首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this work, hybrid composites were fabricated by hand layup method to hybridize treated Pineapple leaf fibre (PALF) and kenaf fibre (KF) in order to achieve superior mechanical properties on untreated hybrid composites. Silane treated PALF/KF phenolic hybrid composites were prepared on various fibre fraction to investigate mechanical properties and compared with untreated PALF/KF phenolic hybrid composites. The effects of silane treatment on hybrid composites were investigated by fourier transform infrared spectroscopy (FTIR) and found very effective peaks. Effects of treated hybrid composites were morphologically investigated by using scanning electron microscopy images and analysed the tensile results. Treated PALF/KF phenolic hybrid composites enhanced the flexural strength, modulus, impact strength and energy absorption while tensile strength and modulus decreased. The overall performances of 70 % PALF 30 % Kenaf hybrid composites were improved after silane treatment. Silane treatment of fibres improved the mechanical performance of hybrid composites and it can be utilized to produce components for building structure, materials and automobile applications.  相似文献   

2.
In this study, the ballistic impact performance of woven kenaf-Kevlar hybrid and non-hybrid composites against fragment simulating projectiles (FSPs) was investigated. All the composites were prepared using the hand lay-up technique, method, followed by static load compression. The hybrid composites consist of Kevlar fabric and woven kenaf layers. The results obtained indicate that the energy absorption, ballistic limit velocity (V 50) and failure behaviour of the composites during the impact event were affected by the woven kenaf hybridisation. The additional kenaf layers in hybrid composites resulted in the increase in composites thickness and areal density, thus increased the energy absorption (14.46 % to 41.30 %) and V 50 (5.5 % to 8.44 %). It was observed that the hybrid composites failed through a combination of fibre shear, delamination and fibre fracture in the impacted surface, woven kenaf-Kevlar interface and rear surface respectively. Although the specific energy absorption was lower for the hybrid composites, further investigations need to be carried out to utilise the great potential natural fibres.  相似文献   

3.
We investigated the surface modification of jute fiber by oxygen plasma treatments. Jute fibers were treated in different plasma reactors (radio frequency “RF” and low frequency “LF” plasma reactors) using O2 for different plasma powers to increase the interface adhesion between jute fiber and polyester matrix. The influence of various plasma reactors on mechanical properties of jute fiber-reinforced polyester composites was reported. Tensile, flexure, short beam shear tests were used to determine the mechanical properties of the composites. The interlaminar shear strength increased from 11.5 MPa for the untreated jute fiber/polyester composite to 19.8 and 26.3 MPa for LF and RF oxygen plasma treated jute fiber/polyester composites, respectively. O2 plasma treatment also improved the tensile and flexural strengths of jute fiber/ polyester composites for both plasma systems. It is clear that O2 plasma treatment of jute fibers by using RF plasma system instead of using LF plasma system brings about greater improvement on the mechanical properties of jute/polyester composites.  相似文献   

4.
Based on the situ preparation of silica nanoparticles (SiO2) on the surface of Graphene nanoplatelets (GNPs) in the previous work, these unique three dimensional (3D) materials were introduced into epoxy resin to study the reinforcing and toughening synergy effect on the composites. Firstly, the tensile tests showed that Graphene/SiO2 hybrid materials attached with different size of SiO2 particles exhibited different reinforcing and toughening effect on the composites. With the increasing of the diameter of SiO2 particles, the toughness and strength properties of the composites firstly improved and then decreased, and when the average diameter was 0.14 μm, the elongation reached the max.. Meanwhile, the fractured surfaces presented on SEM images were consistent with the results of the tensile tests, which further explained the hybrid materials increased the interfacial adhesion between the fillers and matrix, leading to significant improvement in mechanical properties. Moreover, the DSC curves demonstrated that Graphene/SiO2 hybrid materials accelerated the curing process of epoxy resin due to the cross-link structure between fillers and matrix. Lastly, the crack propagation modes were built to clarify the synergy effect mechanism of reinforcing and toughening on nanoparticles/epoxy resin composites.  相似文献   

5.
Hybrid composites of epoxy novolac reinforced with short bagasse fibres and short coir fibres were prepared. The mechanical and dynamic mechanical properties of these bagasse-coir hybrid fibres reinforced epoxy novolac composites were investigated with reference to different layering patterns of the composites. The tensile properties of the tri-layer composites are recorded higher than those of the bi-layer composites, whereas the flexural properties of the tri-layer composites are lower than bi-layer composites. The tensile strength of the intimate mix composite is comparable with trilayer composite having bagasse as skin material. The effect of layering pattern on storage modulus (E′), damping behavior (tan δ), and loss modulus (E″) was studied as a function of temperature and frequency. The E′ values of the bi-layer composites are recorded lower than those of tri-layer (bagasse/coir/bagasse) and intimately mixed hybrid composites. The minimum E′ value is obtained for the composites made with coir as skin layer. Bi-layer composite shows maximum damping property. The theoretical modeling showed good correlation with experimental results at above glass transition temperature (T g ), while theoretical model deviates experimental data at lower T g . The Arrhenius relationship has been used to calculate the activation energy of the glass transition of the composites.  相似文献   

6.
In this research, reinforcing effect of hybrid filler including rice husk (RH), beech bark (BB) and nano-SiO2, in polypropylene has been investigated. In the sample preparation, four levels of filler loading were used for waste lignocellulosic materials (55-58 wt.%) and nano-SiO2 (0-4 wt.%). In order to increase the interphase adhesion, polypropylene grafted with maleic anhydride was added as a coupling agent to all the composites studied. The physical properties, viz. the thickness swelling and water absorption, and mechanical properties, namely, the tensile, flexural and notched Izod impact strengths, of the composites were determined. Generally, high amount of filler content in composites can lead to the reduction of interfacial adhesion between matrix polymer and filler, and it limits their applications. The results showed that while flexural properties and elongation at break were moderately improved by the increase in the amount of filler in the matrix, tensile and Izod impact strengths decreased dramatically. However, the composites had acceptable mechanical strength levels. The mechanical properties of composites filled with RH are generally greater than BB composites. The thickness swelling and water absorption of the composites increased with the increase in the filler loading, but to a negligible extent as compared with the wood-based composites and the solid woods. Nano-SiO2 addition showed little positive effect on the mechanical properties. It can be concluded from this study that the used waste lignocellulosic materials are attractive reinforcements from the standpoint of their physico-mechanical properties.  相似文献   

7.
The present study explored the preparation of glass fiber-coir reinforced unsaturated polyester resin hybrid (GCU) composites with a novel Prepreg/Press fabrication process. Flexural, impact and thermal-mechanical properties of GCU composites were investigated. Coir reinforced unsaturated polyester resin (CU) composites was also prepared with the same process to explore the enhancement effect of glass fabric on the mechanical properties of coir-based composites. The effect of fabrication pressure on the mechanical properties of CU and GCU composites was examined. Micromorphology and interfacial reaction of the composites were analyzed. It is shown that GCU composites fabricated with the Prepreg/Press process have excellent flexural strength (185.0 MPa), MOE (18.3 GPa), and impact strength (67.2 kJ/m2). The mechanical properties of GCU composites increased with the increase of applied pressure up to 0.8 MPa in the Prepreg/Press process. However, further increase of applied pressure led to the decrease in mechanical properties. The addition of glass fabrics to GCU composites showed 419 % improvement in flexural strength, 708 % improvement in MOE and 562 % improvement in impact strength over coir-based composites. The micromorphology study proved that the poor interfacial bonding between coir and matrix led to the low mechanical properties of coir-based composites.  相似文献   

8.
A hierarchically Ag/nylon 6 tree-like nanofiber membrane (Ag/PA6 TLNM) was fabricated by adding tetrabutylammonium chloride (TBAC) and silver nitrate (AgNO3) into spinning solution via one-step electrospinning. TBAC presented in PA6/formic acid (HCOOH) spinning solution was able to cause the formation of a tree-like structure due to its space steric structure and the increasing of solution conductivity. Electrospinning solvent acted as a reducing agent for in situ conversion of AgNO3 into silver nanoparticles (Ag NPs) during the solution preparation. SEM, TEM, FT-IR XPS and XRD confirmed that Ag NPs were doped in the prepared nanofiber membrane successfully and the mechanical properties, pore size distribution and hydrophilicity of the membranes were investigated. The results showed that the tree-like structure improved the mechanical properties and hydrophilicity of the membrane while ensuring high specific surface area and small pore size. And the Ag/PA6 TLNM showed superior antibacterial properties against both E. coli and S. aureus compared with common Ag/PA6 nanofiber membranes (Ag/PA6 NMs). All of the results show that the Ag/PA6 TLNM would have potential applications in water purification.  相似文献   

9.
The effects of chemical treatment on the mechanical, morphological, and chemical resistance properties of uniaxial natural fabrics, Grewia tilifolia/epoxy composites, were studied. In order to enhance the interfacial bonding between the epoxy matrix and the Grewia tilifolia fabrics, two different types of treatment: alkali treatment (5 % NaOH) and (3-aminopropyl)-triethoxysilane coupling agent (CA), were used. The epoxy composites containing 0–15 wt% of Grewia tilifolia fabric were prepared by hand lay-up technique, at room temperature. The tensile and flexural properties of the untreated, alkali-treated and coupling agent treated Grewia tilifolia reinforced epoxy composites were determined as a function of fabric loading. The 9 % wt Grewia tilifolia fabric reinforced epoxy composites showed improved tensile and flexural modulii when compared to the neat epoxy matrix. Significant improvement in the mechanical properties was obtained when both alkali and coupling agent treated fabrics were used as reinforcement. Morphological studies demonstrated that better adhesion between the fabrics and the matrix was achieved especially when the alkali-treated and coupling agent treated Grewia tilifolia fabrics were used in the composites. For the water absorption and chemical resistance studies, various solvents, acids and alkalis were used on the epoxy composites. This study has shown that Grewia tilifolia fabric/epoxy composites are promising candidates for structural applications, where high strength and stiffness are required.  相似文献   

10.
The aim of this study was to fabricate a new kind of hybrid fabric composites with the cross-linked electrospun poly(vinyl butyral) (PVB) composite nanofibres. The experiments were performed with the 10 wt.% PVB/ethanol solution for electrospinning where the modified silica nanoparticles (mSiO2), the oxidised single-walled carbon nanotubes (o-SWCNT) and the o-SWCNT/mSiO2 hybrid nanoparticles were added to the solution. The electrospun fibres were crosslinked with glutaraldehyde (GA) afterwards in order to reinforce the composite structure by bonding to the p-aramid fabrics. The chemical and thermo-mechanical properties of the hybrid fabric composites were evaluated. The greatest improvement in thermo-mechanical properties was achieved by the sample which contained the cross-linked PVB fibres with the o-SWCNT/mSiO2 hybrid nanoparticles.  相似文献   

11.
Jute fabrics (hessian cloth) reinforced polypropylene (PP) matrix composites (45 wt% fiber) were fabricated by compression molding. Jute fabrics were treated with 2-hydroxyethyl methacrylate (HEMA) using ultraviolet radiation in order to improve the mechanical properties of the composites. Concentration of HEMA, soaking time and radiation dose were optimized. It was found that 15% HEMA in methanol along with photoinitiator Darocur-1173 (2 %), 10 min soaking time and 20th pass of radiation rendered better performance. Urea of different concentrations (0.5–2 %) was incorporated with 15 % HEMA to monitor its effect on the properties and 1 % urea revealed the best results. For the improvement of the properties, jute fabrics were treated with potassium permanganate (KMnO4) solution in acetone of different concentrations (0.02, 0.03, 0.05, and 0.5 %) at different soaking times (1, 2, 3, and 5 min) before the composite fabrication. Optimized jute fabrics (jute fabrics treated with 0.03 % KMnO4) were again treated with HEMA (15 %) solution along with urea (1 %) and promising improvement of mechanical properties of the composites was observed. Scanning electron microscopy, water uptake, soil degradation and thermal aging of the treated and untreated composites were also performed.  相似文献   

12.
This research work was concerned with the evaluation of the effect of fibre content on the mechanical properties of composites. Composites were fabricated using jute/phenol formaldehyde (PF), rockwool/PF, and jute/rockwool hybrid PF with varying fibre loadings. Jute and rockwool fibre reinforced PF composites were fabricated with varying fibre loadings (16, 25, 34, 42, 50, and 60 vol.%). The jute/rockwool hybrid PF composites were manufactured at various ratios of jute/rockwool fibres such as 1:0, 0.92:0.08, 0.82:0.18, 0.70:0.30, 0.54:0.46, 0.28:0.72, and 0:1. Total fibre content of the hybrid composites was 42 vol.%. The results showed that tensile strength of the composite increased with increasing fibre content up to 42 vol.% over which it decreased for jute and rockwool fibre reinforced PF composites. Flexural strength of the composite was noted to peak at a fibre loading of 42 vol.% for jute/PF composites, and 34 vol.% for rockwool/PF composites. Impact strength of jute/PF composites increased with increasing fibre loading but that of rockwool/PF composites decreased at higher (>34 vol.%) fibre loadings. Tensile, flexural, and impact strengths of jute/PF composites were found to be higher than those of rockwool/PF composites. The maximum hardness values were obtained 42 vol.% for jute/PF composite, and 34 vol.% for rockwool/PF composite. Further increase in fibre loading adversely affected the hardness of both composites. For jute/rockwool hybrid PF composites, tensile and impact strengths decreased with increasing rockwool fibre loading. The maximum flexural strength of jute/rockwool hybrid PF composites was obtained at a 0.82:0.18 jute/rockwool fibre ratio while maximum hardness was observed at a 0.28:0.72 jute/rockwool fibre ratio. The fractured surfaces of the composites were analysed using scanning electron microscope in order to have an insight into the failure mechanism and fibre/matrix interface adhesion.  相似文献   

13.
Jute fabrics reinforced thermoset composites were prepared with different formulations using urethane acrylate oligomer, methanol, and benzyl peroxide. Jute fabrics were soaked in the prepared formulations and fiber content in the composites was optimized with the extent of mechanical properties. Among all the resulting composites, 55 wt% jute content at oligomer:methanol:benzyl peroxide=75:24.5:0.5 (w/w/w) ratio showed best mechanical properties. The optimized jute fabrics were cured under UV radiation at different intensities and their mechanical properties were measured. Jute fabrics were treated with potassium permanganate (KMnO4) solution of different concentrations (0.01, 0.02, 0.03, and 0.05 wt%) for different soaking times (1–5 min) before the composite fabrication. Optimized jute fabrics (jute fabrics treated with 0.02 wt% KMnO4 for 2 min soaking time) were soaked in the optimized formulation and cured under UV radiation at different intensities and measured their mechanical properties. Scanning electron microscopic investigation showed that surface modification improves fiber/matrix adhesion. Water uptake and soil degradation test of the treated and untreated composite samples were also performed.  相似文献   

14.
The poly(vinyl acetate) (PVAc)/zinc oxide (ZnO) microcapsule and PVAc/titanium dioxide (TiO2) microcapsule were synthesized via in-situ emulsion polymerization method. The PVAc/ZnO microcapsule and PVAc/TiO2 microcapsule were characterized by fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis(TG), transmission electron microscopy (TEM), and UV-visible spectroscopy (UV-vis). Effect of PVAc/ZnO microcapsule and PVAc/TiO2 microcapsule on properties of poly(lactic acid) (PLA) was evaluated by UV-vis, SEM and mechanical properties test. The results showed that the addition of PVAc/ZnO and PVAc/TiO2 microcapsules as a UV-blocking additive could significantly enhance UV-blocking property of PLA/PVAc/ZnO microcapsule composites and PLA/PVAc/TiO2 microcapsule composites compared with pure PLA, PLA/ZnO composites and PLA/TiO2 composites. The mechanical properties of PLA/PVAc/ZnO microcapsule composites were better than those of PLA/ZnO composites due to good dispersability and compatibility of PVAc/ZnO microcapsule in PLA matrix. Also, the mechanical properties of PLA/PVAc/TiO2 microcapsule composites were better than those of pure PLA and PLA/TiO2 composites. This study demonstrates the great potentials of the intrinsically UV shield additive PVAc/ZnO and PVAc/TiO2 microcapsules in the application of high performance matrix resin and composite material.  相似文献   

15.
The graphene oxide (GO) sheets are chemically grafted with γ-etheroxygentrimethoxysilane (KH560) and liquid crystalline epoxy (LCE) is synthesized from 4,4′-bis(2-hydroxyhexoxy)biphenyl (BP2) and epichlorohydrin before being incorporated into epoxy matrix. Then we present a novel approach to the fabrication of advanced polymer composites from epoxy matrix by incorporation of two modifiers, which are grafted GO (g-GO) and LCE. The mechanical properties of epoxy composites are greatly improved by incorporating LCE/g-GO hybrid fillers. For instance, the addition of 3 wt% hybrid filler (2 wt% g-GO and 1 wt% LCE) into the epoxy matrix resulted in the increases in impact strength by 132.6 %, tensile strength by 27.6 % and flexural strength by 37.5 %. Moreover, LCE/g-GO hybrid fillers are effective to increase thermal decomposition temperature, glass transition temperature, and storage modulus by strong affinity between the fillers and epoxy matrix.  相似文献   

16.
Two additives (Silo Guard (SG) and propionic acid (PA)) were tested for their effects on the quality and aerobic security of sorghum–sudangrass hybrid silages (JC‐1 and WC‐2). Two sorghum–sudangrass hybrid varieties were harvested for ensiling without additives (CK) or after the following treatments: SG at 0·5% of fresh forage or PA at 0·5% of fresh forage, with three replicates per treatment. The addition of SG and PA both affected the fermentation quality and chemical composition of the silages by lowering pH and NH3‐N/TN and increasing lactic acid, the LA/TA ratio, WSC and CP concentrations compared with the untreated silages. In vitro DM digestibility (IVDMD), in vitro NDF digestibility (IVNDFD) and in vitro CP digestibility (IVCPD) were increased by SG in the JC‐1 silages and WC‐2 silages. Both additives improved the aerobic stability of sorghum–sudangrass hybrid silages. Furthermore, the additives reduced the mould counts and the aflatoxin and zearalenone levels compared with the untreated silages following aerobic exposure. Therefore, ensiling two sorghum–sudangrass hybrid varieties resulted in high‐quality silages. The addition of SG and PA improved silage quality, in vitro digestibility and aerobic security.  相似文献   

17.
Polymer matrix composites (PMCs) owing to their outstanding properties such as high strength, low weight, high thermal stability and chemical resistance are broadly utilized in various industries. In the present work, the influence of silanized CaCO3 (S-CaCO3) with 3-aminopropyltrimethoxysilane (3-APTMS) coupling agent at different values (0, 1, 3 and 5 wt.% with respect to the matrix) on the mechanical behavior of basalt fibers (BF)/epoxy composites was examined. BF-reinforced composites were fabricated via hand lay-up technique. Experimental results from three-point bending and tensile tests showed that with the dispersion of 3 wt.% S-CaCO3, flexural strength, flexural modulus, tensile strength and tensile modulus enhanced by 28 %, 35 %, 20 % and 30 %, respectively. Microscopic examinations revealed that the development of the mechanical properties of fibrous composites with the incorporation of modified CaCO3 was related to enhancement in the load transfer between the nanocomposite matrix and BF as well as enhanced mechanical properties of the matrix part.  相似文献   

18.
The tribological performance of PA6 and carbon fiber reinforced polyamide 6 (CF/PA6) under dry sliding condition was examined. Different contents of carbon fibers were employed as reinforcement. All filled and unfilled polyamide 6 composites were tested against CGr15 ball and representative testing was performed. The effects of carbon fiber content on tribological properties of the composites were investigated. The worn surface morphologies of neat PA6 and its composites were examined by scanning electron microscopy (SEM) and the wear mechanisms were discussed. Moreover, all filled polyamide 6 have superior tribological characteristics to unfilled polyamides 6. The optimum wear reduction was obtained when the content of carbon fiber is 20 vol%.  相似文献   

19.
Graphene is classified as a carbon-based material. Structurally, graphene is made up of carbon-based two-dimensional atomic crystals and a one atom thick planar sheet of sp2-bonded carbon atoms. This sort of arrangement in graphene makes it a unique material with exceptional mechanical, physicochemical, thermal, electrical, optical, and biomedical properties. Methods for graphene-based fabric production mainly use graphene-based materials such as graphene (G), graphene oxide (GO), and reduced graphene oxide (rGO) coated on fabric or yarn. Waterborne polyurethane (WPU) is one of the most rapidly developing and active branches of polyurethane chemistry. More and more attention is being paid to graphene-coated fabrics owing to their low temperature flexibility, the presence of zero or very few VOCs (volatile organic compounds), water resistance, pH stability, superior solvent resistance, excellent weathering resistance, and desirable chemical and mechanical properties. It is used as a coating agent or adhesive for fibers, textiles, and leather. Also, graphene-containing materials have been used to enhance the properties of WPU. In this study, graphene/WPU composite solution and film was prepared to conduct basic research for developing electrical heating textiles which is not harmful to the human body, flexible and excellent in electrical properties. Graphene/WPU composite solutions were prepared with a graphene content of 0, 2, 4, 8, and 16 wt%, and graphene/WPU film was prepared with solution casting method. The graphene contents were analyzed for their surface morphology, electrical properties, and electrical heating properties.  相似文献   

20.
The main objective of this research was to study the effect of fiber content variation and stearic acid (SA) treatment on the fundamental properties of unidirectional coir fiber (CF) reinforced polypropylene (PP) composites. Several percentages of filler contents were used (10–40 wt %) in order to gain insights into the effect of filler content on the properties of the composites. Coir/PP composites were fabricated by compression molding, and the properties of composites were studied by physico-mechanical and thermal properties. The results from mechanical properties such as tensile strength (TS), tensile modulus (TM) and impact strength (IS) of the CF/PP composites were found to be increased with increasing fiber content, reached an optimum and thereafter decreased with further increase in fiber content. Treatment of the coir with SA as the coupling agent enhanced the mechanical properties, crystallization temperature and crystallinity of virgin PP and water desorption of the resulting composites, resulting from the improved adhesion between the CF and PP matrix. Scanning electron micrographs (SEM) of the tensile fractured samples showed improved adhesion between fiber and matrix upon treatment with SA. Interfacial shear strength (IFSS) of the composites was measured by single fiber fragmentation test (SFFT).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号