymers》2012,13(4):515-521
The objective of this investigation was to evaluate the mechanical, thermal stability and viscoelastic behaviors of experimental
PP composites made from wheat straw and PP-g-MA coupling agent. Four levels of wheat straw, 10, 20, 25 and 30 wt % and two
levels of coupling agent, 0 and 3 % wt were mixed with PP in rotary type mixer and injection molding process, respectively.
Tensile characteristics and impact strength, thermal gravity and dynamic mechanical and thermal analysis of the samples were
evaluated. Based on the results, it was observed that the tensile properties increased and impact strength decreased with
the increase in the fiber loading from 10 % to 30 %. Further, the composites treated with PP-g-MA exhibited improved mechanical
properties which confirmed efficient fiber-matrix adhesion. DMT analysis showed that the PP composites made of 30 % wheat
straw containing 3 % PP-g-MA showed the highest E’ and lowest tan δ than the untreated ones. Also, the thermal stability of
wheat straw was lower than PP and as filler content in the composites increased, the thermal stability decreased and the ash
content increased. 相似文献
9.
Ting-Ting Li Rui Wang Ching-Wen Lou Jan-Yi Lin Jia-Horng Lin 《Fibers and Polymers》2014,15(2):315-321
Effects of needle-punching and thermo-bonding on tensile property, air permeability, puncture resistances and EMI shielding effectiveness were discussed for carbon-reinforced composite and glass-reinforced composite. The result shows that, needle-punching significantly improves static and dynamic puncture resistances. As increase of needle-punched density, static and dynamic puncture resistances show firstly increasing and then decreasing trend. Thermo-bonding almost has no influence on static puncture resistance, but effectively decreases dynamic puncture resistance. Comparatively, carbon-reinforced composite shows higher static and dynamic puncture resistances than glass-reinforced composites when being needle-punched at 200 needles/cm2. Meanwhile, carbon-reinforced composite has superior EMI shielding effectiveness to 40–60 dB at frequency of above 1 GHz, reaching 99.99 % shielding efficacy. 相似文献
10.
In this work, hybrid composites were fabricated by hand layup method to hybridize treated Pineapple leaf fibre (PALF) and kenaf fibre (KF) in order to achieve superior mechanical properties on untreated hybrid composites. Silane treated PALF/KF phenolic hybrid composites were prepared on various fibre fraction to investigate mechanical properties and compared with untreated PALF/KF phenolic hybrid composites. The effects of silane treatment on hybrid composites were investigated by fourier transform infrared spectroscopy (FTIR) and found very effective peaks. Effects of treated hybrid composites were morphologically investigated by using scanning electron microscopy images and analysed the tensile results. Treated PALF/KF phenolic hybrid composites enhanced the flexural strength, modulus, impact strength and energy absorption while tensile strength and modulus decreased. The overall performances of 70 % PALF 30 % Kenaf hybrid composites were improved after silane treatment. Silane treatment of fibres improved the mechanical performance of hybrid composites and it can be utilized to produce components for building structure, materials and automobile applications. 相似文献
11.
M. A. Abd El-baky 《Fibers and Polymers》2017,18(12):2417-2432
A study on the tensile and flexural properties of jute-glass-carbon fibers reinforced epoxy hybrid composites in inter-ply configuration is presented in this paper. Test specimens were manufactured by hand lay-up process and their tensile and flexural properties were obtained. The effects of the hybridization, different fibers content and plies stacking sequence on the mechanical properties of the tested hybrid composites were investigated. Two-parameter Weibull distribution function was used to statistically analyze the experimental results. The failure probability graphs for the tested composites were drawn. These graphs are important tools for helping the designers to understand and choose the suitable material for the required design and development. Results showed that the hybridization process can potentially improve the tensile and flexural properties of jute reinforced composite. The flexural strength decreases when partial laminas from a carbon/epoxy laminate are replaced by glass/epoxy or jute/epoxy laminas. Also, it is realized that incorporating high strength fibers to the outer layers of the composite leads to higher flexural resistance, whilst the order of the layers doesn’t affect the tensile properties. 相似文献
12.
Sara Madadi Ardekani Alireza Dehghani Mariam A. Al-Maadeed Mat Uzir Wahit Azman Hassan 《Fibers and Polymers》2014,15(7):1531-1538
This study presents the mechanical and thermal properties of environment-friendly composites made from recycled newspaper fibers reinforced recycled poly(ethylene terephthalate) (rPET) resin with the addition of styrene-ethylene-butylene-styrene grafted maleic anhydride (SEBS-g-MA) as compatibilizer. The effect of SEBS-g-MA addition (i.e., 10 phr) by using a twin-screw extruder to the rPET resin, followed by different fiber content (5, 10 and 15 wt.%) on the tensile, flexural and impact properties of the composites were determined. Stiffness of composites increased significantly compared to those of rPET/SEBS-g-MA blend. Fiber addition resulted in moderate increases in both tensile and flexural strength of the composites. Scanning electron microscope (SEM) photomicrographs of the impact fracture surfaces demonstrate good adhesion at 5 and 10 % fiber content. Differential scanning calorimetry (DSC) showed that the presence of newspaper fibers enhanced the nonisothermal crystallization kinetics and crystallinity. Thermal stability of the composites was improved as indicated by thermogravimetric analysis (TGA). 相似文献
13.
Polymer composites of polyamide 6,6 reinforced with short glass fiber were prepared by injection molding, conditioned under dry, 50 % relative humidity and wet. Investigations by DSC, DMA and tensile tests were conducted. FLD study showed that more fiber degradation occurred during processing of the composites with higher fiber loading. DSC analysis revealed that the incorporation of glass fiber and moisture into the PA 6,6 matrix resulted in a remarkable decrease in the degree of crystallinity. DMA results revealed the glass transition temperatures were sensitive to moisture absorption and their values moved to a lower temperature upon exposure to moisture. Incorporation of glass fiber into the polyamide 6,6 gave rise to a significant improvement in tensile modulus and tensile strength, while tensile strain was reduced. Exposure to different environments from dry to wet conditions resulted in a decrease in the strength and modulus, while tensile strains decreased. 相似文献
14.
15.
Zikui Bai Weilin Xu Jie Xu Xin Liu Hongjun Yang Shili Xiao Guijie Liang Libo Chen 《Fibers and Polymers》2012,13(10):1239-1248
A series of PU fibrous membranes were fabricated by using electrospinning method. The microstructure of the membranes was characterized by field-emission scanning electron microscopy, X-ray diffraction and Fourier transform infrared spectrum. Their mechanical properties were tested by dynamic mechanical thermal analysis and stress-strain behaviors. The solution concentration, the applied voltage and the tip-collector distance had an effect on the crystallinity degree and molecular orientation of PU, the size and distribution of the fiber diameter and the point-bonded structures between the fibers, leading to the change in the microstructure and the mechanical properties of the fibrous membrane. Fibers with a smaller diameter had higher strength but lower ductility. The fibrous membranes indicated the similar stress-strain behaviors, which slopes in the initial stage were low and that in the later stage were high. The initial elastic behavior with the low Young’s modulus were attributed to the network structure of the fibrous membranes and that with the high Young’s modulus was from the electrospun PU fibers. 相似文献
16.
Organic fiber from animal waste was used for the development of environmentally friendly animal fiber based polyester composites using cow hair. The cow hair fibers were cut into 10 mm lengths to produce the needed short fiber for random dispersion in the matrix. Before use, some of the fibers were treated with sodium hydroxide for fiber surface modification while some were left as untreated. Composites were developed using predetermined proportions of the fibers in an open mould production process. Samples were formed into tensile and flexural shape in their respective moulds and were stripped off the moulds after curing while further curing was ensured for 27 days before testing. Tensile and flexural properties of the cow hair fiber reinforced polyester composites were evaluated from which it was discovered that the untreated fiber reinforced composites possess better enhancement of mechanical properties compared to the treated fiber reinforced composites and the unreinforced polyester material. Mathematical models for the tensile and flexural properties were developed using statistical packages and estimation using developed software. The developed models revealed high degree of correlation between the experimental values and the predicted values. This denotes that the models can be used to predict the mechanical properties of cow hair reinforced polyester composites for various reinforcement contents. 相似文献
17.
Lightweight reinforced thermoplastic (LWRT) is a newly developed porous material. The low density, high rigidity, design flexibility and sound absorption of LWRT facilitate its application in the automotive industry. Fibers are bonded with a matrix and air is imported by deconsolidation, which is not only economical but also environmentally friendly. In this work, film stacking and non-woven methods were employed as the impregnation techniques to manufacture LWRT. The molded thickness and surface density of LWRT were varied to study their influences on the structures and mechanical properties. Different lengths of fibers in LWRT were selected and 7 % PP-g-MAH was added to the matrix and compared with unmodified matrix. The mechanical properties decreased with the increase in molded thickness and the decrease in surface density. With higher fiber length, the strength and stiffness increased, while the toughness exhibited a maximum value at 80 mm fiber length. The strength and stiffness of LWRT were also enhanced when 7 % PP-g-MAH was added. 相似文献
18.
Electrically conducting textile fibers were produced by wet-spinning under various volume fractions using thermoplastic polyurethane (TPU) as a polymer and carbon black (CB), Ag-powder, multi-walled carbon nanotubes (MWCNTs), which are widely used as electrically conducting nanofillers. After applying the fiber to the heat drawing process at different draw ratios, the filler volume fraction, linear density, breaking to strength, and electrical conductivity according to each draw ratio and volume fraction. In addition, scanning electron microscopy (SEM) images were taken. The breaking to strength of the TPU fiber containing the nanofillers increased with increasing draw ratio. At a draw ratio of 2.5, the breaking to strength of the TPU fiber increased by 105 % for neat-TPU, 88 % for CB, 86 % for Ag-powder, and 127 % for MWCNT compared to the undrawn fiber. The breaking to strength of the TPU fiber containing CB decreased gradually with increasing volume fraction, and in case of Ag-powder, it decreased sharply owing to its specific gravity. The electrical conductivity of the TPU fiber containing CB and Ag-powder decreased with increasing draw ratio, but the electrical conductivity of the TPU fiber containing MWCNT increased rapidly after the addition of 1.34 vol. % or over. The moment when the aggregation of MWCNT occurred and its breaking to strength started to decrease was determined to be the percolation threshold of the electrical conductivity. The heat drawing process of the fiber-form material containing the anisotropic electrical conductivity nanofillers make the percolation threshold of the electrical conductivity and the maximum breaking to strength appear at a lower volume fraction. This is effective in the development of a breaking to strength and electrical conductivity. 相似文献
19.
The work focuses on the influencing effect of fiber surface treatment by BP towards mechanical properties of BSF reinforced PLA composites. BSF were treated by BP to improve the adhesion between fibres and matrix. BSF (30 wt %) reinforced PLA (70 wt %) hybrid composites were fabricated by means of twin screw extrusion followed by injection molding process. Tensile strength, flexural strength and modulus were tested by means of UTM. The morphological analysis of the untreated and treated BSF reinforced PLA composites in comparison with virgin PLA was carried out by SEM to examine the existence of interfacial adhesion between BSF and PLA. The resultant data reveals that treated BSF restricts the motion of the PLA matrix due to better wettability and bonding. Consequently, mechanical properties like tensile and flexural moduli of BSF reinforced PLA composites were enhanced in comparison to virgin PLA and untreated BSF reinforced PLA composites. The results are discussed in detail. 相似文献
20.
Hossein Ebrahimnezhad-Khaljiri Reza Eslami-Farsani Kousha Abbas Banaie 《Fibers and Polymers》2017,18(2):296-302
In this research work, aramid and semi-carbon fibers (SCFs) were hybridized in the form of interlayer or layer by layer into epoxy matrix by hand lay-up method. Afterward, the effect of hybridization on the thermal and mechanical properties of epoxy composites was characterized by thermal analysis; horizontal burning; tensile and bending tests. Based on the results of the mechanical tests, increasing SCFs to aramid fibers ratio decreased tensile strength, elastic and flexural modulus. But with increasing this ratio to 53 % failure strain reduced, whereas in the ratios of more than 53 %, the failure strain enhanced. The results of thermal analysis curves indicated that there are three stage mass loss at the temperature ranges of 100-220, 270-470 and 500-620 °C. It was also found that with increasing the SCFs to aramid fibers ratio decreased the third-stage of the mass loss. The results of horizontal burning showed that increasing the SCFs to aramid fibers ratio decreased the rate of burning. 相似文献