首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
为了提高辣椒子叶不定芽的伸长率和遗传转化效率,本研究以保加利亚尖椒子叶为外植体,通过正交试验分别对影响保加利亚尖椒子叶不定芽伸长的激素组合以及遗传转化参数进行了优化。结果表明:诱导不定芽伸长的最佳激素组合为0.2mg/LIAA+1.0mg/LGA3+0.1mg/LPBU,不定芽伸长率最高为60%;以5mg/L潮霉素为选择压,预培养时间为4d、共培养时间为2d、侵染时间为20min时,诱导的抗性不定芽比率最高。本研究建立的辣椒再生及遗传转化体系为辣椒转基因研究奠定一定的基础。  相似文献   

3.
一株耐盐溶磷真菌的筛选、鉴定及其生物肥料的应用效果   总被引:7,自引:1,他引:6  
【目的】 从内蒙古种植向日葵的盐碱地中筛选高效溶磷真菌,为农业生产中增产节肥,开发耐盐、溶磷微生物肥料提供菌种资源。 【方法】 利用形态特征和ITS rDNA序列鉴定菌株;LC-MS技术测定菌株M2在液体培养基中分泌有机酸和植物激素含量,明确菌株M2的溶磷和促生机理。采用液体摇床培养试验测定了鉴定菌株的溶磷能力。试验处理包括:在磷酸三钙、磷酸铝和5个磷矿的磷矿粉制备的100 mL难溶磷磷源 (含5 g/L难溶磷) 中,接入1 mL灭菌培养液对照,和分别接种1 mL斜卧青霉菌P83和草酸青霉菌M2共15个处理。置于28℃、160 r/min摇床培养,分别于3、6和9 d,取菌液5 mL,在12000 r/min、4℃离心5 min,取上清液测定有效磷含量。采用含NaCl的固体培养基测定菌株的耐盐性。NaCl含量分别为0%、5%、7.5%、10%和12.5%的PDA平板中接入溶磷菌,置于28℃恒温培养箱中5 d,观察并记录菌丝的生长状况。采用盆栽试验方法检验了菌株的溶磷能力。以玉米种子 (郑单958) 为供试作物,以水稻土、黏性潮土、盐潮土和石灰性潮土为供试土壤,以Ca3(PO4)2、AlPO4 和昆阳磷矿粉 (RP) 为供试磷源 (磷源用量为1.0 g/kg土壤)。设置只加入灭菌草炭和Pikovskaya培养液对照,分别接种溶磷菌P83、M2,共计38个处理,144盆。玉米播种40天后收获,测定植株鲜重、干重和玉米根际土壤有效磷含量。田间试验以花生为供试作物,设置只加灭菌草炭和Pikovskaya培养液对照和分别接种ATCC20851、P83、M2溶磷菌剂三个处理。花生生长155 d后收获,称量花生植株鲜重和干重、花生果实鲜重和干重,同时采集花生根部土壤测定有效磷含量。 【结果】 溶磷菌株M2鉴定为草酸青霉 (Penicillium oxalicum)。液体培养基摇床培养6 d后,接种菌株M2,以Ca3(PO4)2为磷源的上清液中有效磷含量达972 mg/L,Ca3(PO4)2溶解率为59.2%;以AlPO4为磷源的有效磷含量达988 mg/L,溶解率为48.2%;以江苏锦屏、贵州开阳、云南晋宁、河北钒山和云南昆阳磷矿粉为磷源的有效磷释放量达21.0~556 mg/L。菌株M2在7.5%NaCl培养基中正常生长。盆栽试验结果发现,菌株M2对玉米植株促生效果显著,玉米植株鲜重比不接种菌剂 (CK) 提高26.4%~99.2%、干重增加20.0%~262.9%,土壤有效磷提高19.2~25.3 mg/kg。菌株M2与4种土壤的适配性均高于对照菌株P83。田间小区花生产量结果显示,接种溶磷菌剂M2增产效果最好,花生果实产量达4.50 t/hm2,比CK增加0.85 t/hm2,增产23.29%。菌株M2 在含有磷酸三钙、磷酸铝和开阳磷矿粉3种难溶磷培养液中经过6 d培养,均产生7种有机酸,其中草酸和柠檬酸含量最高,分别为653.46 mg/L和269.61 mg/L;培养液中均能检测到吲哚乙酸 (IAA) 和玉米素,IAA含量为32.38~66.17 mg/L,玉米素浓度为0.05~0.07 mg/L。 【结论】 获得了一株耐盐、高效溶解多种难溶磷的草酸青霉菌M2,可显著增加土壤有效磷,促进玉米生长和花生增产,与4种典型土壤适配性好,具有良好的农业应用前景。   相似文献   

4.
5.
A simple, highly selective, sensitive, and reproducible liquid chromatography-electrospray ionization/time-of-flight mass spectrometry method has been developed for the direct and simultaneous determination of capsaicin and dihydrocapsaicin in Capsicum fruit extracts. Capsaicin and dihydrocapsaicin are the two major members of the so-called capsaicinoid family, which includes other minor analogues, and usually account for at least 90% of the pungency trait in Capsicum fruits. Chromatographic separation of capsaicin and dihydrocapsaicin was achieved with a reversed-phase chromatography column, using a gradient of methanol and water. Quantification was done using as an internal standard (4,5-dimethoxybenzyl)-4-methyloctamide, a synthetic capsaicin analogue not found in nature. Analytes were base-peak resolved in less than 16 min, and limits of detection were 20 pmol for capsaicin and 4 pmol for dihydrocapsaicin. The intraday repeatability values were lower than 0.5 and 12% for retention time and peak area, respectively, whereas the interday repeatability values were lower than 0.6 and 14% for retention time and peak area, respectively. Analyte recoveries found were 86 and 93% for capsaicin and dihydrocapsaicin, respectively. The method developed has been applied to the identification and quantification of capsaicin and dihydrocapsaicin in fruit extracts from different Capsicum genotypes, and concentrations found ranged from 2 to 6639 mg kg(-1).  相似文献   

6.
LC/ES-MS detection of hydroxycinnamates in human plasma and urine   总被引:3,自引:0,他引:3  
Hydroxycinnamates are components of many fruits and vegetables, being present in particularly high concentrations in prunes. An abundance of phenolic compounds in the diet has been associated with reduced heart disease mortality. However, little is known about the absorption and metabolism of these metabolites after normal foods are consumed. An LC--electrospray--MS method was developed to measure the concentration of caffeic acid in human plasma and urine, but it can also be applied to ferulic acid and chlorogenic acid. The limit of detection was found to be 10.0 nmol/L for caffeic acid and 12.5 nmol/L for ferulic and chlorogenic acids. The method was tested on samples of plasma and urine collected from volunteers who consumed a single dose of 100 g of prunes and increased levels were observed, demonstrating that the method is capable of detecting changes in hydroxycinnamate levels induced by dietary consumption.  相似文献   

7.
  【目的】  酚酸类化合物是多种农作物根际土壤中常见的自毒物质,化感自毒物质与土传病害发生密切相关。研究阿魏酸对枯萎病发生的促进效应及机理,为阐明连作自毒物质–病原菌–寄主抗病性互作效应提供参考。  【方法】  采用水培试验研究阿魏酸对蚕豆幼苗生长和枯萎病发生的影响。在蚕豆幼苗长至4~6片真叶时,将其移入2 L Hoagland 营养液中进行培养,其中阿魏酸浓度分别为0、50、100、200 mg/L。待阿魏酸处理2 天后,加入25 mL 1 × 106 cfu/mL的尖孢镰刀菌孢子悬浮液。继续培养40天后,取样调查植株生长状况和枯萎病发病率。利用显微镜观察蚕豆根系细胞组织结构的变化,通过室内培养试验研究尖孢镰刀菌菌丝生长和致病力对阿魏酸胁迫的响应。  【结果】  与无添加阿魏酸 (0 mg/L) 处理相比,添加阿魏酸处理显著抑制蚕豆幼苗的生长,且阿魏酸浓度越高抑制作用越强。本试验条件下,阿魏酸处理显著提高蚕豆枯萎病发病率300.0%~500.0%,显著增加病情指数113.3%~1666.7%,发病率和病情指数均在阿魏酸处理浓度200 mg/L下达到最大值。阿魏酸处理抑制尖孢镰刀菌的菌丝生长,显著提高尖孢镰刀菌产生的果胶酶、纤维素酶、淀粉酶和蛋白酶活性44.8%~59.0%、78.2%~145.6%、975.6%~2435.4%和165.1%~622.9%;显著提高枯萎酸含量107.6%~236.2%。阿魏酸胁迫下,蚕豆根系表皮细胞扭曲变形,木质部导管变细,导管壁增厚,胶状物和内含物充满整个细胞,阻碍营养物质和水分的正常运输,进而加速蚕豆枯萎死亡。  【结论】  阿魏酸胁迫虽然抑制尖孢镰刀菌的菌丝生长,但显著提高蚕豆根系细胞壁降解酶活性和枯萎酸含量,进而增加尖孢镰刀菌致病力,加速根系细胞组织结构损伤,促进尖孢镰刀菌侵入蚕豆根系,加剧枯萎病发生和危害。阿魏酸在蚕豆连作障碍中扮演着初始诱因的角色。  相似文献   

8.
菊苣高效不定芽直接发生及其植株再生   总被引:4,自引:0,他引:4  
本研究以菊苣无菌苗叶片为外植体,建立了高效不定芽直接发生及其植株再生体系。在附加不同浓度N-6-benzyladenine(6-BA)或与低浓度α-naphthaleneacetic acid(NAA)组合的MS培养基上,5~7d外植体表面不经过愈伤组织诱导阶段,直接形成不定芽。组织学观察表明,不定芽起源于叶片维管束薄壁细胞,且其微管组织系统与叶片外植体内微管组织系统紧密相连。6-BA是不定芽直接发生所必需的,外植体的发育时期、取材部位和培养基蔗糖浓度对不定芽直接发生有重要影响。在附加2.0mg/L 6-BA,0.5mg/L NAA,100mg/L Vc,100mg/L VB1,300mg/L脯氨酸和40g/L蔗糖的MS培养基上,培养20d龄基部叶片15d时,不定芽直接发生频率最高为100%,每块外植体上产生的不定芽数量也最多,平均为36~38个。在1/2 MS+IBA 0.5mg/L培养基上,再生苗诱导生根频率为97.58%,再生植株移栽于盆土中,100%存活且生长良好,未见形态异常。  相似文献   

9.
In the present study, interaction of 4 levels of manganese (Mn2+) (0, 100, 200, and 400 mM) and 4 levels of pH (4.5, 5.5, 6.5, and 7.5) were investigated on some physiological parameters of Brassica oleracea L. after 30 days of growth (15 days treatment) in hydroponic culture. Results showed that with an increase in manganese concentration, soluble carbohydrates, protein, and ascorbate contents also increased in shoots and roots of Brassica oleracea L. However, higher concentration of manganese reduced soluble carbohydrates, protein and ascorbate contents in the same plant. As manganese concentration increased, catalase activity in roots and shoots was also remarkably increased. Moreover, root peroxidase activity at pH 4.5 increased with an increase in manganese concentration and this increase was highest at pH 4.5 and 400 mM manganese concentration.  相似文献   

10.
以牛角瓜的叶片为外植体,进行牛角瓜的组织培养。结果表明,培养基MS 2,4-D 2 mg/L利于愈伤组织的诱导;培养基MS 6-BA 0.5 mg/L NAA 0.1 mg/L有利于芽的分化和增殖;生根壮苗的培养基为1/2 MS NAA 0.5 mg/L,其生根率100%;试管苗生根培养30 d后移栽,成活率可达85%以上。  相似文献   

11.
The effects of various commercial hydrothermal processes (steaming, autoclaving, and drum drying) on levels of selected oat antioxidants were investigated. Steaming and flaking of dehulled oat groats resulted in moderate losses of tocotrienols, caffeic acid, and the avenanthramide Bp (N-(4'-hydroxy)-(E)-cinnamoyl-5-hydroxy-anthranilic acid), while ferulic acid and vanillin increased. The tocopherols and the avenanthramides Bc (N-(3',4'-dihydroxy-(E)-cinnamoyl-5-hydroxy-anthranilic acid) and Bf (N-(4'-hydroxy-3'-methoxy)-(E)-cinnamoyl-5-hydroxy-anthranilic acid) were not affected by steaming. Autoclaving of grains (including the hulls) caused increased levels of all tocopherols and tocotrienols analyzed except beta-tocotrienol, which was not affected. Vanillin and ferulic and p-coumaric acids also increased, whereas the avenanthramides decreased, and caffeic acid was almost completely eliminated. Drum drying of steamed rolled oats resulted in an almost complete loss of tocopherols and tocotrienols, as well as a large decrease in total cinnamic acids and avenanthramides. The same process applied to wholemeal made from groats from autoclaved grains resulted in less pronounced losses, especially for the avenanthramides which were not significantly affected.  相似文献   

12.
Ferulic and p‐coumaric acids were analyzed in 50 rice (Oryza sativa L.) samples from 32 cultivars harvested in Japan. In brown rice, ferulic and p‐coumaric acid levels ranged from 309 to 607 mg/kg and from 49 to 100 mg/kg, respectively. In 70% polished rice, ferulic and p‐coumaric acid levels ranged from 27 to 103 mg/kg and from 0.4 to 3.5 mg/kg, respectively. Ratios of average phenolic acid levels in the 70% polished rice to the brown rice were 13.9% for ferulic acid and 1.9% for p‐coumaric acid. The ferulic acid level was highly correlated between brown and 70% polished rice (R = 0.815; P < 0.01), but there was no clear correlation for p‐coumaric acid. Phenolic acid levels in the 70% polished rice did not show any clear correlations between the analytical index measurements for sake brewing suitability (weight of 1,000 grains, water absorption, digestibility, crude protein, and potassium content). Phenolic acid levels in the 70% polished rice directly affected levels in the rice koji enzyme digest. The results indicated that phenolic acid levels in sake were affected by the levels in ingredient rice grains, which may then influence the sensory quality of sake.  相似文献   

13.
With the aiming of reducing the curing period, effects of pretreatments on flavor formation in vanilla beans during accelerated curing at 38 degrees C for 40 days were studied. Moisture loss, change in texture, levels of flavoring compounds, and activities of relevant enzymes were compared among various pretreatments as well as the commercial sample. Use of naphthalene acetic acid (NAA; 5 mg/L) or Ethrel (1%) with blanching pretreatment resulted in 3-fold higher vanillin on the 10th day. Other flavoring compounds-vanillic acid, p-hydroxybenzoic acid, and p-hydroxybenzaldehyde-fluctuated greatly, showing no correlation with the pretreatments. Scarification of beans resulted in nearly 4- and 3.6-fold higher vanillin formations on the 10th day in NAA- and Ethrel-treated beans, respectively, as compared to control with a significant change in texture. When activities of major relevant enzymes were followed, addition of NAA or Ethrel helped to retain higher levels of cellulase throughout the curing period and higher levels of beta-glucosidase on the 20th day that correlated with higher vanillin content during curing and subsequent periods. Peroxidase, being highest throughout, did not correlate with the change in levels of major flavoring compounds. The pretreatment methods of the present study may find importance for realizing higher flavor formation in a shorter period because the major quality parameters were found to be comparable to those of a commercial sample.  相似文献   

14.
目的多效唑 (PP333) 和三碘苯甲酸 (TIBA) 是植物生长延缓剂,因其对植株矮化的显著效果,广泛应用于绿篱植物的化学修剪中,本研究使用此两种激素对苗木进行叶面喷施,探讨其对大叶黄杨根系和叶片氮代谢的影响。方法以三年生扦插大叶黄杨 (Buxus megistophylla) 苗为试验材料,在北京林业大学实验林场苗圃地内进行了叶面喷施田间试验。采用双因素随机区组设计,设置PP333 0、20、50、80 mg/L 四个浓度水平,TIBA为0、50、100 mg/L 三个浓度水平,共12个处理组合。自2017年4月5日起,每隔25天在每个小区喷施1 L备好的溶液。第三次喷施25天后取扦插苗全株样,分别测定了根系、叶片全氮、硝态氮、游离氨基酸含量以及叶片可溶性蛋白和光合色素含量。结果1) 单施高浓度PP333对细、中根全氮、硝态氮和游离氨基酸含量有显著提升作用,而单施TIBA仅对细根全氮、硝态氮和游离氨基酸含量有显著影响。PP333和TIBA及二者的交互效应对大叶黄杨细根的全氮、硝态氮和游离氨基酸含量均有极显著提升作用。2) PP333、TIBA及其交互作用均能极显著促进叶片全氮、可溶性蛋白含量和光合色素含量提升,50或80 mg/L PP333能够促进游离氨基酸含量提升,且仅在80 mg/L时对硝态氮含量有显著影响。3) PP333对不同径级根系全氮、游离氨基酸、硝态氮以及叶片全氮、硝态氮、游离氨基酸、可溶性蛋白和光合色素含量的促进作用较TIBA更为显著。结论PP333和TIBA对大叶黄杨氮代谢有显著影响,且相对于TIBA, PP333更能影响大叶黄杨氮的生理代谢过程。在生产应用中,80 mg/L PP333与100 mg/L TIBA结合喷施会加速根系中细根的氮代谢过程,并对叶片中蛋白质和光合色素的提升有显著促进作用,单施80 mg/L PP333显著促进叶片硝态氮和游离氨基酸的含量。  相似文献   

15.
Hydroxycinnamic acid content and ferulic acid dehydrodimer content were determined in 11 barley varieties after alkaline hydrolysis. Ferulic acid (FA) was the most abundant hydroxycinnamate with concentrations ranging from 359 to 624 microg/g dry weight. p-Coumaric acid (PCA) levels ranged from 79 to 260 microg/g dry weight, and caffeic acid was present at concentrations of <19 microg/g dry weight. Among the ferulic acid dehydrodimers that were identified, 8-O-4'-diFA was the most abundant (73-118 microg/g dry weight), followed by 5,5'-diFA (26-47 microg/g dry weight), the 8,5'-diFA benzofuran form (22-45 microg/g dry weight), and the 8,5'-diFA open form (10-23 microg/g dry weight). Significant variations (p < 0.05) among the different barley varieties were observed for all the compounds that were quantified. Barley grains were mechanically fractionated into three fractions: F1, fraction consisting mainly of the husk and outer layers; F2, intermediate fraction; and F3, fraction consisting mainly of the endosperm. Fraction F1 contained the highest concentration for ferulic acid (from 77.7 to 82.3% of the total amount in barley grain), p-coumaric acid (from 78.0 to 86.3%), and ferulic acid dehydrodimers (from 79.2 to 86.8%). Lower contents were found in fraction F2, whereas fraction F3 exhibited the lowest percentages (from 1.2 to 1.9% for ferulic acid, from 0.9 to 1.7% for p-coumaric acid, and <0.02% for ferulic acid dehydrodimers). The solid barley residue from the brewing process (brewer's spent grain) was approximately 5-fold richer in ferulic acid, p-coumaric acid, and ferulic acid dehydrodimers than barley grains.  相似文献   

16.
The response of four cultivars of pepper (Capsicum annuum L.), Yolo Wonder, HDA 103, HDA 174, and SC 81 to sodium chloride (NaCl) salinity was studied in hydroponic culture by comparing three different NaCl concentrations: 0 mM, 50 mM, and 100 mM. For all cultivars, growth was reduced when NaCl concentration in the growth medium increased. However, cultivar behavior as a function of the NaCl concentration was not homogenous. The HDA 174 displayed the best growth when NaCl concentration was high, while Yolo Wonder was the most sensitive to salinity. The SC 81 showed intermediate behavior since its growth was low at all treatment levels, but it reacted only slightly to increasing salinity. The analytical results showed that growth was very closely linked to the zinc (Zn) content of the blade: the best growth was observed when the percentage of Zn in the blade was low, whereas high Zn content was linked to sharp reduction in growth. The most tolerant cultivar, HDA 174, showed an original response: the sodium (Na) was strongly accumulated in the leaf blade, whereas the other cultivars tended to avoid Na accumulation. This corresponded to an adaptation observed for halophyte plants.  相似文献   

17.
The aim of the present study was to evaluate which structural elements of the vanillin molecule are responsible for its observed antifungal activity. MICs of vanillin, its six direct structural analogues, and several other related compounds were determined in yeast extract peptone dextrose broth against a total of 18 different food spoilage molds and yeasts. Using total mean MICs after 4 days of incubation at 25 degrees C, the antifungal activity order was 3-anisaldehyde (1.97 mM) > benzaldehyde (3.30 mM) > vanillin (5.71 mM) > anisole (6.59 mM) > 4-hydroxybenzaldehyde (9.09 mM) > phenol (10.59 mM) > guaiacol (11.66 mM). No correlation was observed between the relative antifungal activity of the test compounds and log P(o/w). Furthermore, phenol (10.6 mM) was found to exhibit a greater activity than cyclohexanol (25.3 mM), whereas cyclohexanecarboxaldehyde (2.13 mM) was more active than benzaldehyde (3.30 mM). Finally, the antifungal order of isomers of hydroxybenzaldehyde and anisaldehyde was found to be 2- > 3- > 4- and 3- > 2- > 4-, respectively. In conclusion, the aldehyde moeity of vanillin plays a key role in its antifungal activity, but side-group position on the benzene ring also influences this activity. Understanding how the structure of natural compounds relates to their antimicrobial function is fundamentally important and may help facilitate their application as novel food preservatives.  相似文献   

18.
以“新台糖16号”甘蔗品种试管苗为材料,采用液体培养方法,以MS为基本培养基,附加激素BA 3mg/L、NAA0.5mg/L,NaSiO3200mg/L,苗增殖率比对照提高68%,叶色浓绿、叶片挺直、硬、不早衰。比对照延长生长期23d。生根阶段,以MS为基本培养基,附加NAA1mg/L、硼酸30mg/L,生根数比对照增加53%,根长、苗壮。  相似文献   

19.
[目的]分离筛选耐盐溶磷真菌用于改良低产盐碱土壤意义重大.[方法]利用PVK固体培养基培养、以透明圈法从黄河三角洲地区盐生植物和农作物根际土壤中筛选出溶磷真菌15株,用不同NaCl浓度的PDA培养基培养、用液体摇床培养测定耐盐性和溶解Ca3(P04)2能力;结果编号为F2、F19的2菌株最高可耐受盐浓度分别达到7%和9...  相似文献   

20.
We have examined the influence of four phosphorus (P) levels on growth performance, photosynthetic efficiency and bioactive phytochemical production of Prunella vulgaris L. in hydroponic culture. Results that 0.20 mM P was enhanced the dry weight, shoot height, spica and root weights, spica length and number, total chlorophyll and carotenoid contents, net photosynthetic rate, transpiration rate, and stomatal conductance were determined after three months' treatment. A supply of surplus P resulted in a higher concentration of foliar P and was negatively correlated with biomass. Both P-deficient (0 mM) and high P (10.00 mM) resulted in increased concentrations of ursolic acid and oleanolic acid, with the exception of flavonoids. An increase in water extract from P. vulgaris spicas was noted with the application of increasing P concentrations. Our results indicated that the application of 0.20 mM P improves the biomass production and the yield of bioactive constituents of P. vulgaris.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号