首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
IPCC SRES A2和B2情景下我国玉米产量变化模拟   总被引:14,自引:7,他引:14  
利用最新的温室气体和SO2 排放方案,即政府间气候变化委员会(IPCC)排放情景特别报告(SRES)的A2和B2方案,通过区域气候模式和区域作物模型模拟了未来2080s我国玉米产量的变化。主要结果如下:两种温室气体排放方案下,A2方案对我国玉米产量造成的负面影响大于 B2方案;气候变化对灌溉玉米造成的负面影响大于雨养玉米;气候变化造成玉米单产的变化表现为大多数玉米主产区减产,而非玉米主产区增产。  相似文献   

2.
选择福建省作为研究区域,根据地形特点划分了3个水稻种植区,选取17个样点及9个代表性品种,采用2006—2007年的逐日气象资料及同期区试产量资料对作物的遗传参数进行了调试;根据IPCC排放情景特别报告(SRES)中的A1B方案,利用区域气候模式PRECIS构建的气候变化情景文件与作物模型(CERES-Rice)耦合,采用雨养与灌溉两种方式,并综合考虑未来CO2浓度增加带来的直接增益效应,模拟了未来2020s及2040s气候变化对福建省水稻生产的影响。结果表明:无论是雨养方式还是灌溉方式,未来全省各稻区水稻生育期在两种情景下都将缩短,单季稻生育期天数减少幅度最大,2040s情景下达到20 d以上。未来双季稻种植区早稻与单季稻均表现为减产。2020s情景下闽东南稻区早稻减产率达到12.4%(雨养)和11.3%(灌溉);闽西北双季稻区早稻减产程度略小。单季稻区雨养水稻7.1%及灌溉水稻2.1%的减产主要来自中熟品种的负贡献。2040s减产幅度将进一步加大。与此相反,未来两种情景下双季稻区后季稻均表现为增产,但产量波动性较大。2020s情景下闽西北双季稻区灌溉后季稻产量增产达到21.0%,增产幅度大于闽东南地区的10.6%;雨养方式下后季稻增产幅度略小。2040s各稻区后季稻增产幅度将减小。未来水稻生长季的土壤水分条件将变得不如目前湿润,与之相关各稻区灌溉需要量均有所增加。总之,由于大气CO2肥效作用可在一定程度上提高未来气候变化下后季稻产量,全省水稻总产近期将有所增加,雨养与灌溉方式下分别增长0.4%及1.7%,但变化趋势是随着未来温度的增加总产将减少,负贡献主要来自于单季稻和早稻。  相似文献   

3.
施肥模式对雨养旱地温室气体排放的影响   总被引:3,自引:0,他引:3  
采用静态箱/气相色谱法对雨养旱作玉米生长季农田土壤CO2、N2O和CH4的排放通量进行观测,研究了改变氮、磷配比(调控施肥)和传统施肥两种模式对山西雨养旱地温室气体排放的影响。结果表明,施肥模式对土壤CO2、CH4季节排放特征和排放总量影响不明显,但显著影响N2O的季节排放动态特征和排放总量。基肥施用是影响雨养旱地N2O排放的主要因素。与传统施肥相比,调控施肥N2O季节排放总量减少70.40%。CH4和N2O的综合温室效应分析结果表明,调控施肥方式下的全球增温潜势(GWP)与温室气体排放强度(GHGI)均显著低于传统施肥方式,分别降低73.08%和74.00%,本研究进一步表明雨养旱地采用调控施肥的方式是一种较好的温室气体减排措施。  相似文献   

4.
气候变化情景下宁夏马铃薯单产变化模拟   总被引:10,自引:3,他引:7  
将DSSAT—SUBSTOR马铃薯模拟模型与PRECIS区域气候模式相嵌套,在25km×25km网格尺度上,模拟未来气候情景下宁夏马铃薯产量变化,分析影响未来马铃薯产量变化的主要原因。结果表明:在目前的品种、种植方式、田间管理不变的情况下,两种温室气体排放方案下,从2020s到2080s宁夏马铃薯单产均降低8.7%~41.3%,A2情景下马铃薯减产幅度大于B2情景,中部干旱带减产幅度大于南部山区。造成马铃薯减产的主要原因是,(1)未来宁夏马铃薯主产区马铃薯生育期内降水量减少,而马铃薯需水量显著增加,马铃薯缺水量加大;(2)马铃薯块茎膨大期气温显著升高,不利于块茎养分积累。  相似文献   

5.
利用农业气象试验站作物资料及土壤资料,评价 APSIM-Wheat 模型在西南地区的适应性,应用该模型分析该地区1961—2010年冬小麦潜在和雨养产量的时空变化特征,通过逐步回归分析揭示小麦生长季主要气象因子对潜在产量和雨养产量的影响及相对贡献率。研究结果表明: APSIM 模型对该区5个常用小麦品种的模拟效果较好,模拟与实测生育期的均方根误差(RMSE)在7.0 d 以内,地上部分生物量和产量模拟值与实测值的归一化均方根误差(NRMSE)均低于25%,模型在西南地区具有较好的适应性。1961—2010年研究区域36%的站点冬小麦生长季总辐射显著降低,其中北部、东南部和南部中区最显著;68%的站点生长季≥0℃有效积温显著增加,西部增温显著;30%的站点生长季平均气温日较差显著减小,南部中区最显著;全区生长季总降水大面积减少但不显著,减少区主要位于最南端和东南部。模拟的冬小麦潜在产量在65%的站点呈显著减产趋势,南部中区和北部变化最明显;雨养产量在25%的站点显著降低,北部地区较明显,全区减产趋势较弱。减产显著的站点中,生长季辐射降低、温度升高、气温日较差减小对潜在产量降低的贡献率分别为45%、36%和2%,对雨养产量降低的贡献率分别为36%、39%和-8%,而降水减少对雨养产量降低的贡献率为7%。西南冬小麦生长季辐射降低、温度升高及降水减少共同导致了冬小麦潜在和雨养产量的显著下降,而气温日较差的降低对冬小麦潜在和雨养产量的影响分别表现为负作用和正作用,整体上辐射和温度的影响程度最大。  相似文献   

6.
为了评价基于养分专家系统(Nutrient Expert,简称NE)养分管理模式下的推荐施肥对农田环境效应的影响,对121个田间试验中基于NE养分管理模式和农民习惯管理模式下的农田温室气体排放量进行了分析。结果发现:NE养分管理模式在不降低作物产量的前提下,大幅度提高了农田氮肥偏生产力,显著降低了温室气体排放量。与农民习惯施肥处理相比,NE养分管理模式的N2O排放量在小麦和玉米季分别降低了60.8%和53.7%。而在总的农田温室气体排放当量中,NE养分管理模式的温室气体排放当量较农民习惯施肥处理(FP)在小麦和玉米季分别降低了40.8%和42.3%。农田温室气体排放当量与氮肥偏生产力间有显著的线性+平台关系,即在一定范围内温室气体排放量随着氮肥偏生产力的提高而降低。在本研究中,当排放量分别降低到2 350kg CO2eq/hm2(玉米)和1 888 kg CO2eq/hm2(小麦)时,随着氮肥偏生产力的增加温室气体排放量有趋于不变的趋势。总体来看,基于NE养分管理模式的推荐施肥技术在华北平原减少农田温室气体排放方面有很好的应用前景。  相似文献   

7.
气候变化情景下我国水稻产量变化模拟   总被引:20,自引:8,他引:20  
利用中国随机天气模型将IPCC最新推荐的气候模式HadCM2和ECHAM4与作物模式CERESRICE3.5相连接,模拟了未来4种气候情景下我国主要水稻产区产量的变化趋势。结果表明:(1)未来气候情景下,水稻产量大多表现为不同程度的减产趋势,其中早稻减产幅度最大;地区上以东北地区减产幅度最大。(2)若不取温室气体减排措施,2056年我国水稻产量较2030年减产程度更加明显;即使采取温室气体减排措施,水稻产量下降的趋势也没有大的改变;(3)高海拔地区在未来气候情景下表现出一定的增产趋势。  相似文献   

8.
生物质炭复合肥对小麦产量及温室气体排放的影响   总被引:5,自引:0,他引:5  
《土壤通报》2015,(1):177-183
选择了棉花秸秆(CBF)、玉米秸秆(MSF)、小麦秸秆(WSF)、稻壳(RHF)、花生壳(PHF)和生活废弃物(HWF)6种炭基复合肥,以当地常规化肥施用为对照(CF),研究田间条件下不同生物质炭复合肥对小麦产量及麦田温室气体排放的影响。小麦基肥中炭基复合肥和常规肥料的施用量分别为300 kg hm-2和356 kg hm-2,后期均追施等量的复合肥及尿素。结果表明:施用6种生物质炭复合肥均显著提高了小麦的产量,增产幅度达20%~35.4%,氮肥偏生产力也显著提高17.9%~34.4%,其中花生壳、棉花秸秆和玉米秸秆炭基复合肥处理下的小麦产量和氮肥偏生产力显著高于生活废弃物和小麦秸秆炭基复合肥。施用生物质炭复合肥均显著降低了麦田N2O的排放,减排幅度在56.0%~65.4%,但不同炭基复合肥间没有显著的差异。生物质炭复合肥对麦田CH4及CO2的排放无显著影响。麦田的全球增温潜势(GWP)和温室气体排放强度(GHGI)在施用生物质炭复合肥处理下分别降低57.5%~66.9%和68.0%~77.5%。由此可见,生物质炭复合肥在提高氮肥偏生产力和作物产量以及温室气体减排方面具有较大的应用潜力。  相似文献   

9.
研究不同农业管理措施下小麦农田N2O、CO2、CH4等温室气体的综合增温潜势,有助于科学评价农业管理措施在减少温室气体排放和减缓全球变暖方面的作用,为制定温室气体减排措施提供依据。本研究采用静态明箱气相色谱法对华北平原高产农区4种农业管理措施下冬小麦农田土壤温室气体(CO2、CH4和N2O)季节排放通量进行了监测,估算了不同农业管理措施下小麦季的综合温室效应。结果表明,华北太行山前平原冬小麦农田土壤是CO2、N2O的排放源,CH4的吸收汇。不同农业管理措施对不同温室气体的排放源和吸收汇强度的影响不同,增施氮肥、充分灌溉促进了土壤CO2、N2O的生成,强化了土壤CO2和N2O排放源的特征;但却抑制了土壤对CH4的氧化,弱化了土壤作为大气CH4吸收汇的特征。2009—2010年和2010—2011年冬小麦生长季T1(传统模式)、T2(高产高效模式)、T3(再高产模式)和T4(再高产高效和土壤生产力提高模式)处理土壤排放的温室气体碳当量分别依次为8 880 kg(CO2).hm 2、8 372 kg(CO2).hm 2、9 600 kg(CO2).hm 2、9 318kg(CO2).hm 2和13 395 kg(CO2).hm 2、12 904 kg(CO2).hm 2、13 933 kg(CO2).hm 2、13 189 kg(CO2).hm 2。各处理间温室气体排放差异主要是由于施肥和灌溉措施的不同引起的,秸秆还田与否是造成年度间温室气体排放存在差异的主要原因。T2处理综合增温潜势相对较低,产量和产投比相对较高,为本区域冬小麦优化管理模式。  相似文献   

10.
水肥管理对鄱阳湖流域稻田温室气体排放的影响   总被引:2,自引:0,他引:2  
为探明水肥管理模式对稻田温室气体(CH_4,CO_2和N_2O)的影响规律,以鄱阳湖流域赣抚平原灌区稻田为研究对象,考虑间歇灌溉(W1)和淹灌(W0)2种灌溉模式,不施氮(N0)、减量施氮(N1,135 kg/hm~2)和常规施氮(N2,180 kg/hm~2)3种施氮水平,采用静态箱-气相色谱法测定气体排放量,结合产量计算温室气体排放强度。结果表明:稻田CH_4和CO_2排放通量全天内表现为单峰模式,CH_4日排放峰值在14:00—15:00,CO_2排放峰值提前约1~2 h,而N_2O排放通量全天内则表现为上午、傍晚和深夜的三峰模式。08:00—11:00内3种气体校正系数和综合值均比较接近1,是进行田间观测的最佳时段。稻田CH_4排放通量在生育前期迅速增长达到峰值,中后期相对平缓并伴有1~2个小峰值。间歇灌溉CH_4排放通量较少。不同水肥处理下CO_2排放的峰值出现次数一致,主要在分蘖前期、乳熟期和黄熟期。2种灌溉模式的CO_2排放规律一致,但间歇灌溉下CO_2排放量更多。稻田N_2O的排放整体水平呈现较低状态,各处理的N_2O排放峰值出现在抽穗开花期末。稻田温室气体排放引起的增温潜势受灌溉模式的影响极显著。与W0相比,W1在N0、N1、N2水平下分别降低增温潜势36.1%、33.9%和23.2%(P0.05)。地温和气温是重要的环境影响因子,CH_4和CO_2对地温的敏感性高于气温,9月典型日的温度敏感系数更高。W1N1处理的温室气体排放强度最低,从减排增产角度为鄱阳湖流域推荐的稻田水肥管理模式。  相似文献   

11.
Abstract

Mean monthly weather data values from 1968 – 2000 for 12 major rainfed wheat production areas in north-west and western Iran were used with a climate model, United Kingdom Meteorological Organization (UKMO), to predict the impact of climate change on rainfed wheat production for years 2025 and 2050. The crop simulation model, World Food Study (WOFOST, v 7.1), at CO2 concentrations of 425 and 500 ppm and rising air temperature of 2.7 – 4.7°C, projected a significant rainfed wheat yield reduction in 2025 and 2050. Average yield reduction was 18 and 24% for 2025 and 2050, respectively. The yield reduction was related to a rainfall deficit (8.3 – 17.7%) and shortening of the wheat growth period (8 – 36 d). Cultivated land used for rainfed wheat production under the climate change scenarios may be reduced by 15 – 40%. Potential improvements in wheat adaptation for climate change in Iran may include breeding new cultivars and changing agronomic practices like sowing dates.  相似文献   

12.
用统计降尺度模型预测川中丘陵区参考作物蒸散量   总被引:4,自引:2,他引:2  
区域蒸散量(evapotranspiration)预测对精准灌溉预报与农田水分管理意义重大。该文利用川中丘陵区11个气象站点1961-2013年逐日气象资料,采用FAO-56 Penman-Monteith公式计算参考作物蒸散量(reference evapotranspiration,ET0),基于Hadley Centre Coupled Model version 3(HadCM3)的输出和统计降尺度模型(statistical downscaling model,SDSM)分别对A2(高温室气体排放)、B2(低温室气体排放)情景下川中丘陵区2014-2099年ET0进行预测,并使用Mann-Kendall检验和反距离加权插值法对1961-2099年ET0的时空演变特征进行分析。结果表明:基准期(1961-2010年)川中丘陵区ET0整体呈现明显下降趋势,空间上呈现出东北部、西北部和东南部相对较大、中部相对较小的差异;与基准期相比,A2、B2情景下未来2020 s(2011-2040年)、2050 s(2041-2070年)和2080 s(2071-2099年)川中丘陵区ET_0月和年均值都呈增大趋势;A2情景下3个时期ET0将分别增加7.9%、10.9%和16.7%,B2情景下ET_0将分别增加7.1%、4.9%和12.8%;A2、B2情景下3个时期川中丘陵区ET_0空间分布均呈现西北部和南部较大、中部较小的空间差异,且3个时期的ET0相对变化率显示中部及其偏北、偏南区域ET_0增幅相对较大,北部和南部增幅相对较小。因此,未来川中丘陵区ET0的上升可能导致水资源短缺与季节性干旱进一步加剧。该研究可为川中丘陵区水资源优化管理和灌溉制度制定提供科学参考。  相似文献   

13.
This study assessed the impacts of potential climate change on maize yields in China, using the CERES-Maize model under rainfed and irrigated conditions, based on 35 maize modeling sites in eastern China that characterize the main maize regions. The Chinese Weather Generator was developed to generate a long time series of daily climate data as baseline climate for 51 sites in China. Climate change scenarios were created from three equilibrium general circulation models: the Geophysical Fluid Dynamics Laboratory model, the high-resolution United Kingdom Meteorological Office model, and the Max Planck Institute model. At most sites, simulated yields of both rainfed and irrigated maize decreased under climate change scenarios, primarily because of increases in temperature, which shorten maize growth duration, particularly the grain-filling period. Decreases of simulated yields varied across the general circulation model scenarios. Simulated yields increased at only a few northern sites, probably because maize growth is currently temperature-limited at these relatively high latitudes. To analyze the possible impacts of climate variability on maize yield, we specified incremental changes to variabilities of temperature and precipitation and applied these changes to the general circulation model scenarios to create sensitivity scenarios. Arbitrary climate variability sensitivity tests were conducted at three sites in the North China Plain to test maize model responses to a range of changes (0%, +10%, and +20%) inthe monthly standard deviations of temperature and monthly variation coefficients of precipitation. The results from the three sites showed that incremental climate variability caused simulated yield decreases, and the decreases in rainfed yield were greater than those of irrigated yield.  相似文献   

14.
利用Hadley气候预测与研究中心的区域气候模式系统PRECIS(Providing Regional Climate for ImpactsStudies)进行宁夏地区SRES A2、B2情景下2071-2100年(2080s时段)日较差、夏季日数及霜冻日数变化响应的初步分析。将ECMWF1979-1993年的再分析数据(ERA15)作为边界条件驱动PRECIS模拟宁夏地区的日较差、夏季日数及霜冻日数。模拟值与台站实际观测资料进行的对比分析表明,PRECIS能够模拟出宁夏地区这些极端指标的空间分布差异和年际变化,总体上来说,日较差、夏季日数模拟值偏大,南部地区霜冻日数的模拟值偏小。3个极端指标气候基准时段(1961-1990年)的模拟频率和观测频率的对比分析表明,PRECIS能够模拟出极端指标的频率分布。另外,用观测数据对模式数据进行了订正,经验证,订正后的值与观测值的吻合程度明显提高。相对于Baseline,SRES A2、B2情景下2080s宁夏大部地区的日较差将减少;夏季日数将增加,两种情景下平均每年增量分别可达69d和48d;而霜冻日数将减少,两种情景下平均每年减少量分别可达50d和36d。  相似文献   

15.
The North Wyke Farm Platform (NWFP) provides data from the field‐ to the farm‐scale, enabling the research community to address key issues in sustainable agriculture better and to test models that are capable of simulating soil, plant and animal processes involved in the systems. The tested models can then be used to simulate how agro‐ecosystems will respond to changes in the environment and management. In this study, we used baseline datasets generated from the NWFP to validate the Soil‐Plant‐Atmosphere Continuum System (SPACSYS) model in relation to the dynamics of soil water content, water loss from runoff and forage biomass removal. The validated model, together with future climate scenarios for the 2020s, 2050s and 2080s (from the International Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES): medium (A1B) and large (A1F1) emission scenarios), were used to simulate the long‐term responses of the system with three contrasting treatments on the NWFP. Simulation results demonstrated that the SPACSYS model could estimate reliably the dynamics of soil water content, water loss from runoff and drainage, and cut biomass for a permanent sward. The treatments responded in different ways under the climate change scenarios. More carbon (C) is fixed and respired by the swards treated with an increased use of legumes, whereas less C was lost through soil respiration with the planned reseeding. The deep‐rooting grass in the reseeding treatment reduced N losses through leaching, runoff and gaseous emissions, and water loss from runoff compared with the other two treatments.  相似文献   

16.
In the future, UK summers are likely to be warmer and drier. Modelling differential water redistribution and uptake, we assessed the impact of future drier climates on sugar beet yields. Weather was generated for 1961–1990 (BASE) and predictions based on low‐ and high‐emission scenarios (LO, HI) described in the most recent global climate simulations by the Hadley Centre, UK. Distributions and variability of relative soil moisture deficit (rSMD) and yield gap (drought‐related yield loss, YGdr = 1?actual yield/potential yield), and sugar yield were calculated for different time‐lines using regional weather, soil texture and management inputs. The rSMD is estimated to exceed the senescence threshold with a probability of 75% (2050sLO) to 95% (2080sHI) compared with 65% (BASE). The potential yield loss, YGdr, is likely to increase from 17% (BASE) to 22% (2050sLO) to 35% (2080sHI). However, increasing potential growth rates (CO2 × temperature) cause average sugar yields to rise by between 1.4 and 2 t ha?1 (2050sLO and 2050sHI respectively). Yield variation (CV%) may increase from 15–18% (BASE) to 18–23% (2050s) and 19–25% (2080s). Differences are small between regions but large within regions because of soil variability. In future, sugar yields on sands (8 t ha?1) are likely to increase by little (0.5–1.5 t ha?1), but on loams yields are likely to increase from 11 to 13 t ha?1 (2050sHI) and 15 t ha?1 (2080sHI). Earlier sowing and later harvest are potential tools to compensate for drought‐related losses on sandy soils.  相似文献   

17.
SRES A1B情景下未来宁夏玉米生育期气候资源变化分析   总被引:2,自引:0,他引:2  
玉米是宁夏的三大粮食作物之一,其种植分布广泛,中部干旱带和南部山区基本属于雨养玉米区,气候条件对当地的玉米生产影响很大。观测到的气候变化已经对当地农业造成不利影响,未来SRES A2和B2情景下宁夏地区的气候变化研究也有一定成果。由于气候变化引发宁夏的气温和降水出现异常,为分析未来中等排放情景下气候变化可能对当地玉米生产造成的影响,本文利用订正后的英国Hadley气候中心区域气候模式PRECIS模拟的情景数据,分析了SRES A1B情景下宁夏未来2020s、2050s和2080s时段相对于气候基准时段(1961—1990年)的玉米生育期(4—9月)平均气温、最高气温、最低气温、≥10℃有效积温和降水的变化,具体方法为先分析气候基准时段宁夏的气候要素分布并与实际状况进行比较,再将未来3个时段的气象要素与气候基准时段求差值(其中降水用距平百分率表示),分析未来玉米生育期的气候变化。结果表明:平均、最高和最低气温以及≥10℃有效积温的模拟值普遍低于实际值,且具有相似的北高南低的空间分布状态,而降水的模拟值在大范围区域内高于实测值,亦呈现出相似的南高北低分布状态,总体来讲模拟值可以较合理地反映出宁夏的实际状况。相对于气候基准时段,未来各气象要素总体表现为增加,且增幅随时间推移而加大;未来最高气温在宁夏南部增加剧烈,平均气温、最低气温和≥10℃有效积温在宁夏北部增加较多,降水则呈现北增南减的分布。在未来3个时段,最高气温和降水分别为增量最大和波动最大的气象要素,出现极端高温天气和发生干旱或洪涝等异常气候事件的可能性增大。总体上看,未来气温升高对宁夏北部灌区的玉米生产有一定促进作用,尤其是≥10℃有效积温的增加可以提供更充足的热量;而南部山区气温增加虽然对玉米生产有利,但是未来降水的减少将会给雨养玉米造成不利影响,应当采取合理的应对措施。  相似文献   

18.
基于CMIP5模式和SDSM的赣江流域未来气候变化情景预估   总被引:2,自引:0,他引:2  
赣江流域未来气候变化预估,对于了解该流域未来水资源的变化、指导流域防洪抗旱和水资源的合理开发利用具有重要意义。为预估该流域未来气候变化,利用1961—2005年赣江流域6个气象站数据、NCEP再分析数据并选择了CMIP5中CanESM2模式下3种排放情景RCP2.6,RCP4.5,RCP8.5,采用SDSM模型研究了赣江流域未来气候变化。结果表明:(1)赣江流域未来温度和降水总体均呈上升趋势。(2)在RCP2.6,RCP4.5,RCP8.5这3种排放情景下赣江流域未来最高气温分别增加1.8,2.1,2.8℃;未来最低气温分别增加1,1.2,1.9℃;未来平均气温分别增加1.5,1.6,2.3℃;3种排放情景下未来温度空间分布都是南高北低,西高东低,并在南北方向呈带状和环状分布。(3)在未来3个时期(2020s,2050s,2080s)、3种排放情景下赣江流域气温呈上升趋势,且6月份增幅最大,2月份增幅最小。(4)在未来3个时期、3种排放情景下,赣江流域未来降水均呈增加的趋势;5—10月降水量均呈现下降趋势,1—4月、11—12月降水量呈现增加趋势;3种情景下的未来降水空间分布基本呈南低北高,在南北方向呈递增趋势。对赣江流域气候要素模拟与预估表明,赣江流域未来气候变化存在降水增加及极端天气事件发生的危险,分析结果可为赣江流域气候变化的水文响应及气候变化的适应性研究提供科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号