首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 207 毫秒
1.
[目的]研究包气带水分时空动态变化特征,为"四水转化"系统动态循环研究提供依据。[方法]利用土壤水分运动学中势能的观点,研究包气带水分、包气带水势随时间和深度的变化特征。[结果]季节不同,土壤水势整体分布差异明显。6—8月土壤水势最高,局部地段甚至达到饱和,12月至翌年3月土壤水势最低。地面0—50cm深度土壤含水量受季节影响非常大,土壤水势激烈变化;50cm深度以下土壤含水量基本不受季节交替影响,50—140cm土壤水势相对稳定;140cm以下只受重力势作用。[结论]降雨、灌溉、蒸发、地下水埋深等因素均能引起土壤剖面土壤水势分布发生变化,从而实现入渗型、蒸发型、蒸发—入渗型、下渗—上渗型、下渗—上渗—入渗型等土壤水分运动状态的相互转化。  相似文献   

2.
太行山前平原典型灌溉农田深层土壤水分动态   总被引:1,自引:1,他引:1  
该文针对70年代以来太行山前平原典型灌溉农田地下水位普遍下降的问题,通过分析中国科学院栾城农业生态系统试验站连续3 a的农田土壤水分观测资料,探讨了山前平原典型灌溉农田0~800 cm深土壤水势变化规律和0~1 540 cm深土壤水分含量变化规律。结果表明:土壤水分动态自上向下具有明显的分带性,0~800 cm土壤层水分动态可分为3层:0~200 cm为入渗-蒸发交替变动带(水分增长和消退的较快,土壤含水率变化范围为0.14~0.47 cm3/cm3,基质势变化范围为-628.21~0 cm,200~600 cm为非稳定入渗带(土壤含水率变化范围为0.04~0.41 cm3/cm3,基质势变化范围为-311.79~0 cm,土壤水势梯度有一定变化范围在0.1~5.61 cm/cm之间),600~800 cm为相对稳定入渗带(土壤含水率在0.03~0.35 cm3/cm3之间变化,基质势变化范围为-138.18~-45.57 cm,土壤水势梯度在单位势梯度左右浮动)。在土壤质地和土壤含水率(维持在田间持水量水平)的影响下,深层土壤层的湿润锋运动速率较快(0.13 m/d),表明地下含水层会迅速地响应地表水分输入(降水和灌溉)。结果可为太行山前平原典型灌溉农田地下水分及可持续利用提供科学依据。  相似文献   

3.
内蒙古河套灌区灌溉入渗对地下水的补给规律及补给系数   总被引:13,自引:8,他引:5  
为准确估计内蒙河套灌区灌溉水入渗补给地下水量,采用试验研究与数值模拟相结合的方法,分别根据灌水前后地下水位变化和土壤含水率变化计算了灌溉水入渗补给地下水系数,并依据土壤水动力学原理,采用数值模拟验证,得到作物生育期灌溉补给地下水系数为0.15,秋浇灌溉补给地下水系数为0.3。河套灌区地下水位埋深相对较浅,通过灌水前后的土壤含水率变化情况和数值模拟结果显示,灌水2~4 d补给地下水量达到最大,8~10 d后即完成对地下水的入渗补给,不同灌水量灌溉水入渗规律基本一致,入渗补给量和入渗时间与灌溉水量直接相关。研究结果将为确定维持灌区生态环境良性发展的引水量阈值提供参考。  相似文献   

4.
为更好地了解采煤扰动下潜水位及包气带水分变化规律,在陕北典型矿区开展了降雨、潜水位、包气带土壤含水率等水循环要素的野外原位观测试验,基于观测数据,采用Spearman秩相关系数检验、小波分析等方法,分析了未开采区及采空区潜水位和包气带水分的变化特征。结果表明:未开采区地下水位对于降水的响应明显且时间上存在4、5个月的滞后,采煤扰动后,地下潜水位持续下降,与降水响应关系微弱;在垂向上,未开采区较大降水可对100 cm以下埋深的土壤含水率产生影响,采空区土壤含水率总体减小,且同降水的响应程度不显著,含水率最大值相对于未开采区出现时间提前,50 cm以下埋深的土壤含水率对小强度降水无响应。采煤扰动潜水位下降后造成包气带增厚,包气带损耗的水量增加,随之造成降雨入渗补给地下水减少,进一步加剧了潜水位下降。  相似文献   

5.
基于稳定同位素的土壤水分运动特征   总被引:7,自引:1,他引:7  
土壤水分受降雨和地下水的共同补给作用,是陆地水循环的重要环节。通过模拟试验,结合土壤水同位素特征,以黄土高原黄绵土为研究对象,研究降雨入渗和地下水补给方式下土壤水分的运移变化特点。结果表明:土壤体积含水量随时间的延长而增大,最终趋于稳定,土壤水分的运移有明显滞后效应;土壤水氢同位素受补给水源、交换混合以及蒸发的影响,随时间的延长,补给水源的影响逐渐减弱,水分的交换混合和蒸发作用逐渐显现,土壤水最终达到动态平衡状态;两种补给条件下,土壤水运移方式均为活塞式推进,降雨入渗方式土壤水δD随土层深度的增加先减小后增大最终趋于稳定,表层0~5cm土壤水由于蒸发富集重同位素,5~20cm土壤水滞留时间最长,保水能力最强,地下水补给方式下土壤水δD随土层深度的增加而减小,上层土壤水δD由于蒸发富集重同位素,下层受地下水补给影响贫化;两种补给方式下土壤水δD与δ18O有良好线性关系,降雨入渗方式土壤水蒸发分馏作用大于地下水补给方式,地下水补给具有较好的保水效果。  相似文献   

6.
毛乌素沙地农田土壤水分动态特征研究   总被引:4,自引:0,他引:4  
毛乌素沙地农业种植以春玉米为主,水资源短缺是制约当地农业发展的主要因素,研究农田土壤水分动态对指导当地农业生产具有重要意义。本研究以原位试验为主,通过对地下水、土壤含水率、土水势、灌溉降雨、蒸腾蒸发等数据的监测和分析,对毛乌素沙地春玉米生长过程中的土壤水分动态特征进行研究。结果表明:地下水与土壤水之间存在明显的水力联系,Pearson相关性分析发现,各深度土壤含水率与地下水埋深之间均呈显著相关,其中40~60 cm深处相关性最大,相关系数大于0.8;地下水位的下降降低了土壤含水率稳定层的位置,削弱了上下层土壤之间的水力联系,不利于土壤水分的保持;玉米需水量增加和地下水位下降均会导致土壤含水率在垂向剖面上的不规律变化增强。通过对土壤含水率和土水势监测数据的分析发现,在玉米从苗期至蜡熟期的生长过程中,土壤水分动态经历了弱—强—弱的变化过程,并且20 cm深土层是春玉米的主要吸水层,30~40 cm是相对干燥层,由于田间灌溉在春玉米发生水分胁迫时进行,因此可利用30 cm和40 cm深土层含水率判断玉米是否需要灌溉。受春玉米生理作用影响,当10 cm深处土水势值下降到低于-0.18 bar时会出现根系提水现象。本研究结果可以为毛乌素沙地地区的农田水分利用及水资源管理提供重要的理论依据和参考信息。  相似文献   

7.
长武塬区降雨入渗特征   总被引:3,自引:0,他引:3  
为了深入理解深厚黄土层的降雨入渗机制,在黄土高原塬区的长武试验站,应用TDR监测天然降雨下大型土柱土壤含水率的动态变化,并结合土柱底部出流量测定数据,分析天然降雨的入渗特征。结果表明:降雨对土壤含水率的影响主要集中在160 cm深度以上,且随深度增加而递减,至240 cm土层降雨峰值信息几近消失;湿润锋运移速率与降雨强度呈正相关关系,与土壤初始含水率成负相关关系,湿润锋运移深度同降雨量和降雨强度正相关;降雨对300 cm土壤水的补给行为普遍存在,入渗补给以活塞流方式为主;降雨入渗补给土壤水的滞后作用表现出对100~200 cm土壤水的补给滞后时间为15~18 d,对300 cm深度土壤水的补给滞后时间为30~45 d。研究结果对明确黄土塬区水循环机制具有一定参考意义。  相似文献   

8.
黄土高原水土流失严重,生态环境脆弱,水资源短缺,地下水对保障区域社会经济发展和维持生态系统平衡具有重要意义,而该区的地下水转化和补给机制尚不明确。为探究黄土高原水蚀风蚀交错区土壤剖面深层水分运动及降水对浅层地下水补给的可能性,利用六道沟小流域分布的粗质地风沙土样地2013—2016年土壤剖面0~600 cm含水量数据,运用HYDRUS-1D模型对各土层水力参数进行反演和验证,并用于模拟样地土壤深剖面0~1 500 cm水分运移过程。结果显示,在平水年2014年(439 mm)和干旱年2015年(371 mm),0~600 cm土壤含水量生长季末与生长季初持平或略有亏缺;降水充沛年2013年(669 mm)和2016年(704 mm)土壤含水量生长季末远高于生长季初,降水入渗深度超过观测深度(600 cm)。深剖面水分运动模拟显示,2014年和2015年剖面含水量变化不明显,水分向深层运移微弱缓慢;但是,2013年和2016年降水可分别入渗运移至1 100 cm和1 200 cm深度,远超过样地上生长的旱柳根系区域,可能补给浅层地下水。在4年模拟期间,平均土壤蒸发为14.87 cm·a-1,平均植物蒸腾为33.70 cm·a-1,土壤水分主要以植物蒸腾形式损耗。在2个丰水年,得益于较充足的降水和粗质地风沙土壤的高入渗率,降水大量转化为土壤水快速向下入渗运移,模拟显示当年生长季末降水最深运移至1 200 cm,至年末已超过模拟深度(1 500 cm),水分继续运移可能补给浅层地下水。相关研究结果为黄土高原水蚀风蚀交错区地下水来源和补给机制提供理论依据。  相似文献   

9.
基于华北平原典型土地利用类型(梨园、农田)包气带(>18 m)土壤水同位素测定结果, 分析了华北平原深层土壤水稳定同位素(δD、δ18O)特征, 揭示了不同土地利用类型下包气带土壤水补给过程中蒸发和入渗的规律。结果表明, 研究区大气降水线δD =6.07δ18O-5.76(R2=0.86), 土壤水δD、δ18O值均落在大气降水线下方, 表明降水入渗补给土壤水过程中经历了强烈的蒸发作用;除梨园Ⅰ, 土壤水同位素值变异系数浅层>中层>深层, 表明浅层土壤水δD、δ18O波动较大, 主要由于其易受到降水和蒸发的影响, 随土壤剖面深度的增加, 蒸发和降水的影响逐渐变弱;梨园Ⅰ深层土壤水同位素变异系数较大, 表明该样点深层土壤水受到地下水波动的影响;梨园浅层土壤水氘盈余(d-excess)较农田大, 说明农田浅层土壤水蒸发强度大于梨园;0.25~0.5 m深处土壤水均出现δD、δ18O的明显富集, 主要受土壤质地分层影响导致土壤水入渗受阻, 同位素较为富集的土壤水在此深度层积聚;而梨园2~5 m出现δD、δ18O的贫化现象, 主要是梨树根系埋深使得降水以优先流形式补给至此土壤层。梨园和农田包气带土壤水δD、δ18O垂直剖面上差异显著,表明了华北平原不同土地利用方式的包气带土壤水入渗过程有明显差异, 梨园包气带土壤水入渗过程主要以优先流补给影响。本研究为深入了解华北平原农田区厚包气带水分运动、氮素迁移转化与地下水水质之间的关系提供了理论依据。  相似文献   

10.
膜上灌水对玉米田土壤水盐变化特征的影响   总被引:2,自引:1,他引:1  
研究膜上灌水条件下,有无地下水补给的情况下,玉米田土壤水盐变化的特征。以宁夏引黄灌区石嘴山市惠农区玉米田土壤为研究对象,设置了有无地下水补给下膜上灌水与常规露地灌水2种灌溉方式,4个处理,每个处理重复3次,共12个试验小区,测定了玉米生育期间田间土壤的含水率和全盐量的变化情况、玉米产量及水分生产率。结果表明:在膜上灌水和露地灌水2种灌溉方式下,有地下水补给的处理土壤含水率显著高于无地下水补给的处理,全盐量也高于无地下水补给的处理;在无地下水补给的条件下,膜上灌水处理的土壤含水率显著高于露地灌水处理,有地下水补给的条件下,膜上灌水处理的全盐量显著低于露地灌水处理;土壤含水率及其不同处理之间的差值随土层的加深而增大,土壤全盐量的变异性随土层的加深而减小,露地灌水处理的全盐量变异性整体大于膜上灌水处理;土壤全盐量和含水率之间呈明显的负相关,且上层相关性更为密切。膜上灌水有利于玉米的生长,其产量和水分生产率高于露地灌水,有补给的小区玉米产量和作物系数高于无补给的,水分生产率低于无补给的小区。  相似文献   

11.
为了探究不同地下水埋深条件下膜下滴灌农田的水盐运移规律,于2012—2016年在新疆库尔勒绿洲,对采用膜下滴灌结合冬春灌压盐的棉田开展定位观测,在不同位置处150 cm深土壤剖面进行水盐监测,探究不同生育阶段地下水埋深与土壤水盐含量的关系。结果表明,膜下滴灌农田土壤水分呈反"S"型分布,土壤盐分呈"酒杯"状表聚型分布;试验期内地下水埋深从2~3 m增加到5~6 m,相应地苗期和非生育期返盐程度显著降低,收获期盐分含量下降;5a来土壤含盐量从6.5 g/kg下降到1 g/kg,土壤累积含盐量与地下水埋深呈负的指数关系;深层水分交换量表明土壤水和地下水间的联系明显减弱。建议将类似地区的地下水埋深控制在3.5 m左右,膜下滴灌结合冬春灌淋洗可有效抑制土壤层盐分累积,并可保证自然植被的生态需水。  相似文献   

12.
微润管埋深与间距对日光温室番茄土壤水盐运移的影响   总被引:3,自引:1,他引:2  
为探求微润灌溉对于日光温室次生盐渍化土壤的影响,设置3种毛管埋深(10、20和30 cm)和3种毛管间距不同的布置(1管2行、2管2行、3管2行,2行指番茄行),以膜下滴灌(CK)为对照,分析日光温室土壤水盐分布的变化.结果表明,日光温室耕层土壤(0~20 cm)平均含盐量达2.745 g/kg,接近阻碍作物生长的临界点(2.75 g/kg),发生了轻度次生盐渍化.与CK比较,微润灌溉具有较高的脱盐效果,0~60 cm土层平均相对脱盐率较CK提高了32.49%,0~30 cm主根区较CK提高了76.30%(P<0.05).可用幂函数较好地描述微润灌溉日光温室番茄主根区土壤盐分随定植后天数的动态变化过程.微润管埋深是影响土壤水盐分布的重要因素,在微润管埋深处土壤形成一个高水低盐区,毛管浅埋有利于主根区土壤(0~30 cm)盐分的淋洗,深埋有利于次根区土壤(>30~60 cm)盐分的淋洗,埋深30 cm,1管2行组合番茄生育末期土壤含盐量有升高趋势,可能会加剧土壤次生盐渍化.结合日光温室盐分累积及番茄根系分布特征,埋深10 cm,3管2行为轻度次生盐渍化土壤适宜的应用模式(该组合综合脱盐效果最好,0~60 cm土层平均相对脱盐率为22.27%,主根区相对脱盐率为29.86%,比CK提高1倍以上).该研究为微润灌溉在日光温室的应用提供参考.  相似文献   

13.
A long term simulation test on salt-water dynamics in unsaturated soils with different groundwater depths and soil texture profiles under stable evaporation condition was conducted.Salinity sensors and tensiometers were used to monitor salt and water variation in soils.The experiment revealed that in the process of fresh groundwater moving upwards by capillary rise in the column,the salts in subsoil were brought upwards and accumulated in the surface soil,and consequently the salinization of surface soil took place.The rate of salt accumulation is determined mainly by the volume of capillary water flow and the conditions of salts contained in the soil profile.Water flux in soils decreased obviously when groundwater depths fell below 1.5m.When there was an interbedded clay layer 30cm in thickness in the silty loam soil profile or a clay layer 100cm in thickness at the top layer,the water flux was 3-5 times less than in the soil profile of homogeneous silty loam soil.Therefore,the rate of salt accumulation was decreased and the effect of variation of groundwater depth on the water flux in soils was weakened comparatively.If there was precipitation or irrigation supplying water to the soil,the groundwater could rarely take a direct part in the process of salt accumulation in surface soil,especially,in soil profiles with an interbedded stratum or a clayey surface soil layer.  相似文献   

14.
土壤含水率监测位置对温室滴灌番茄耗水量估算的影响   总被引:2,自引:0,他引:2  
土壤水分传感器埋设位置的选择是局部灌溉条件下获得作物根区代表性土壤含水率数据,从而制定滴灌灌溉制度的关键。本文以日光温室滴灌番茄为对象,研究滴灌线源土壤湿润体内含水率分布状况,通过对比距滴灌带不同位置处土壤含水率监测结果估算番茄耗水量的差异,探讨土壤含水率监测的合理位置。结果表明,番茄生育期内14~25 mm的灌水定额主要用于增加0~40 cm土层的土壤含水率,湿润体内日平均土壤含水率分布在75%~100%田间持水率。作物生育期内连续多次滴灌条件下,沿滴灌带单个灌水器形成的湿润土体会充分叠加,形成近似均匀的土壤含水率带状分布,且作物生育期内沿深度方向0~40 cm土层土壤含水率均值无显著性差异,距滴灌带不同水平距离的土壤含水率随时间的变化趋势具有同步特点,无明显的滞后性。以集中80%总根量的土壤深度作为滴灌番茄水分渗漏下界面时,14~25 mm的灌水定额会导致深层渗漏,且深层渗漏量表现出一定的空间变异性。番茄生育期内深层渗漏量约占灌水量的13%。距滴灌带不同位置处的番茄耗水量除在番茄苗期和开花座果期有较大差异外,其余生育阶段的差异均在10%以内。对温室滴灌番茄来说,滴灌高频少量的灌溉特征有利于维持作物根系层适宜的土壤水分状态,监测1个含水率剖面即可满足估算作物耗水量的要求。  相似文献   

15.
干旱区大田膜下滴灌土壤盐分运移与调控   总被引:13,自引:8,他引:5  
膜下滴灌节水技术在新疆已推广应用了160多万hm2且面积仍在持续增加.为研究干旱区大田膜下滴灌土壤盐分运移特征,该文通过在新疆巴州灌溉试验站进行的膜下滴灌试验,结果表明,在单次滴灌后,剖面土壤内的盐分产生了定向重分布,形成脱盐区、稳定区与积盐区,具有调控田间尺度土壤盐分的作用.脱盐区的面积要大于积盐区.在0~40 cm的深度内,双管对表层盐分重分布的作用大于单管;在0~80 cm深度,双管对剖面盐分重分布的作用弱于单管.在棉田的整个生育期内,剖面土壤的盐分则受灌水周期的影响,呈上下振荡、振幅缩小且总体脱盐的变化趋势,形成了一种对作物生长有利的局部环境.膜下滴灌不仅是一种滴灌和覆膜相结合的节水技术,而且通过对其控制性精准灌溉的灵活应用,可达到生育期控盐与非生育期排盐的结合,从而为在干旱区实现节水控盐的目标提供技术保障.  相似文献   

16.
为探讨节水灌溉条件下干旱内陆区不同景观单元土壤水盐动态规律及水盐通量变化特征,以新疆三工河流域绿洲-荒漠过渡带典型景观格局农田-防护林-荒漠为研究对象,利用2018年4月—9月连续定位观测数据资料,分析各景观单元作物生育期(4月1日—6月28日)和非生育期(6月29日—9月15日)土壤水盐动态规律及其变异性、土壤水盐通量变化特征及影响因素,构建农田-防护林-荒漠复合系统BP神经网络土壤水盐耦合模型,并对所建模型参数敏感性及应用可行性进行探讨。结果表明,各景观单元作物生育期和非生育期土壤含水率、电导率均具有较明显的垂直分层、水平递变和季节波动特征;按变异性可划分为3个典型土层:活跃层(0~40 cm)、次活跃层(40~140 cm)和相对稳定层(140cm);距防护林越近,农田土壤含水率和电导率分别呈降低和升高趋势,荒漠均呈升高趋势;单次降水和灌溉事件后各景观单元各典型土层土壤含水率和电导率随时间分别均呈负指数函数和三次函数变化趋势。土壤控制体(单位面积深140 cm土柱)内,生育期农田和防护林均为向下水分通量,非生育期均为向上水分通量,荒漠两时期均为向下水分通量;农田和防护林土壤贮水量与土壤积盐量随地下水位下降、蒸散发量增大均呈递减趋势;荒漠土壤水盐通量对各因素及其交互效应响应较微弱;生育期最后1次充分灌溉的淋洗作用可使该系统土壤积盐量趋于平衡状态。拓扑结构为32-36-6的BP神经网络土壤水盐耦合模型具有较高的模拟精度;灌溉和地下水位是影响该系统土壤水盐动态的关键因素。研究结果可为节水灌溉条件下绿洲-荒漠共生系统寻求生产和生态之间的平衡机制提供理论依据。  相似文献   

17.
膜下滴灌玉米番茄间作农田土壤水分分布特征模拟   总被引:3,自引:3,他引:3  
间作种植和覆膜滴灌是实现高产和节水的重要技术,已被广泛应用,而掌握覆膜滴灌条件下间作种植农田土壤水分分布特征对于提高水分利用效率以及增产增收都具有重要意义。该文通过2a田间试验设置高(T1)、中(T2)、低(T3)3个灌水定额处理,并通过HYDRUS2D模型模拟了间作滴灌农田不同位置土壤水分的差异性、水平水量交换以及土壤水分二维分布特征。结果表明:基于HYDRUS2D构建的间作种植滴灌农田土壤水分模型精度较高,平均相对误差为5.72%~8.14%,决定系数在0.85~0.90,均方根误差在0.017~0.023 cm~3/cm~3。对于3个灌水处理皆表现为0~40 cm土层含水率出现差异,且在0~20 cm土层含水率差异显著,2014年番茄侧和玉米侧土壤含水率在3个灌水处理下的平均土壤含水率分别较裸地高20.17%和17.83%,2015年为16.02%和12.99%。间作滴灌农田土壤水平水量交换强烈,生育期水流主要由作物侧流入裸地侧,其中对于3个灌水处理在番茄侧0~40 cm土层净流入裸地的平均水量是玉米侧的1.3倍,约为60mm/a,并且0~40cm土层由作物侧流入裸地的水量是40~100cm土层的2.5倍。二维土壤水分分布显示,滴灌湿润体与作物根系分布匹配性较好,灌水后1d湿润饱和区主要集中在0~30cm土层,其中T1、T2、T3处理的饱和区面积分别为559.14,288.61和109.78 cm~2。灌水2 d后,低灌水处理(T3)存在较明显的水分亏缺,缺水区面积是充分灌溉(T1)的30倍。研究结果可为间作滴灌农田制定灌溉制度提供参考。  相似文献   

18.
苏北典型滩涂区土壤盐分动态与水平衡要素之间的关系   总被引:12,自引:0,他引:12  
为获知苏北滩涂区土壤水盐动态行为,从而为后续的节水灌溉和滩涂区农田水管理策略提供理论依据,该文选取典型滩涂区,进行土壤水、盐和地下水埋深的长期连续监测,并根据大丰市气象站提供的降水、地表蒸散数据,对土壤盐分变化和水平衡要素之间的关系进行探讨。结果表明:土壤表层盐分最高,波动最为剧烈,随深度不断增加,盐分逐渐降低,且波动趋缓。试验区夏季降水丰富,蒸散量相对较低,土壤含水率高,地下水埋深浅;冬季降水少,蒸散量较高,土壤含水率下降,地下水埋深较深。地下水埋深和水补充量是0~40 cm土层土壤盐分的主要影响因子;地下水埋深和蒸散量是60~80 cm土层土壤盐分的主要影响因子。地下水盐分是土壤盐分累积的主要来源,降水脱盐作用仅对0~40 cm表土作用显著,蒸发积盐作用则在整个土壤剖面上具有影响。该研究为消减苏北滩涂区土壤盐渍化灾害提供了科学依据,对指导农业生产具有重要意义。  相似文献   

19.
分根交替(PRD)滴灌技术是很有节水潜力的灌水技术。利用再生水,采用分根交替滴灌技术对马铃薯根长密度、根重密度及土壤水盐的空间分布影响进行了研究。结果表明,马铃薯根系主要分布在0-60 cm的土层内,以植株为中心,呈放射状沿不同方向减小。通过研究所建马铃薯根长密度的空间分布函数能较好地反映根系的三维分布趋势。PRD灌溉可以刺激马铃薯根系生长,水分利用效率提高39%。进行PRD灌溉时应重点考虑滴头位置处及垄坡上的水盐变化,最好能起到节水控盐的双重作用。再生水PRD地下滴灌是对传统地表滴灌的优化和提升。  相似文献   

20.
为了探讨区域盐渍化过程和分布特征,本文通过野外调查和室内分析,研究了新疆玛纳斯河流域海拔高度、地貌类型、地下水埋深、土地利用类型和不同种植年限对土壤盐分含量变化的影响。结果表明:玛纳斯河流域土壤盐分含量随海拔高度的变化呈现先降低后升高再降低的趋势,高盐分含量主要集中在海拔350~400 m,海拔高度与土壤盐分含量之间没有很好的变化趋势;土壤盐分含量在不同地貌类型的分布状况为:冲积洪积扇缘带冲积平原中部冲积平原下部冲积洪积扇中部干三角洲地区,冲积洪积扇缘带与冲积平原中部的土壤剖面盐分有表聚和底聚现象,冲积平原下部土壤剖面中间层盐分含量较高;地下水埋深对土壤盐分含量变化影响明显,随着地下水埋深的变浅,土壤盐分含量显著增加;不同土地利用方式下,土壤含盐量具有显著性差异,荒地土壤盐分含量最高,表层和底层盐分高于中间层,耕地0~100 cm土层盐分含量均较低;随着滴灌年限的增加,0~100 cm土层盐分含量均呈现降低趋势,滴灌1年与3年表层盐分含量差异不显著,其他土层差异显著,滴灌8年与10年的各层土壤盐分含量差异均不显著。综上,玛纳斯河流域土壤盐分含量受地貌类型、地下水状况、土地利用类型和滴灌年限因素影响显著,盐分在土壤剖面上也表现出不同的分布特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号