首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Composite woven fabric satisfies what people require. Bamboo charcoal (BC) has been identified as a multifunctional material that has far-infrared ray, anions, deodorization and etc. BC fibers and yarns were made of bamboo charcoal powders and have further become a pervasive materials used in textile industry. In this study, cotton yarns, stainless steel/cotton (SS/C) complex yarn, bamboo charcoal/cotton (BC/C) complex yarns were woven into the plain, twill and Dobby composite woven fabrics. The warp yarn was composed of cotton yarns, and the weft yarn was made up of BC/C and SS/C complex yarns with a picking ratio of 1:1 and 3:1. Thermoplastic polyurethanes (TPU) film was then attached to the composite woven fabrics, forming the BC/SS/TPU composite woven fabrics. Tests of electromagnetic shielding effectiveness (EMSE), far-infrared emissivity, anions, water resistance, and water vapor permeability measured the single-layer, two-layer and four-layer composite woven fabrics, obtaining a far-infrared emissivity of 0.95 by 39.8 counts per minute, an anion count of 149 amount/cc, an EMSE of −11.87 dB under frequency of 900 MHz, a surface resistivity of 8×10−6 Ω/square, a water resistance of −8219 mmH2O, and water vapor permeability of 989 g/m2·h and 319 g/m2·24 h in accordance with JIS L 1099 A1 and ASTM E96 BW.  相似文献   

2.
A facile and inexpensive way to prepare self-crosslinkable poly(dimethylsiloxane) (PDMS) for superhydrophobic treatment of cotton fabrics is reported in the study. Through thiol-ene click reaction between mercaptopropyltrimethoxysilane (MPTMOS) and vinyl-containing poly(dimethylsiloxane) (VPDMS), PDMS-g-TMOS can be simply and quickly synthesized. The trimethoxysilane group of PDMS-g-TMOS can react with hydroxyl group on cotton fabric and other -Si(OCH3)3 groups. The synthesized polysiloxane (PDMS-g-TMOS) was identified by FT-IR and 1H-NMR. The morphology of the treated cotton fabric was observed by SEM and XPS was used to analyze the elemental composition on the surface of cotton fabric. The analysis results indicated that the surface was fully covered with PDMS. Due to the low surface energy of PDMS and the rough surfaces of cotton fabric, the optimized water contact angle (WCA) and sliding angle were respectively 154°±0.4° and 14°±0.5°, indicating superhydrophobicity. Moreover, water spray test (AATCC Test Method 22-2010) was also applied to evaluate the water repellency of treated cotton fabric and a score of 90 was assigned according to AATCC Test Method 22-2010. The durability of treated cotton fabric was tested by 50 laundering cycles. The resultant WCA barely decreased and the score of water spray test dropped from 90 to 80, showing the reasonable wash durability.  相似文献   

3.
Layer by layer (LBL) self-assembly technique has been proved to be a feasible method that enables to accomplish the preparation of functional membranes with multilayered structure. In this research, the polymer of sulfonated polyetheretherketone (SPEEK) and thioglycolic acid capping of cadmium telluride (CdTe) nanocrystals as polyanion, the polymer of polyurethane (PU) as polycation have been used to prepare membrane electrolytes. These multilayered membranes showed good thermal stability and exhibited low liquid methanol permeability, which provided a possibility for the prepared membranes as proton exchange membranes (PEMs) to apply in direct methanol fuel cells (DMFCs). We have also demonstrated that the multicomponent (SPEEK/PU/CdTe/PU)100 membranes favored to combine more phosphoric acid (PA) molecules and possessed a higher proton conductivity comparing to the bicomponent (SPEEK/PU)210 membranes. So PA doped (SPEEK/PU/CdTe/PU)100 membrane presented a maximum proton conductivity up to 8.6×10-2 S/cm at 160 °C under anhydrous conditions. However, PA doped (SPEEK/PU)210 membranes underwent a drop on proton conductivity while the temperature exceeded 120 °C.  相似文献   

4.
In this research work, air permeability variations of core spun cotton/spandex single jersey and 1×1 rib knitted structures were studied under relaxation treatments. Results are compared with similar fabrics made from 100 % cotton material. Even though cotton/spandex fabrics knitted with same stitch lengths, their structural spacing and stitch densities vary with the progression of treatments. Similar behavior was also observed with 100 % cotton knitted structures. Under higher machine set stitch lengths (i.e., lower fabric tightness factor), higher structural spacing and lower stitch densities were resulted and those variations significantly affected on the air permeability variations of knitted structures. 1×1 rib knitted structures showed significantly higher air permeability than single jersey structures and it is more prominent with cotton rib structures. However, cotton/spandex 1×1 rib and single jersey structures have not showed such significant deviations. Air permeability of cotton/spandex and 100 % cotton rib and single jersey knitted structures decreased with lower machine set stitch lengths (i.e., at higher fabric tightness factors). There was a correlation with fabric tightness, air permeability, areal density and fabric thickness such as knitted fabrics became tighter, their weight and thickness were higher, while their air permeability was lower. Thus, fabric areal density and fabric thickness are positively correlates to machine set stitch length?1 (fabric tightness factor). Air permeability of a knitted structure depends on material type, knitted structure, stitch length, relaxation treatment, structural spacing and stitch density.  相似文献   

5.
An epoxy group-terminated polyvinylmethylsiloxane (EPVMS) was firstly prepared via the cohydrolysis/condensation reaction of octamethylcyclotetrasiloxane (D4), 2,4,6,8-Tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane (D4V), and epoxy group-terminated polydimethylsiloxane (ETP) under a base catalyst. Then, the EPVMS was reacted with polymethylhydrosiloxane oligomer (PHMS) by hydrosilylation to develop novel crosslinked polysiloxane with end-capped epoxy groups (CLPS). The chemical structure and the thermal property of the as-prepared products were characterized by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectra (1H/13C NMR) and thermogravimetric analysis (TGA). Finally, the CLPS was applied as the finishing agent to treat the cotton fabrics. The film morphology and the surface properties were examined with scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), contact angle measurements, and other instruments. FT-IR and NMR results confirmed the structure of the resultants. The crosslinked polysiloxane CLPS showed better thermal stability than the uncrosslinked polysiloxane EPVMS. The CLPS film on cotton fabric surface seemed to be smooth compared to the control by SEM. However, owing to the crosslinked structure, the CLPS film on silicon-wafer was inhomogeneous and had a few weak or strong peaks. At 5 nm data scale and in 2×2 μm2 scanning field, the root mean square roughness of CLPS film reached to 0.414 nm. XPS analysis further demonstrates that there was a CLPS film covered on the cotton surface. Hydrophobicity of the CLPS treated fabric was superior to that of the EPVMS treated one. Whiteness of the treated fabrics by CLPS and EPVMS did not change at all compared to the control. The softness of the two treated fabrics was both better than that of control and particularly the softness of the EPVMS treated fabrics was preferable. The CLPS treated fabric possessed good washing durability.  相似文献   

6.
Two new hetrofunctional triazine based UV absorbers (1a, 2a) were theoretically and experimentally synthesized at our previous work. In the current investigation, these absorbers were applied to woven cotton fabric via the exhaust method of dyeing, that increase the ultraviolet protection factor of fabric by keeping the quantity of finishing chemicals low to combat with the environmental problem. Therefore, a statistical tool central composite rotatable design (CCRD) of response surface methodology (RSM) was selected for process modeling. The CCRD was applied to study the effect of three process variables (salt, alkali and temperature) on the two responses (exhaustion and fixation percentage) and for the evaluation of the interactive effects of the three process variables. The results show that the applied quadratic model was highly significant and fit to the experimental data for both the UV absorbers (1a and 2a). The values of optimized parameters for CCRD, in cotton finishing with newly synthesized UV absorbers (1a and 2a) were respectively as follows; temperature of 61.91 oC, dose of salt 34.28 g/l and dose of alkali 19.82 g/l. Under these conditions, 77.56 (±3) and 76.08 (±3) exhaustion and 81.12 (±3) and 79.23 (±3) fixation percentage obtained for UV absorbers 1a and 2a respectively. The ultraviolet protection factor (UPF) of treated cotton fabric under optimized conditions appeared in very good range. The results reveal that the applied statistical design economically and effectively predicts the optimized conditions of finishing of cotton by keeping the number of experiments low than the one factor at a time method, that ultimately reduce water pollution and wastage of resources.  相似文献   

7.
A series of semi-interpenetrating network (semi-IPN) anion exchange membranes (QCS/St-G8-2-8, Quaternized chitosan/styrene-[maleic alkylene group diethyl bis (octyl dimethyl chloro/bromide), abbreviated as G8-2-8] were prepared via in-situ polymerization by Styrene (St) and G8-2-8 in QCS casting solution. During the process of in-situ polymerization, linear block polymers (St-G8-2-8) of Styrene and G8-2-8 was constructed, then was mixed with QCS casting solution, followed crosslinking the QCS by glutaraldehyde (GA). With the increasing content of linear block polymer, water uptake and swelling ratio of the composite membrane decreased; This kind of linear structure makes an order arrangement of quaternary ammonium groups which improves the OH? migration efficiency. At 70 °C, the M-30 composite membrane performs a high OH? conductivity of 8.20×10-2 S·cm-1, the methanol permeability is 3.23×10-6 cm-2·s-1 which is still lower than Nafion 115 of 2.42×10-6 cm-2·s-1, but M-30 shows a higher selectivity of 25.3 than Nafion 115 of 11.6. Furthermore, the membranes exhibited excellent thermal stability (≥150 °C), the tensile strength of the composite membrane is in the range of 14-25 MPa and elongation at break is in the range of 16-37 % at room temperature, as well as superior chemical stability in 1.0 M KOH solution for 250 h.  相似文献   

8.
解淀粉芽孢杆菌B9601-Y2提高玉米生长和产量的效应   总被引:10,自引:2,他引:8  
采用促进植物生长的解淀粉芽孢杆菌B9601-Y2拌、浸玉米种子和浇灌土壤后均能显著提高玉米生长速度和生物量。3×101~3×105 cfu/mL浓度菌液浸泡玉米种子1 h,播种后5 d苗高比对照(清水)提高119.88%~168.85%;浸种2 h,3×104 cfu/mL和3×105 cfu/mL处理则有抑制作用。采用1.6×108、6.2×107、3.9×107 cfu/mL菌液浇灌土壤,播种后7 d苗重比对照增加20.75%、27.36%和33.96%。以3.9×107~1.6×108 cfu/mL浓度菌液拌种处理,15 d苗龄的植株重量比对照增加4.03%~29.35%,在收获期株高增加6.00%~16.29%,产量增加5.76%~11.81%。高浓度处理促生长效果不如中浓度处理。  相似文献   

9.
The mulberry based textile products were prepared by means of degumming, dyeing, spinning and weaving using mulberry bark as raw materials. The structure of the mulberry based textiles was characterized by scanning electron microscope (SEM). The antibacterial property of the mulberry fibers was evaluated by means of antibacterial testing, and the antibacterial composition in the mulberry based textiles was investigated by FTIR and 13C-NMR. The results show that the mulberry based fibers, dyed fibers, yarns and fabrics with high quality can be prepared successfully by the above processes. The mulberry based textiles have excellent antibacterial property. The inhibitory rate of raw mulberry bark on Escherichia coli and Staphylococcus aureus is (67.2±3.1)% and (53.8±4.6)% respectively, and the inhibitory rate of mulberry fiber on Escherichia coli and Staphylococcus aureus is both above 80%. The inhibitory rate of the mulberry/cotton blended yarn on Escherichia coli and Staphylococcus aureus ranges from (51.7±5.1)% to (72.4±4.1)%, which has similar inhibitory rate with the mulberry/cotton blended fabric. The results of Fourier Transform-Infrared (FTIR) and 13C-nuclear magnetic resonance (13C-NMR) show that the typical functional group (hydroxyl, carbonyl, double bond and epoxy bond) exist in the composition of the mulberry fiber, which indicates that the flavones and phenolic compounds including in the mulberry fiber.  相似文献   

10.
Nanocomposite film composed of bacterial cellulose (10-50 wt.%) and poly-urethane (PU) based resin was fabricated and utilized as a substrate for flexible organic light emitting diode (OLED) display. The performance of the nanocomposite satisfied the criteria for the substrate of OLED with an additional feature of flexibility. The visible light transmittance of the nanocomposite film was as high as 80%. Its thermal stability was stable up to 150 °C while its dimensional stability in terms of coefficient of thermal expansion (CTE) was less than 20 ppm/K. After OLED was fabricated on the substrate through thermal evaporation technique, the OLED performed highest current efficiency of 0.085 cd/A and power efficiency of 0.021 lm/W at 200 cd/m2 while retained its flexible feature, suggesting that bacterial cellulose nanocomposite is a promising material for the development of substrate for flexible OLED display.  相似文献   

11.
Oxygen plasma pre-treatment was applied to cotton fabric with the aim of improving the water repellency performance of an inorganic-organic hybrid sol-gel perfluoroalkyl-functionalized polysilsesquioxane coating. Cotton fabric was pre-treated with low-pressure oxygen plasma for different treatment times and operating powers. Afterward, 1H,1H,2H,2H-perfluorooctyltriethoxysilane (SiF) was applied to the cotton fabric samples using the pad-dry-cure method. The surfaces of the untreated and modified cotton fibers were characterised using Fourier transform infrared spectroscopy, Xray photoelectron spectroscopy, scanning electron microscopy, and atomic force microscopy. The water repellency of the SiF-coated fabric samples was evaluated using static and sliding contact angle measurements with water. The results show that the plasma treatment with the shortest treatment time (10 s) and the lowest operating current (0.3 A) increased the atomic oxygen/carbon ratio of the cotton fiber surface from 0.6 to 0.8 and induced the formation of a nano-sized grainy surface. Increasing the plasma treatment time and/or operating current did not intensify the surface changes of the cotton fibers. Such saturation effects were explained by the large influence of reactive oxygen atoms during the plasma treatment. The measured static water contact angles on the surface of the untreated and plasma pre-treated and SiF-coated cotton fabrics showed that the oxygen plasma pre-treatment enabled the increase of the water contact angle from 135° to ≈150°, regardless of the applied plasma treatment time and discharge power. This improvement in the hydrophobicity of the SiF coating was followed by a decrease in the sliding angle of water droplets by more than 10° compared to the plasma untreated and SiF-coated sample characterized by a water sliding angle of 45°. Additionally, measurements of the water sliding angle revealed that the increase of the static contact angle from 149° to 150° corresponded to a drop of the water sliding angle from 33 to 24°, which suggests that the plasma pre-treatment of 20 s at an operating current of 0.3 A produced the best water-repellent performance of the SiF-coated cotton fabric.  相似文献   

12.
Immature cotton fiber will negatively impact textile processing. Three field experiments were undertaken that applied chemical harvest aids to upland cotton (Gossypium hirsutum L.) crops at varying times with the intention of manipulating the maturity of bolls and fibers. The aim was to quantify the effects of these treatments on the textile performance of the harvested cotton and relate these differences to the status of the crop at the time of treatment application. Although earlier treatments produced less mature fiber that was lower in linear density, yarn and fabric strength was not affected. However less mature cotton from a cooler growing season produced stronger yarns (by 3 cN tex−1) and fabric (by 0.39 N (g m−2)−1) which was partly attributed to the smaller ribbon width of this fiber affecting more fiber packing density and inter-fiber friction. Yarns made from this immature cotton also contained more neps. Micronaire and linear density were equally well related, and more strongly related than maturity ratio, to dyed fabric color dimensions, which were greatly influenced by treatments. Percent immature bolls at the time of harvest aid application related well to changes in the degree of fabric blueness (R2 = 0.89). Knowing the status of a crop in the final stages of production will help cotton producers and the supply chain to predict some of the processing performance aspects of harvested fiber.  相似文献   

13.
Rice sheath blight disease(ShB),caused by Rhizoctonia solani,gives rise to significant grain yield losses.The present study evaluated the efficacy of Integral?,the commercial liquid formulation of Bacillus subtilis strain MBI 600,against rice ShB and for plant growth promotion.In greenhouse studies,four log concentrations of Integral(from 2.2×106 to 2.2×109 cfu/mL) were used as seed treatment(ST).After 25 d,seedlings were dipped(SD) into Integral prior to transplanting.At 30 d after transplanting(DAT),leaf sheaths were inoculated with immature sclerotia of the pathogen.At 45 DAT,a foliar spray(FS) with Integral was applied to some treatments.The fungicide control was 50% carbendazim at 1.0 g/L,and a nontreated control was also included.Overall,there were 10 treatments,each with five replications.ShB severity was rated at 52 DAT,and seedling height and number of tillers per plant were rated at 60 DAT.In 2009,two field trials evaluated Integral at 2.2×108 and 2.2×109 cfu/mL.Integral was applied as ST,and seedlings were produced in a nursery bed.After 32 d,seedlings were treated with Integral as SD and transplanted into 10 m2 blocks.Foliar sprays were given at 45 and 60 DAT.There were seven treatments,each with eight replications arranged as a factorial randomized complete block design.At 20 DAT,the plots were broadcast inoculated with R.solani produced on rice grains.Seedling height before transplanting,ShB severity at 90 DAT,and grain yield at harvest were recorded.Integral at 2.2×109 cfu/mL provided significant increase of seedling heights over other treatments under greenhouse conditions.The Integral treatments of ST + SD + FS at 2.2×109 cfu/mL significantly suppressed ShB over other treatments.In field studies,Integral provided significant increase of seedling height in nursery,and number of tillers per plant,compared with the control.ShB severity was significantly suppressed with higher concentrations of Integral compared to lower concentrations.Grain yield were the highest at an Integral concentration of 2.2×109 cfu/mL.Overall,Integral significantly reduced ShB severity,enhanced seedling growth,number of tillers per plant and grain yield as ST + SD + FS at the concentration of 2.2×109 cfu/mL under the conditions evaluated.  相似文献   

14.
Understanding the mode of transport of water vapor through the film is important for improving the moisture barrier properties of wheat gluten (WG) films. Effective permeability (Peff), solubility (Seff), and diffusion (Deff) coefficients of a hydrophilic cast WG film were determined at 25°C within the relative humidity (RH) range of 0–84% (with a 9–13% RH gradient between upstream and downstream water vapor flux). Peff, Seff, and Deff increased substantially as the RH gradient moved upwards in the RH spectrum. Peff increased by four orders of magnitude from the lowest RH condition of 0–11% (3.8×10−11 g·m/m2·s·Pa) to the highest RH condition of 75–84% (4.1×10−7 g·m/m2·s·Pa). A moisture sorption isotherm of the film at 25°C was constructed. Both the Guggenheim–Anderson–DeBoer (GAB) and the Kuhn moisture sorption isotherm models showed a good fit to the experimental adsorption data. Testing of WG films at the expected conditions of actual use is necessary to quantify the water vapor permeation through the films.  相似文献   

15.
N-halamines serve as important antimicrobial agents. Development of this class of compounds has been shown to provide benefits especially from a biocidal point of view. A novels-triazine-basedN-heterocycle, dichloro-m-aminophenyl-hydantoinyl-s-triazine (DAPHT), which could be rendered antimicrobial through exposure to diluted chlorine bleach, was synthesized and characterized by1H NMR,13C NMR, and FT-IR. A finishing method was used to apply theN-halamine precursor onto cotton fabric, and the optimum conditions for finishing were investigated. The DAPHT-treated cotton fabric had durable antimicrobial properties up to 50 standard washing cycles and was rechargeable under normal laundry/bleaching conditions. The antimicrobial efficacy against Gram-positive and Gram-negative bacteria was demonstrated.  相似文献   

16.
A novel dodecylphenylsiloxane oligomer resin/nanocomposite (PHDESR-SiO2) was prepared by graft copolymerization between dodecyl modified phenylsiloxane resin with pendent epoxy groups (PHDESR) and amino-functionalized silica nanoparticles (BTEPA-SiO2). PHDESR-SiO2 was then used to prepare a super hydrophobic surface on cotton fabric by a facile solution-immersion process method. Chemical structures, chemical compositions, wettability, surface morphology, and thermal properties were investigated by Fourier Transform Infrared Spectrum (FT-IR), 1H-NMR spectrum, X-ray photoelectron spectroscopy (XPS), static contact angle analyzer, scanning electron microscopy (SEM), Particle size distribution (PSD) and thermo-gravimetric analysis (TGA). The results showed that the target product PHDESR-SiO2 has an anticipative structure with many micro/nanostructure tubercles, a cross-linked network hydrophobic organosilicon resin film and many clusters of cylindrical dodecyl molecular brushes. This created super hydrophobic structure on the surface of the treated cotton fabrics. XPS analysis indicated that the long carbon chain groups had a slight tendency to enrich the film-air interface. In addition, PHDESR-SiO2 can provide good hydrophobicity for the treated fabric. As the dose of PHDESR-SiO2 increased, the hydrophobicity of the treated fabric enhanced and consequently the water static contact angle reached 152.5 °. This had little influence on the softness, color, and gas permeability of the fabrics. This makes it slightly stiff at high doses, and the super-hydrophobic cotton fabric also had good launderability.  相似文献   

17.
4-Amino-double(octadecyldimethyl ammonium chloride)-1,2,4-triazole (ADAC-TZ), a gemini cationic auxiliary with a heterocyclic triazole structure, was designed and synthesized by the method described here and characterized for use in the cold pad batch dyeing of cotton knits. The results show that, for ADAC-TZ, the critical micelle concentration (CMC) is 4.0×10-4 mol/l, the Krafft point is 29.8 °C, the foam height is only 169 mm/5 min, and the solubilization for toluene is 6.67 ml/g, which means that ADAC-TZ exhibits excellent low-foaming, water solubility and solubilization properties. The present research also demonstrates that ADAC-TZ pretreatment can increase the K/S value, dye fixation, and color fastness to washing and rubbing of cotton knits dyed through BES reactive dye cold pad batch dyeing used in combination with the alkaline agent QF-4.  相似文献   

18.
In this research work, behavior of flexural stiffness of core spun cotton spandex single jersey, 1x1 rib and interlock fabrics was studied under relaxation and machine washing treatments. Results are compared with similar fabrics made from 100 % cotton. Fabric weight density increased with the progression of treatments and it is proportionate to the fabric tightness factor (stitch length?1). Even though both types of fabrics had same machine set stitch lengths, cotton/spandex fabrics have shown the higher fabric weight densities than that of 100 % cotton fabrics. Although 1x1 rib and single jersey fabrics knitted with the same machine set stitch lengths, rib fabrics have given higher fabric weight densities than single jersey fabrics. Among the three knitted structures, interlock fabrics with higher machine set stitch lengths gave the higher fabric weights. Fabric stiffness and flexural rigidity have given higher values under the progression of treatments and it was found that higher values of stiffness have given by cotton/spandex knitted fabrics compared to their cotton fabrics. Fabric stiffness and flexural rigidity in wale direction were higher than that in course direction, but it is only observed in single jersey fabrics. However, 1x1 rib and interlock fabrics have shown an opposite behavior. It was also observed a positive correlation between TF (i.e.: stitch length?1) and bending length/flexural rigidity in both fabric types. Lower flexural rigidities reported with single jersey structures and highest values gave with interlock structures of cotton/spandex and cotton fabrics.  相似文献   

19.
To valuate the multifunctionality economically is effective to make it possible to realize the value for the nation and to compare functionalities among countries of the world. In this paper, the external economies of paddy fields and fallow paddy fields including wetlands as N removal function sites, and of upland fields and orchards as pollution sites are valuated by the newly proposed replacement cost method, by replacing them with construction costs of water quality improvement facilities. In addition, we discuss an agricultural land-use scenario in which cultivated land has no net negative economic effect on the water environment. The results showed that (1) paddy fields and fallow paddy fields including wetlands were respectively valued at 1.2×103 and 2.81×103 JPY m−2 on average as the N removal sites, (2) upland fields had 0.32×103 JPY m−2 on average of economic value, and suggested that paddy fields have an external economic value that compensates for the negative external economic value of upland fields 3.65 times their size.  相似文献   

20.
The nanofiber membrane prepared by electrospinning has been widely applied in lithium-ion batteries. A powerful strategy for designing, fabricating and evaluating Poly-m-phenylene isophthalamide (PMIA) nanofiber membrane with SiO2 nanoparticles was developed by electrospinning in this paper. The morphology, crystallinity, thermal shrinkage, porosity and electrolyte uptake, and electrochemical performance of the SiO2/PMIA nanofiber membranes were investigated. It was demonstrated that the nanofiber membrane with 6 wt% SiO2 possessed notable properties, such as better thermal stability, higher porosity and electrolyte uptake, resulting in higher ionic conductivity (3.23×10-3 S·cm-1) when compared with pure PMIA nanofiber membrane. Significantly, the SiO2/PMIA nanofiber membrane based Li/LiCoO2 cell exhibited more excellent cycling stability with capacity retention of 95 % after 50 cycles. The results indicated that the SiO2-doped PMIA nanofiber membranes had a potential application as separator in high temperature resistance lithium-ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号