首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 62 毫秒
1.
基于双目立体视觉技术的玉米叶片三维重建   总被引:3,自引:3,他引:3  
玉米叶片的三维形态特征是衡量叶片生物学特性的重要指标,为了能够简捷、快速、准确的获得叶片的三维形态,该研究以两个位置相对固定的摄像机组成双目立体视觉系统,采用平面模板法标定摄像机内外参数,照射结构光测量玉米叶片边缘与叶脉点的三维坐标,对稀疏离散点进行Cardinal样条插值,三角面片化插值点重建出部分叶片三维曲面,旋转平移各部分三维曲面拼接成完整的叶片。试验结果表明该文所提出的方法不仅能够准确的重建玉米叶片三维结构,同时具有无损、非接触、自动化程度高等优势。  相似文献   

2.
为分析玉米雄穗对冠层可见光、近红外波段辐射传输特征的影响,运用四维轨道塔吊系统获取连续2 a玉米抽穗期的冠层光谱,并在抽穗初期和末期分别进行了3个梯度的剪穗试验,分析玉米抽穗期冠层二向反射率特征以及雄穗干物质含量特征。结果表明:1)比较抽穗期不同时间冠层反射率的模拟值和实测值得出,在抽穗初期实测值高于模拟值,随着生育期的推进,模拟值逐渐高于实测值。但在可见光波段整个抽穗期实测值均高于模拟值,在近红外波段模拟值总体高于实测值。2)分析不同穗梯度冠层二向反射率特征发现,在可见光波段,太阳主平面和垂直太阳主平面方向上,2个散射方向的无穗反射率值在所有观测角度上均最高,1/2穗次之,全穗最低;近红外波段,在太阳主平面方向,3个穗梯度反射率差异不大,但在垂直太阳主平面方向,后向散射方向反射率值总体高于前向散射方向反射率值,且无穗反射率值依然总体高于1/2穗和全穗;在垂直观测条件下得到相同的结果。3)分析PROSAIL模型模拟值和农学参数相关性,得出模拟值与叶绿素含量、叶面积指数在全波段呈显著负相关,无穗实测值和模拟值分别与叶面积指数和叶绿素含量相关性表现一致。4)在玉米整个抽穗期雄穗鲜质量变化差异较大,而干质量变化差异不大。研究可为修正辐射传输模型、提高模拟精度,使之更好地应用于植被理化参数反演提供科学依据。  相似文献   

3.
玉米雄穗表型信息的获取对研究玉米长势及产量起着非常重要的作用,为实现复杂田间环境玉米雄穗的精确识别和计数,该研究使用无人机采集试验田的玉米雄穗影像,基于FasterR-CNN、SSD、YOLO_X目标检测模型,使用迁移学习方法实现玉米雄穗的高精度识别,并分析了模型对不同品种和不同种植密度的玉米雄穗检测效果。试验结果表明,基于迁移学习的FasterR-CNN、SSD、YOLO_X的目标检测效果相比于未使用迁移学习的模型有明显提升,其中,迁移学习后YOLO_X的识别精确度为97.16%,平均精度为93.60%,准确度为99.84%,对数平均误检率为0.22,识别效果最好;不同玉米品种对模型的适应性有所差异,其中郑单958对模型适应性最好,Faster R-CNN、SSD、YOLO_X的决定系数R2分别为0.9474、0.9636、0.9712;不同种植密度下玉米雄穗的检测效果有所差异,在29985,44 978,67 466,89 955株/hm2种植密度下,模型对郑单958检测的平均绝对误差分别为0.19、0.31、0.37、0.75,随着种植...  相似文献   

4.
以PH4CV/昌7-2(组合Ⅰ)和PH6WC/7873(组合Ⅱ)的P1、P2、F1、F2、B1和B2六世代群体为材料,用主基因+多基因六世代联合分离分析方法,研究了春播和夏播环境下雄穗主轴长度和雄穗分枝数的遗传规律。结果表明:2个组合雄穗主轴长在春播环境下均符合E-1模型。夏播环境下,组合Ⅰ雄穗主轴长符合C-0模型,组合Ⅱ雄穗主轴长符合E-3模型。在2个环境下,组合Ⅰ的雄穗分支数符合D一2模型,组合Ⅱ的雄穗分支数符合D-3模型。春播环境下,组合Ⅰ雄穗分支数表现为主基因遗传或以主基因遗传为主,主基因和多基因对2个组合雄穗主轴长的影响相当,可以采用单交重组或简单回交转育进行改良。夏播环境下,2个组合雄穗主轴长和组合Ⅱ雄穗分支数表现为多基因遗传或以多基因遗传为主,可以采用聚合回交或轮回选择累积增效基因的方法,以提高育种效率。  相似文献   

5.
基于机器视觉的玉米果穗产量组分性状测量方法   总被引:1,自引:8,他引:1  
玉米果穗的穗长、穗粗、穗行数、行粒数等性状是制约玉米产量的重要组分性状,目前主要采用人工测量方式,或通过截取果穗横断面图像自动计算穗行数等参数,操作复杂、测量效率低、主观误差大,且无法保留完整的原始考种材料。针对上述问题,该文基于机器视觉技术,通过可见光二维成像获取果穗三维表型性状参数,结合果穗颜色特征及果穗的生物学规律,分别建立投影修正模型、穗行数快速估算模型、行粒数计算模型等,精确计算穗长、穗粗、穗行数以及行粒数等性状参数。试验结果表明,该方法适用于粘连果穗处理,秃尖的识别率高,且对光照环境要求低,穗行数及行粒数的零误差率在93%以上,测量速度可达30穗/min以上,能够满足高通量考种的需求,特别是保留了原始果穗考种材料实现无损测量,对于实现高通量考种及精细化育种有重要的参考价值。  相似文献   

6.
为了快速获取玉米根系表型指标,该研究提出一种基于图像的高通量解决方案.系统整合一套简易可靠的根系图像获取硬件和自动化根系图像处理算法,首先在固定背景下获取玉米根系图像,通过标定物检出、背景分割算法得到根系目标前景图像,识别根系起始点并剪除冗余部分得到根系感兴趣区域后计算颜色、形状、空间分布3大类29个表型指标.应用该系...  相似文献   

7.
当前三维点云处理技术难以在玉米植株点云上对果穗进行识别和表型参数提取.针对该问题,该研究采用基于骨架的玉米植株器官分割流程对植株三维点云的果穗器官进行分割和表型参数提取.首先,优化基于骨架的玉米植株茎叶分割方法,在成熟期植株点云上实现植株骨架的提取、器官子骨架的分解以及器官点云的分割;再根据器官高度、子骨架长度、圆柱特...  相似文献   

8.
获取渔业养殖鱼类生长态势的人工测量方法费时费力,且影响鱼的正常生长。为了实现水下鱼体信息动态感知和快速无损检测,该研究提出立体视觉下动态鱼体尺寸测量方法。通过双目立体视觉技术获取三维信息,再通过Mask-RCNN(Mask Region Convolution Neural Network)网络进行鱼体检测与精细分割,最后生成鱼表面的三维点云数据,计算得到自由活动下多条鱼的外形尺寸。试验结果表明,长度和宽度的平均相对误差分别在4.7%和9.2%左右。该研究满足了水产养殖环境下进行可视化管理、无接触测量鱼体尺寸的需要,可以为养殖过程中分级饲养和合理投饵提供参考依据。  相似文献   

9.
获得田间的玉米植株数量对于优化不同玉米品种的种植密度有重要意义,玉米植株数量也是计算新玉米品种平均每株产量的重要参数。为了减轻人工获得玉米植株数量的劳动强度,提高数据的准确率,该文利用基于机器视觉的图像处理技术来获得玉米植株数量。被留高茬玉米收获机作业之后的地块,有一定高度的玉米秸秆站立在地表,摄录这样的图像信息可以大大简化图像处理的难度,提高结果的精确度,所以将图像采集装置安装在留高茬玉米收获机之后来获得视频流。后处理过程中,将视频文件分解为图片文件,然后将真彩色的RGB图片文件转化成灰度图像进行图片的配准,再将灰度图像转化为二值图像进行图像分割与边界提取,最后找到玉米秸秆断面的几何中心并进行标记,统计标记结果即获得玉米植株数量。试验结果显示,人工播种与机械播种在图像识别的误差上没有显著差异(P0.05);机器视觉识别出来的玉米植株数量与实际数量也没有显著差异(P0.05),其平均误差为6.7%;并且该误差不会随着图像中玉米植株数量的增加而产生积累。该文的设计可以降低机器视觉在识别玉米植株数量过程中的难度,提高图像识别的准确度,更好地服务生产实际问题。  相似文献   

10.
基于机器视觉的玉米果穗参数的图像测量方法   总被引:1,自引:12,他引:1  
在玉米育种和品质研究中,经常需要对玉米的果穗长度、果穗宽度、穗行数、穗粒数等参数进行测量。该研究提出了一种基于机器视觉的玉米果穗参数图像测量方法。使用PC摄像头连续采集旋转台上的玉米果穗图像,经过图像处理,获得玉米穗的图像区域,进而得到玉米果穗的穗长和穗宽参数;通过对玉米果穗局部区域的x方向和y方向累计像素值曲线进行分析,提取出玉米穗行,获得每一穗行的穗粒数和穗行宽度;通过图像匹配,获得玉米果穗的穗行数。试验表明,使用该研究方法对玉米果穗的长度、宽度和穗行数的参数测量准确率可达98%以上,对穗行宽及总穗粒数测量准确率达95%以上,整穗的平均检测时间约102 s/穗。该研究实现了玉米果穗参数快速有效的自动检测,相对于目前采用的人工检测,大大提供检测效率,降低劳动强度,可应用于玉米千粒质量检测、产量预测、育种和品质分析等场合。  相似文献   

11.
基于SURF算法的绿色作物特征提取与图像匹配方法   总被引:2,自引:4,他引:2  
由于田间环境的复杂性,绿色作物特征提取与匹配仍然是基于双目视觉技术农田作物三维信息获取急需解决的关键技术之一。该文首先在RGB空间进行图像分割滤波处理。然后,采用SURF算法旋转不变性分两步获取绿色作物特征点对:第一步采用Hessian矩阵检测作物特征点,运用非极大值抑制法和插值运算寻找、定位极值点;第二步确定特征点主方向,采用描述算子进行特征点提取。最后,运用最近距离比次近距离法进行特征点匹配,并采用全约束条件滤除错误的匹配点对。同时将SURF和SIFT法进行对比分析,通过对不同光照、土壤的田间条件下芥蓝、芹菜、白菜13组图像进行试验,结果表明采用SUFR和SIFT法绿色作物特征提取率均值分别为1.2%、3.3%,双目视觉系统左、右作物图像特征正确匹配率的均值分别为94.8%、92.4%,时间消耗均值分别为4.6s、4.8s。采用SURF优越于采用SIFT法,这为进一步进行农业机械3D视觉导航或基于无线传感器网络的田间作物在线三维信息准确获取提供可借鉴思路和方法。  相似文献   

12.
为解决脱穗之后的玉米种粒三维特征的获取和分析这个重要而又困难的问题,该研究基于机器视觉技术开发了一种融合三维特征的玉米种粒考种装置。装置通过2块相互垂直的标定板来保留倾斜影像中的空间信息和标定数据,并据此计算三维数据。基于装置的标定数据,用图像处理的方法获取玉米种粒的长度、宽度和厚度数值。通过透视变换,从倾斜摄影图像分别得到水平正摄和垂直正摄的图像;玉米种粒轮廓的长轴和短轴以旋转盘的直径为参考进行计算;玉米种粒的厚度以垂直方向棋盘格标定数据为参考进行计算。按照10帧/s的帧率和1 280×720的图像分辨率启动图像记录系统。选取180粒不同品种的玉米种粒进行试验。种粒长轴、短轴和厚度测量的均方根误差分别为1.86、1.28和0.741 mm;决定系数分别是0.849 6、0.869 3和0.846 2。使用该装置并配合相应的方法能较为准确的一次性测量玉米种粒的三维参数,该研究可为玉米种粒的精细化考种提供参考。  相似文献   

13.
为探究易获取且成本低的超高分辨率无人机(Unmanned Aerial Vehicle,UAV)航拍 "红-绿-蓝"(Red-Green-Blue,RGB)彩色影像提取作物种植信息的方法,该研究选取植被指数、"色度-色饱和度-亮度"(Hue-Saturation-Intensity,HSI)色彩特征和纹理特征等3种特征,通过比较贝叶斯(Bayes)、K最邻近分类(K-Nearest Neighbor,KNN)、支持向量机(Support Vector Machine,SVM)、决策树(Decision Tree,DT)和随机森林(Random Forest,RF)共5种监督分类算法及不同特征组合的分类效果,以实现玉米种植信息的高精度提取。结果表明,使用单一种类特征或使用全部3种特征均不能获得最优的分类精度;将植被指数与HSI色彩特征或与纹理特征进行组合获得的总体分类精度(5种算法平均值)比仅使用植被指数获得的总体分类精度分别提高了4.2%和8.3%;在所有特征组合中,HSI色彩特征和纹理特征组合为最优选择,基于该特征空间的RF算法获得了最高的分类精度,总精度为86.2%,Kappa系数为0.793;基于RF算法进行降维并不能显著提高或降低分类精度(SVM除外),但所保留的特征因子可给出符合实际背景和意义的解释,并可提高分类结果的稳定性。研究结果可为基于无人机RGB影像的作物种植信息高精度提取提供方法参考。  相似文献   

14.
针对当前三维点云分割方法难以精确分割玉米植株顶部新叶的问题,该研究提出一种基于点云骨架和最优传输距离的玉米点云茎叶分割方法.首先利用拉普拉斯骨架提取算法获得植株骨架;其次根据玉米形态结构特征将植株骨架分解成器官子骨架,并实现器官粗分割;再以最优传输距离作为点云距离度量,采用从上到下的顺序对未分割点云进行精细分割;最后自...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号