首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
酿酒葡萄修剪装置的设计   总被引:1,自引:0,他引:1  
酿酒葡萄修剪作业直接影响酿酒葡萄的产量和品质。为此,针对新疆酿酒葡萄人工修剪劳动强度大、效率低、费用高等问题,结合新疆酿酒葡萄的种植模式和修剪要求,设计了一种酿酒葡萄修剪装置。介绍了修剪装置的整机结构和工作原理,并对旋转刀刀盘进行了运动分析,理论分析表明:当拖拉机前进速度为6km/h、旋转刀刀盘半径为200mm、刀片长度为20mm、刀片数量为4及旋转刀刀盘转速为2 000r/min时,该修剪装置可以满足酿酒葡萄的修剪要求。同时,通过AMESim液压仿真软件对修剪装置液压系统进行仿真分析,验证了修剪装置液压系统的可行性。  相似文献   

2.
针对夏季酿酒葡萄修剪工作劳动强度大、效率低、修剪质量难以保证等问题,结合新疆酿酒葡萄种植模式,研制了一种夏季酿酒葡萄修剪机。首先对整机结构、工作原理、关键部件设计进行说明,然后运用Box-Benhnken中心组合试验方法对试验因素进行分析,以刀具转速、作业速度、含水率进行试验并进行响应曲面分析,建立曲面响应三维模型,并最终得出最优工作参数组合。试验结果表明:当作业速度1.5m/s、刀具转速1 200r/min、含水率65%时,切断率达到最大为96%。该机具作业性能可靠,各项指标满足性能设计要求。  相似文献   

3.
针对葡萄枝条修剪量大、资源化利用率低、离园成本高等问题,设计一种集集条、捡拾、粉碎、收集作业为一体的葡萄枝条捡拾粉碎收集机。阐述整机结构和工作原理,并结合葡萄枝条特性,设计与分析集条装置、捡拾喂入装置、粉碎装置等关键部件。性能试验结果表明:在葡萄枝条平均含水率为60.5%的条件下,作业速度为1.4 km/h、粉碎轴转速为2 280 r/min、喂入辊转速为147 r/min时,捡拾率为95.41%,粉碎长度合格率为94.87%,机具作业性能稳定、效果好,满足葡萄枝条粉碎收集的作业要求。  相似文献   

4.
大田玉米收获机收获制种玉米时容易产生伤穗落籽、杂物堵塞等现象,本文针对适收期制种玉米生物特性,设计了一种大型制种玉米联合收获机,采用小行距对行柔性板式摘穗割台和可替换组合式剥皮装置,确保低损摘穗、输送、剥皮作业,降低籽粒损失与损伤;其中割台上方配备钢质覆胶弧形摘穗板,“橡胶+钢质”夹持输送链和六棱低速拉茎辊,可替换组合式剥皮装置采用柔性破皮+揉搓+降速组合形式。通过Plackett-Burman试验设计筛选提取影响机具指标的主要因素,采用Box-Behnken试验设计原理,以机具前进速度、拉茎辊转速和剥皮辊转速为试验因素,以总损失率与含杂率为性能指标,通过田间试验对机具进行检验,优化得出机具最佳作业参数。试验结果表明,优化后,当机具前进速度为4.87km/h、拉茎辊转速为877.27r/min、剥皮辊转速为442.52r/min时,果穗总损失率为1.61%,含杂率为0.55%。田间试验结果表明,当收获机前进速度为4.9km/h、拉茎辊转速为880r/min、剥皮辊转速为450r/min时,果穗总损失率为1.64%,含杂率为0.57%,满足制种玉米机械化联合收获的作业要求,可为制种玉米联合收获机设计与试验提供参考。  相似文献   

5.
为适应新疆酿酒葡萄枝条机械化修剪的需求,基于圆盘刀切割器对酿酒葡萄枝条进行切割性能试验,探索新疆酿酒葡萄圆盘刀式枝条修剪的最优工作参数组合。以新疆酿酒葡萄枝条为研究对象,得到刀盘转速、切割倾角和酿酒葡萄枝条前进速度对酿酒葡萄枝条修剪质量的影响规律。试验结果表明:酿酒葡萄枝条前进速度1.63m/s、刀盘转速1 085.72r/min、切割倾角9.62°时工作效果最好,酿酒葡萄枝条撕裂率和漏剪率分别为1.10%和0.8 5%。该研究可为新疆酿酒葡萄圆盘刀式修剪装置的研制及优化提供参考。  相似文献   

6.
2FPG-40型葡萄开沟施肥机的设计与试验   总被引:1,自引:0,他引:1  
根据新疆葡萄种植施肥需要,设计2FPG-40型葡萄开沟施肥机,该机能一次完成开沟、施肥和覆土三项作业。机具由40.4kW拖拉机牵引和驱动,作业幅宽1.7m,一次可开沟施肥1行,最大开沟深40cm,沟宽15cm,作业速度1km/h。以机具的前进速度、开沟深度和绞龙转速为因素进行田间试验,结果表明机具前进速度和开沟深度对排肥变异系数差异并不显著,绞龙转速对排肥变异系数差异显著,各因素对排肥变异系数影响程度为:绞龙转速机具前进速度开沟深度。通过正交试验极差和方差分析得出最优组合方案为绞龙转速60r/min,机具前进速度为1.5km/h,开沟深度为30cm。  相似文献   

7.
卧式切碎装置切碎效果的试验研究   总被引:1,自引:0,他引:1  
为了提高玉米收获过程中茎秆切碎合格率,采用正交试验、因素互作试验相结合的方式,对其影响因素进行了分析和优选,研究了因素间相互作用关系。试验表明,切碎效果较佳时各项参数为:割刀开始切碎位置位于强制拉茎段起始前端,喂入位置偏向摘穗辊高辊一侧,行进速度为1~1.2m/s,割刀的转速为2 000r/min,摘穗辊转速为700r/min;摘穗辊转速分别与喂入速度和割刀转速存在交互作用。  相似文献   

8.
为确保冬季葡萄安全越冬,每年必须将葡萄藤用土掩埋起来,是防止葡萄藤冬季冻伤和风干的有效措施。针对果园经济作物葡萄种植生产过程中人工埋藤作业劳动强度大、作业成本高、效率低等问题,根据葡萄埋藤的农艺要求,设计一种与22 kW以上拖拉机配套的1PM-100型葡萄埋藤机,该机主要由机架、挖土装置、覆土装置、传动系统、限深装置等功能部件组成。对该机的挖土装置和传动系统等关键部件进行相关理论分析,并对机具进行田间试验。试验表明:机具前进速度为2 km/h,取土沟一侧距葡萄藤距离为450 mm,挖土装置转速为200 r/min时,纯工作小时生产率为0.8 hm~2/h;挖土深度及覆土量大小可以根据用户需求方便调节,能够满足葡萄冬季埋藤的农艺要求,减轻劳动强度,降低作业成本。  相似文献   

9.
为探究露地酿酒葡萄茎秆对机械化切割力的影响关系,通过力学特性试验测定修剪期葡萄茎秆弹性模量与抗压强度,确定葡萄茎秆断裂时的抗剪强度在5.0~9.0 MPa。对切割器—葡萄茎秆建立几何模型进行动力学仿真,借助有限元分析软件ANSYS/LS-DYNA分析往复式切割器切割过程,得到葡萄茎秆修剪过程中位移云图、等效应力云图、能量曲线和切割力曲线。在此基础上进行三因素三水平仿真试验,得到切割装置工作参数对切割力的影响从大到小排序为切割倾角、液压马达转速、行进速度,运用Design-Expert12.0软件优化分析得到切割装置最优参数组合:切割倾角为9°、液压马达转速为700 r/min、行进速度为1.5 m/s。运用最优参数组合进行田间试验,结果表明:往复式葡萄茎秆修剪机的漏剪率为5.4%,撕裂率为4.6%,葡萄茎秆切割装置最优作业参数可满足葡萄园茎秆修剪作业要求。  相似文献   

10.
优化设计打捆机捡拾喂入机构,并增加切碎功能。当捡拾器转速为123 r/min、喂入辊转速为250.8 r/min时,打捆机行走速度可以达到5.5 km/h,作业效率≥3 t/h。  相似文献   

11.
单马达往复式葡萄剪枝机设计与试验   总被引:1,自引:0,他引:1  
针对机械修剪葡萄茎杆过程中出现的茎杆剪净率低、毛茬面积比较大等问题,设计了一种单马达往复式葡萄剪枝机。阐述了往复式葡萄剪枝机的结构及工作原理,通过对茎杆进行受力分析、利用Matlab软件分析毛茬产生原因,确定了剪切装置刀具参数以及因素取值范围。通过正交试验研究各试验因素对茎杆剪切效果的影响,建立以剪净率和毛茬率为响应值的多元二次回归模型。结果表明,当切削速度1.66 m/s、进给速度1.46 m/s、刀具间隙0.47 mm时,茎杆剪净率为91.71%、毛茬率为3.70%。在该条件下进行了验证试验,得出剪净率为90.66%、毛茬率为4.71%,与模型预测值相近,说明所建模型合理,能够满足实际作业需求。  相似文献   

12.
针对甘薯分段收获技术需求,结合国内外甘薯收获技术及装备,提出一种甘薯秧蔓收获方式,并设计甘薯秧蔓收获机专用割台。该甘薯秧蔓收获割台主要由拨禾切割装置和防堵防缠输送装置组成,可以实现甘薯秧蔓的切—送—归集。首先,理论分析该割台的关键部件结构参数及传动配置关系,确定拨禾切割装置上仿垄型排列的割刀和弹齿的安装高度和安装密度,以及拨禾轮、割刀和弹齿的结构参数。其次,通过对拨禾切割装置、捡拾装置和螺旋输送装置进行运动学和力学分析,明确拨禾轮、捡拾器、螺旋输送绞龙转速和结构决定秧蔓切割效果和收获质量,并确定捡拾器和螺旋输送绞龙的关键结构参数,最后进行田间试验验证该机具的切—送—归集收获效果。结果表明:当整机前进速度为0.6 m/s,拨禾轮转速为46 r/min,捡拾器转速为43 r/min,割台损失率仅为1.3%,整机作业效率为0.45 hm2/h。割台搭配48 kW拖拉机在工作过程中运行稳定,割台在工作过程中无堵塞、无缠绕,满足甘薯秧蔓联合收获机的设计需求。  相似文献   

13.
免耕播种机动态仿生破茬装置设计与参数试验优化   总被引:2,自引:0,他引:2  
针对中国东北地区玉米秸秆粗壮量大、不易腐烂,造成免耕播种机破茬防堵装置秸秆根茬切断率低和作业所需切割扭矩大的技术难题,以蝗虫口器多段阶梯锯齿状结构和双上颚异向等速咬合运动方式为仿生原型,设计一种可在东北地区实现高效破茬防堵作业的动态仿生破茬装置。通过仿生构建、机构设计、理论分析和参数优化等方法设计了行星齿轮变速机构和仿生破茬刀;运用Arduino系统和智能控制方法设计了智能驱动系统,实现了运动方式-结构耦合仿生;通过参数优化试验和回归分析等方法,研究了结构和作业参数对秸秆切断率和切割扭矩的影响规律,并得出最佳参数组合:作业速度为10 km/h,回转半径为250 mm,正转破茬刀仿蝗虫口器刀片数量为9,反转破茬刀仿蝗虫口器刀片数量为18;最终通过对比试验得出动态仿生破茬装置相较于被动缺口圆盘破茬刀可提高秸秆根茬切断率22.6%~27.4%;相较于驱动缺口圆盘破茬刀可提高秸秆根茬切断率8.6%~13.5%,降低扭矩输出19.5%~21.8%;作业后使用共聚焦激光扫描仪进行耐摩擦磨损对比试验,其平均表面粗糙度和最大磨痕深度相较于驱动缺口圆盘破茬刀分别下降14.5%和15.9%。  相似文献   

14.
针对我国高速公路中央分隔绿化带车载式修剪机械功能单一、成本高、效率低、普及推广量小等问题,结合高速公路绿化养护工程实际需要,借鉴现有绿篱修剪机技术,研制出一种顶侧部同步修剪的绿篱修剪机.该机型以四轮拖拉机为动力,具有切割器的升降、避障、残枝残叶清扫、角度调节及离合操作等功能,整机一次往返作业即可完成中央分隔绿化带的修剪...  相似文献   

15.
目前用于香蕉秸秆粉碎的刀具在使用过程中存在刀具磨损量大、刀具易断裂、刀具适应性差等问题。结合香蕉秸秆含水量高、纤维含量丰富等物理特性,基于仿生学原理,通过狼爪获取灵感,获取仿狼爪轮廓曲线刀刃曲线方程,加工出一种仿生式减阻型秸秆粉碎刀,并设计香蕉秸秆粉碎刀轴。运用中心组合试验设计理论对秸秆还田机作业关键参数还田机前进速度、刀轴转速、刀片厚度进行研究,采用二次正交旋转组合设计试验方法并用Design-Expert进行数据处理,建立秸秆粉碎合格率的回归数学模型并进行方差分析。分析得出影响秸秆粉碎合格率的显著性顺序由大到小为刀轴转速、刀片厚度、还田机前进速度。通过响应曲面法得出最优作业参数组合为:还田机前进速度为4.72 km/h、刀轴转速为1 626.67 r/min、刀片厚度为9.84 mm,此时,香蕉秸秆粉碎合格率为97.28%。在最优参数组合的情况下,实际秸秆粉碎合格率为96.94%。通过与直型粉碎刀进行对比试验,秸秆粉碎合格率提高2.34个百分点。该研究为提高香蕉秸秆粉碎还田机作业质量提供参考。  相似文献   

16.
水稻秸秆双轴深埋还田机设计与试验   总被引:1,自引:0,他引:1  
针对北方寒地稻田在秸秆还田作业时,传统单轴机具难以适应覆有大量秸秆的湿黏土壤条件,作业质量难以满足实际作业需求的问题,设计了一种前轴正旋、后轴反旋的新型水稻秸秆双轴深埋还田机。结合实际农艺要求及土壤运动过程确定前后刀轴中心水平距离650 mm、竖直距离100 mm,并对整机进行配置。运用EDEM仿真软件模拟还田机工作过程,以前进速度、前轴转速、后轴转速为试验因素,以秸秆还田率和机具功耗为评价指标进行正交试验,建立秸秆还田率及机具功耗回归方程。利用Design-Expert分析软件得到最优参数组合,根据仿真优化结果及实际加工需求确定最优工作参数为:前进速度1.5 km/h、前轴转速274.2 r/min、后轴转速219.4 r/min,为后续田间试验提供理论支撑。田间试验结果表明,在留茬高度为15~20 cm、地表秸秆覆盖量为468~578 g/m2、拖拉机前进作业速度为低速1挡(1.5 km/h)时,水稻秸秆双轴深埋还田机还田率为88.7%~91.2%、地面平整度为1.8~2.4 cm、碎土率为97.7%~98.8%、耕深为16.6~19.5 cm,各项指标均满足...  相似文献   

17.
打瓜是新疆地区重要的经济作物,研发适合新疆地区的打瓜收获机械,对提高打瓜收获效率、增加农民经济收益具有非常重要的意义。为此,设计了一种打瓜集条机,利用螺旋输送装置对田间自然分布的打瓜进行集条处理,为打瓜收获创造条件。通过建立数学模型的方式对打瓜集条机螺旋输送装置的转速、直径、螺旋升角等参数进行分析与设计,为打瓜的机械化收获创造条件。田间试验结果表明:在规定作业速度下,当螺旋转速达到120r/min以上时,集条率可达到90%以上;螺旋转速超过160r/min时,打瓜破损率接近或超过5%,破损率超标;当机具作业速度为4km/h、转速120r/min时,集条率为95.7%,打瓜破损率为4.5%,可以取得较好的集条效果,且打瓜破损率满足指标要求。  相似文献   

18.
水稻秸秆全量深埋还田机设计与试验   总被引:1,自引:0,他引:1  
针对水稻秸秆全量深埋还田机作业时刀辊前方壅土问题,结合水稻秸秆全量深埋还田机作业过程,分析作业过程中刀辊前方壅土原因,通过运动学及动力学分析,建立在加速阶段及抛运阶段土壤颗粒与还田刀间相对位移模型及在空转阶段土壤颗粒运动模型,利用Matlab对已建立模型求解,确定还田刀的弯折线角为55°、刀辊转速为190 r/min、还田刀弯折角为77°、还田刀宽度为80 mm,并对整机进行配置。以前进速度、留茬高度、离地间隙作为影响因素,以还田率、碎土率、地面平整度及耕深作为响应指标,设计田间试验,并在相对潮湿、粘重的土壤环境下进行适应性试验。田间试验结果表明:水稻秸秆全量深埋还田机可在牵引功率66 k W、留茬高度不大于260 mm、作业速度不大于3 km/h的作业条件下完成作业,还田率达到85%,碎土率与地面平整度均达到95%,前方壅土现象得到明显减轻,且能在相对潮湿、粘重的土壤环境下进行作业,各项指标均优于农艺要求,证明了机具的适用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号