首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Spacer fabrics have been used in many areas varying from medical applications to protection applications. Especially the three dimensional characteristic of spacer fabrics presents different opportunities for special applications. The compression resistant characteristic of spacer fabrics is one of their main properties. In this research the compression behaviour of spacer fabrics designed for concrete applications has been investigated. The effects of some parameters such as spacer yarn material, pattern and threading on the compression behaviour of spacer fabrics have been studied. According to the test results it was found that the material, pattern and the threading of spacer yarns are important parameters for the compression characteristics of spacer fabrics. It was also observed that the location angle of spacer yarn and the amount of the spacer yarns influence the compression behaviour of spacer fabrics.  相似文献   

2.
Composites consisting of polyurethane (PU)/carbon nanotubes (CNTs) have been successfully prepared by solution mixing method. CNTs were modified through mechano-chemical reaction to increase the compatibility with PU via hydrogen bondings. SEM microphotographs proved that modified CNTs (M-CNTs) became shorter and FTIR spectra showed that hydroxyl groups had been introduced to the surface of M-CNTs. SEM images of PU/M-CNTs composites also proved that M-CNTs were effectively dispersed in PU matrix. Mechanical property tests showed that addition of M-CNTs could significantly improve the tensile properties of PU/M-CNTs composite (breaking strength enhancement ratio for composite with 5.0 wt% M-CNTs was 103.81 %). The thermal stability of composites with M-CNTs was also improved. The initial degradation temperature enhancement was 19.9 oC for the composite with 0.5 wt% M-CNTs. Electrical property tests showed that the electrical properties were improved by adding M-CNTs. The volume conductivities increased 3 and 5 orders of magnitude for the composites with 5.0 wt% and 10 wt% M-CNTs, respectively. The addition of M-CNTs had little effect on the elastic properties of the composites.  相似文献   

3.
The aim of this paper is to study the effect of fibre content on mechanical and morphological properties and thermal stability of roselle fibres (RFs) reinforced polyurethane (TPU) composites. The RF/TPU composites were prepared at difference fibre contents; 10, 20, 30, 40 and 50 wt% by melt mixed mixer and hot press at 170 °C. Mechanical (tensile, flexural and impact strength) and Thermogravimetric analysis (TGA) properties of RF/TPU composites were measured according to ASTM standard. Obtained results indicated that effect of fibre contents display improved tensile and flexural and impact strength properties. RF/TPU composites show the best mechanical and thermal properties at 40 wt% roselle fibre content. Scanning electron microscopy (SEM) micrograph of fractured tensile sample of the roselle composite revealed good fibre/matrix bonding. TGA showed that RF/TPU with difference fibre contents had improved thermal stability.  相似文献   

4.
Effects of needle-punching and thermo-bonding on tensile property, air permeability, puncture resistances and EMI shielding effectiveness were discussed for carbon-reinforced composite and glass-reinforced composite. The result shows that, needle-punching significantly improves static and dynamic puncture resistances. As increase of needle-punched density, static and dynamic puncture resistances show firstly increasing and then decreasing trend. Thermo-bonding almost has no influence on static puncture resistance, but effectively decreases dynamic puncture resistance. Comparatively, carbon-reinforced composite shows higher static and dynamic puncture resistances than glass-reinforced composites when being needle-punched at 200 needles/cm2. Meanwhile, carbon-reinforced composite has superior EMI shielding effectiveness to 40–60 dB at frequency of above 1 GHz, reaching 99.99 % shielding efficacy.  相似文献   

5.
Jute fabrics reinforced thermoset composites were prepared with different formulations using urethane acrylate oligomer, methanol, and benzyl peroxide. Jute fabrics were soaked in the prepared formulations and fiber content in the composites was optimized with the extent of mechanical properties. Among all the resulting composites, 55 wt% jute content at oligomer:methanol:benzyl peroxide=75:24.5:0.5 (w/w/w) ratio showed best mechanical properties. The optimized jute fabrics were cured under UV radiation at different intensities and their mechanical properties were measured. Jute fabrics were treated with potassium permanganate (KMnO4) solution of different concentrations (0.01, 0.02, 0.03, and 0.05 wt%) for different soaking times (1–5 min) before the composite fabrication. Optimized jute fabrics (jute fabrics treated with 0.02 wt% KMnO4 for 2 min soaking time) were soaked in the optimized formulation and cured under UV radiation at different intensities and measured their mechanical properties. Scanning electron microscopic investigation showed that surface modification improves fiber/matrix adhesion. Water uptake and soil degradation test of the treated and untreated composite samples were also performed.  相似文献   

6.
Fiber reinforced polymer composites have played a dominant role for a long time in a variety of applications for their high specific strength and modulus. The fiber which serves as a reinforcement in reinforced plastics may be synthetic or natural. To this end, an investigation has been carried out to make use of coir, a natural fiber abundantly available in India. Natural fibers are not only strong and lightweight but also relatively very cheap. The present work describes the development and characterization of a new set of natural fiber based polymer composites consisting of coconut coir as reinforcement and epoxy resin as matrix material. The developed composites are characterized with respect to their mechanical characteristics. Experiments are carried out to study the effect of fiber length on mechanical behavior of these epoxy based polymer composites. Finally, the scanning electron microscope (SEM) of fractured surfaces has been done to study their surface morphology.  相似文献   

7.
PP/POSS and PP/SiO2 composite non-woven fabrics filled with polyhedral oligomeric silsesquioxanes (POSS) and SiO2 respectively using a convenient blending method were prepared through melt-blown process with corona charging. The morphology of the composite fibers and the distribution of POSS and SiO2 nanoparticles in PP matrix were investigated by field-emission scanning electron microscope (FSEM) and transmission electron microscope (TEM), respectively. POSS and SiO2 can act as nucleating agent and accelerate the crystallization process during nonisothermal cooling. The shear storage modulus G??, loss modulus G??, and complex viscosity ??* of non-woven fabric reduce when 1 wt % POSS was added and increase for PP5/POSS composite non-woven fabric compared with pure PP non-woven fabrics. However, all G??, G?? and ??* of PP/SiO2 non-woven fabric decrease with increasing SiO2 content owing to plasticization by SiO2. Both stress and elongation at break of the PP/POSS melt-blown non-woven fabrics are improved compared with PP non-woven fabrics, however decrease when SiO2 was added, as compared to the neat PP non-woven fabric. The onset temperature of decomposition for both the PP/POSS and PP/SiO2 composite non-woven fabrics is higher (5?C10 °C) than pure PP and char content is increased with increasing POSS and SiO2.  相似文献   

8.
3D integrated woven spacer composites with thickened face sheets are fabricated successfully. Static compression and impact behavior are analyzed to evaluate the effect of thickened face sheets. The results show that thickened face sheet is an important influence parameter, warp compression and impact properties have been improved significantly than those of composite without thickened face sheets. Moreover, the damage and failure mechanism is significantly different. The main failure mode under flat compression is an abrupt rigid breakage of core fiber bundles. However, the thickened face sheets reduce the shear stress that transfer to core fibers. For warp compression, there is no face sheets fracture or dislocation, the local shear fracture occurs on the thickened face sheets. In regard to low-velocity impact, the strength of thickened face sheets dominates the failure, the damage is mainly manifested as the penetration of the top and bottom face sheets, matrix cracking, interface debonding, micro-buckling, as well as tearing and breakage of core fibers.  相似文献   

9.
The aim of this research is to investigate the development and evaluation of hybrid multi-scale aramid/epoxy composites interleaved with electrospun graphene nanoplatelets/nylon 66 (GNPs/PA66) mats. The reinforced nanofiber mats were explored for their best mechanical properties and PA66 nanofibers with 1 wt% GNPs were selected for composite production. Quasi-static indentation tests were performed on both pristine and nanofiber-modified composites. The experimental results revealed that the introduction of reinforced interleaves within the interlaminar interfaces of composites promotes fracture toughness compared to pristine interleaves. It is shown that there is a particular interleaf thickness for optimum toughening effect of nanofibers. The optimum thicknesses for pristine and reinforced interleaves are 35 and 17.5 μm, respectively.  相似文献   

10.
Composites based on pure Basalt and Basalt/Jute fabrics were fabricated. The mechanical properties of the composites such as flexural modulus, tensile modulus and impact strength were measured depending upon weave, fiber contents and resin. Dynamic mechanical analysis of all composites were done. From the results it is found that pure basalt fiber combination maintains higher values in all mechanical tests. Thermo-gravimetric (TG/DTG) composites showed that thermal degradation temperatures of composites shifted to higher temperature regions compared to pure jute fabrics. Addition of basalt fiber improved the thermal stability of the composite considerably. Scanning electron microscopic images of tensile fractured composite samples illustrated that better fiber-matrix interfacial interaction occurred in hybrid composites. The thermal conductivity of composites are also investigated and thermal model is used to check their correlation.  相似文献   

11.
Natural fibers are largely divided into two categories depending on their origin: plant based and animal based. Plant based natural jute fiber reinforced polypropylene (PP) matrix composites (20 wt% fiber) were fabricated by compression molding. Bending strength (BS), bending modulus (BM), tensile strength (TS), Young’s modulus (YM), and impact strength (IS) of the composites were found 44.2 MPa, 2200 MPa, 41.3 MPa, 750 MPa and 12 kJ/m2, respectively. Animal based natural B. mori silk fiber reinforced polypropylene (PP) matrix composites (20 wt% fiber) were fabricated in the same way and the mechanical properties were compared over the silk based composites. TS, YM, BS, BM, IS of silk fiber reinforced polypropylene composites were found 55.6 MPa, 760 MPa, 57.1 MPa, 3320 MPa and 17 kJ/m2 respectively. Degradation of composites in soil was measured upto twelve weeks. It was found that plant based jute fiber/PP composite losses its strength more than animal based silk fiber/PP composite for the same period of time. The comparative study makes it clear that mechanical properties of silk/PP composites are greater than those values of jute/PP composites. But jute/PP composites are more degradable than silk/PP composites i.e., silk/PP composites retain their strength for a longer period than jute/PP composites.  相似文献   

12.
The present investigation focuses on the effect of fiber surface treatment on the mechanical, thermal and morphological properties of sisal fiber (SF) reinforced recycled polypropylene (RPP) composites. The surface of sisal fiber was modified using different chemicals such as silane, glycidyl methacrylate (GMA) and O-hydroxybenzene diazonium chloride (OBDC) to improve the compatibility between fiber surface and polymer matrix. The experimental results revealed an improvement in the tensile strength to 11 %, 20 % and 31.36 % and impact strength to 78.72 %, 77 % and 81 % for silane, GMA and OBDC treated sisal fiber reinforced recycled polypropylene (RPP/SF) composites respectively as compared to RPP. The thermo gravimetric analysis (TGA), Differential scanning calorimeter (DSC) and heat deflection temperature (HDT) results revealed improved thermal stability as compared with RPP. The morphological analysis through scanning electron micrograph (SEM) supports improves surface interaction between fiber surface and polymer matrix.  相似文献   

13.
Polylactides (PLAs) are a type of environmental friendly material. PLA fabrics feature excellent performance in terms of texture, comfort, curling effect, crystallinity, and transparency. However, because of its aliphatic polyester structure, PLA is relatively fragile as compared with the commercially available products like PET or Nylon. This study adopted water-based polyurethane (PU) to modify the surface of PLA fabrics, thereby enhancing the fabrics’ mechanical properties. Various polyols such as polytetrahydrofuran (PTMG), polycaprolactone diol (PCL), and polycarbonates diol (PC) were used and various NCO/OH molar ratios were designed in this study. As the PLA fabric was processed by dipping in various PU dispersions, it was found that the breaking strength of the fabric was increased, while its elongation at breakage decreased. Particularly, the breaking strength of the fabric modified by PUD50PC containing 50 weight percent of PC and two other polyols was the most prominent showing an 80 % increase in strength. Furthermore, the abrasion resistance of the PUD50PC-modified PLA fabric showed a roughly 6 times increase as compared to the plain PLA fabric. SEM images also reveal that after processing with water-based PU, the PLA fibers are bonded tightly with the water-based PU molecules to increase the breaking strength of the PLA fabrics.  相似文献   

14.
Vertical wicking model was developed based on Darcy’s law. In the model, permeability coefficient, capillary pressure and fabric thickness were used as the key parameters to describe wicking behavior. For the simulation and test, fiber type and fabric structure were chosen as variables. In a highly porous knit fabric, gravitational effect during the wicking process was significant. The higher the capillary pressure was, the higher was the wicking rise. Surface wetting tension, i.e., the specific fluid affinity of material, was newly defined to characterize different capillary pressures in various types of fabric structures. The model, the methodology and the results could provide an insight into fabric design to produce fabric with an optimum wicking performance.  相似文献   

15.
This study was performed to investigate the influence of heat treatment on the chemical transformation and associated improved durability of short bamboo-fibers (BF) and its reinforced composites. Results showed that cleavage of acetyl groups of the hemicelluloses developed with increasing temperature and holding time, and completed beyond 190 °C for more than 3 h, resulting in a noticeable increase of cellulose content and a substantial reduction of concentration of accessible hydroxyl groups. Heat treatment improved thermal stability and anti-UV aging properties of treated BF, and also contributed to a decrease of equilibrium moisture content (EMC) of treated BF and consequent improvements of hygroscopicity and the dimensional stability of its reinforced composite. However, immoderate heat treatment for BF wasn’t in favor of improvements of hygroscopicity and the dimensional stability of BF based composites.  相似文献   

16.
Intra-layer and inter-layer hybrid composite laminates were made with epoxy resin and compositions were varied in six different proportions. In-plane compressive mechanical properties were studied using finite element analysis and experiments, and the results found were in good agreement. Properties of intra-layer and inter-layer hybrids were compared with plain carbon/epoxy and plain glass/epoxy composites, and a comparison among themselves was also made. It was found that intra-layer hybrids to some extent exhibit better compressive properties compared to inter-layer hybrids. Percentage enhancement in compressive failure strain was noticed. Negative hybrid effects on compressive strength was noticed for both intra-layer and inter-layer hybrid configurations. It was found that proportion of carbon fiber content plays a key role in determining the compressive properties. According to macro-scale observation all composite laminates failed catastrophically under compressive loading. SEM observation depicted that under compressive loading carbon fibers break first followed by glass fiber.  相似文献   

17.
Compressive shrinkage or compressive shrinkage finishing is one of the most important finishing procedures in the textile industry to improve the dimensional stability of cotton fabrics. Study of the physical and mechanical properties of compressive shrinkage finished fabrics could be useful for optimizing the treatment conditions. This research was carried out in a production line of a recognized garment company on cotton woven fabrics with two different woven patterns (twill and plain). The samples were first dyed with reactive and sulfur dyes in a jigger dyeing machine and finished with a silicone softener. The dried fabrics were then processed in a compressive shrinkage machine. Several physical and mechanical properties of the samples were evaluated including area shrinkage, crimp percentage, thickness, abrasion resistance, drapeability, mechanical and colorimetric properties. The results showed that the thickness of all treated samples increased due to compressive shrinkage. The fabrics were analyzed with a Martindale Abrasion Tester to determine the abrasion resistance. Interestingly, we noted an increase in the abrasion resistance. After the compressive shrinkage process, the strength of the plain woven fabrics decreased in the warp direction, but increased for twill woven cotton fabrics. On the contrary, the strength of all samples increased in the weft direction. Colorimetric evaluation of the samples showed that the effect of compressive shrinkage on the color of all samples was negligible.  相似文献   

18.
Most materials used in daily life are polymeric materials based on petrochemistry. The used polymeric materials can cause land pollution and air pollution after landfill or incineration. In contrast, natural fiber reinforced (NFR) composites are more suitable for the environment, however the reliability in terms of the durability and weatherability of NFR composites is still lacking. Thus, NFR composites require the reliability involved with durability and weatherability. In this work, poly(butylene terephthalate-co-glutarate) (PBTG), with a chemical structure similar to biodegradable PBAT, was used as the matrix in the composites, and hemp fibers were used as the reinforcement. Hemp/PBTG composites were fabricated by stacking hemp-fiberwebs and PBTG films with various fiber contents and thermal exposure times. Characteristics of the composites, such as the morphological structure, chemical structure, tensile properties, compressive properties, flexural properties, and impact strength, were analyzed to obtain the effects of fiber volume fraction and thermal exposure. As a result, hemp/PBTG composites were hardened in proportion to fiber volume fractions, and the hardening behavior of the composites increased tensile strength and flexural strength. However, the hardened structure of the composites decreased the impact strength and compressive strength of the composites. On the other hand, the mechanical properties of hemp/PBTG composites with thermal exposure times, were governed significantly by the brittleness behavior of the resin and the increased crystallinity of hemp fibers. Thus, the hemp fibers contributed to the improvements on structural stability, tensile strength and flexural strength of the hemp/PBTG composites, and increased the thermal durability of the composites with various thermal exposures.  相似文献   

19.
In this study, the effect of processing parameters such as temperature, pressure, time of compaction process and areal density on high-velocity impact behaviour of high performance polyethylene fibre cross-ply composites were investigated by Taguchi method. Samples were made through high temperature and pressure compacting process and morphology and interlayer adhesive of samples were investigated by scanning electron microscopy “SEM and T-peel test, repectively. Taguchi method was used to plan a minimum number of experiments. Statistical analysis, analysis of variance (ANOVA), was also employed to determine the relationship between experimental conditions and yield levels. ANOVA was applied to calculate sum of square, variance, ratio of factors variance to error variance and contribution percentage of each factors on response. A hemispherical tip type projectile was used for high velocity impact tests and the depth of trauma as the response factor was measured after impacting test. Results showed that when the temperature, pressure, and time of compacting process were 125 °C, 3 MPa, and 30 min for the composite sample with 7.4 kg/m2 areal density, the trauma depth was decreased to its lowest value.  相似文献   

20.
We report a phenomenal increase in strength, modulus, and fracture strain of ultra high molecular weight polyethylene (UHMWPE) fiber by 103 %, 219 %, and 108 %, respectively through hybridizing this fiber with Nylon 6 as a minor phase and simultaneously reinforcing it with single-walled carbon nanotubes (SWCNTs). Loading of Nylon 6 and SWCNTs into UHMWPE was 20.0 wt% and 2.0 wt%, respectively. Hybridized fibers were processed using a solution spinning method coupled with melt mixing and extrusion. We claim that the enhancement in strain-to-failure of the nanocomposites is due to induced plasticity in the hybridized Nylon 6-UHMWPE polymers. The enhancement in strength and stiffness in the nanocomposites is attributed to the load sharing of the SWCNTs during deformation. Differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) studies showed that changes in percent crystallinity, rate of crystallization, crystallite size, alignment of nanotubes, sliding of polymer interfaces and strong adhesion of CNT/polymer blends were responsible for such enhancements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号