首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
基于半监督SPM-YOLOv5的套袋柑橘检测算法   总被引:2,自引:2,他引:0  
为解决柑橘经过套袋后其形状从圆形变为条状且纹理细节急剧减低,导致当前目标检测算法对套袋柑橘检测难度增大,同时目标检测算法性能依赖于有标记样本数量的问题。该研究设计了一种基于教师学生模型的SPM(Strip Pooling Module)-YOLOv5算法,在YOLOv5的骨干网络中加入条带注意力模块使模型更加关注条状的套袋柑橘与树枝,同时教师学生模型为半监督方法,使目标检测算法可利用无标记样本提升模型的性能,降低对有标记样本的依赖。试验结果表明,该文算法在套袋柑橘与树枝检测的平均精度均值分别为77.4%与53.5%,相比YOLOv5分别提升了7.5个百分点与7.6个百分点,套袋柑橘检测的精度与召回率达到94%与76.2%。因此,基于教师学生模型的SPM-YOLOv5算法精度高、速度快,能有效用于套袋柑橘检测。  相似文献   

2.
探明海洋生物资源的分布情况,对渔业捕捞和海洋牧场管理具有重要意义。该研究针对水下环境复杂、水下目标存在多尺度、多类别及小目标较多等复杂情况,提出水下目标两阶段网络检测方法。首先通过改进多尺度特征提取和融合,获取水下目标多尺度信息和增强目标特征,得到更加丰富的目标特征信息,然后构建多重注意力,利用空间和通道维度中的全局特征依赖关系,进一步挖掘深层特征信息和隐藏信息,突出背景和目标的差异性,最后在模型训练中采用样本均衡方法,自适应均衡正负样本比例,减少无效样本,实现模型快速收敛。在国际水下机器人大赛公开数据集UPRC2019、WildFish及自建数据集上对所提方法进行试验,其mAP(mean Average Precision)分别达到85.3%、96.9%和97.8%,召回率分别达到90.6%、98.7%和98.9%,相较于Libra RCNN(CVPR2019)、Double head RCNN(ECCV2020)和STransFuse(2021)等检测方法,本文方法mAP要比上述方法分别高9.58、12.2和4.1个百分点。研究结果可为海洋渔业生物监测、水下机器人精准捕捞作业提供技术支撑。  相似文献   

3.
番茄花果的协同识别是温室生产管理调控的重要决策依据,针对温室番茄栽培密度大,植株遮挡、重叠等因素导致的现有识别算法精度不足问题,该研究提出一种基于级联深度学习的番茄花果协同识别方法,引入图像组合增强与前端ViT分类网络,以提高模型对于小目标与密集图像检测性能。同时,通过先分类识别、再进行目标检测的级联网络,解决了传统检测模型因为图像压缩而导致的小目标模糊、有效信息丢失问题。最后,引入了包括大果和串果在内的不同类型番茄品种数据集,验证了该方法的可行性与有效性。经测试,研究提出的目标检测模型的平均识别率均值(mean average precision,m AP)为92.30%,检测速度为28.46帧/s,其中对小花、成熟番茄和未成熟番茄识别平均准确率分别为87.92%、92.35%和96.62%。通过消融试验表明,与YOLOX、组合增强YOLOX相比,改进后的模型m AP提高了2.38~6.11个百分点,相比于现有YOLOV3、YOLOV4、YOLOV5主流检测模型,m AP提高了16.56~23.30个百分点。可视化结果表明,改进模型实现了对小目标的零漏检和对密集对象的无误检,从而达到...  相似文献   

4.
为解决果实检测模型在密植环境中对于不同场景适应力较差和严重的数据依赖性问题,该研究结合YOLOv5模型和域自适应学习,提出了一种新型的番茄域自适应检测模型TDA-YOLO(tomato detection domain adaptation)。该研究将密集种植环境中正常光照场景作为源域,其他光照场景作为目标域。首先,引入神经预设的颜色风格迁移来构建伪数据集,减小源域和目标域之间的差异。其次,该研究结合半监督学习方法,使模型能够更充分的提取域不变特征,并利用知识蒸馏提高模型适应目标域能力。此外还引入FasterNet轻量级网络整合到C3模块中,以加快推理速度并减少参数量。试验结果表明,在不同场景的密集种植环境中,TDA-YOLO模型检测番茄的均值平均精度为96.80%,比原始YOLOv5s模型提高了7.19个百分点,相较于最新的YOLOv8和YOLOv9也分别高出2.17和1.19个百分点,其对于每张图像的平均检测时间为15 ms,FLOPs大小为13.8G。经过加速处理后,Jetson Xavier NX 开发板上部署的 TDA-YOLO 模型的检测准确率为90.95%,均值平均精度值为91.35%,每张图像的检测时间为 21 ms,满足密植环境下番茄实时检测的要求。试验结果表明提出的TDA-YOLO模型可在密植环境下准确、快速的检测番茄,同时避免了使用大量的标注数据,为番茄等果实自动化收获系统的开发提供技术支持。  相似文献   

5.
果园环境中,检测目标果实易受复杂背景、果实姿态和颜色等因素影响,为提高绿色目标果实检测的精度与效率,满足果园智能测产和自动化采摘要求,本研究针对不同光照环境和果实姿态,提出一种适于样本数量不足的绿色目标果实高效检测模型。该模型采用优化Transformer结构,首先借助卷积神经网络(Convolutional Neural Network,CNN)网络提取图像特征;然后输入编码-解码器生成一组目标果实预测框,最后通过前馈神经网络(Feed-forward Network,FFN)结构预测检测结果。在训练过程中,引入重采样法扩充样本数量,解决样本数量不足问题;引入迁移学习,加速网络收敛。分别制作苹果、柿子数据集用于模型训练。试验结果表明,经迁移学习后该模型训练效率大幅提高;与流行的目标检测模型相比,优化后的模型在检测绿色柿子与绿色苹果时,精度分别为93.27%和91.35%。该方法可为其他果蔬绿色目标检测提供理论借鉴。  相似文献   

6.
改进SSD的灵武长枣图像轻量化目标检测方法   总被引:2,自引:2,他引:0  
针对加载预训练模型的传统SSD(Single Shot MultiBox Detector)模型不能更改网络结构,设备内存资源有限时便无法使用,该研究提出一种不使用预训练模型也能达到较高检测精度的灵武长枣图像轻量化目标检测方法。首先,建立灵武长枣目标检测数据集。其次,以提出的改进DenseNet网络为主干网络,并将Inception模块替换SSD模型中的前3个额外层,同时结合多级融合结构,得到改进SSD模型。然后,通过对比试验证明改进DenseNet网络和改进SSD模型的有效性。在灵武长枣数据集上的试验结果表明,不加载预训练模型的情况下,改进SSD模型的平均准确率(mAP,mean Average Precision)为96.60%,检测速度为28.05帧/s,参数量为1.99×106,比SSD模型和SSD模型(预训练)的mAP分别高出2.02个百分点和0.05个百分点,网络结构参数量比SSD模型少11.14×106,满足轻量化网络的要求。即使在不加载预训练模型的情况下,改进SSD模型也能够很好地完成灵武长枣图像的目标检测任务,研究结果也可为其他无法加载预训练模型的目标检测任务提供新方法和新思路。  相似文献   

7.
茶叶的产量和品质深受病虫害的影响。茶尺蠖是一种常见的茶叶害虫,精确检测茶尺蠖对茶叶病虫害防治有重要意义。由于茶尺蠖和茶树枝、枯死茶叶的颜色、纹理相近,茶尺蠖的体积小、形态多变、被遮挡等问题,现有方法检测茶尺蠖的精度不高。该研究提出一种基于深度学习的复杂背景图像中茶尺蠖检测方法,该方法使用YOLOv5为基线网络,利用卷积核组增强对茶尺蠖的特征提取,在不增加计算量的条件下减少复杂背景对茶尺蠖检测结果的干扰;使用注意力模块关注茶尺蠖整体,根据茶尺蠖的大小和形状自适应调节感受野,降低因目标大小形状不一导致的漏检;使用Focal loss损失函数减少前景和背景的类不平衡对检测结果的影响。试验结果表明,所提方法用于复杂背景图像中茶尺蠖的检测,可以达到0.94的召回率,0.96的精确度和92.89%的平均精度均值。与基线网络相比,该方法的平均精度均值提高了6.44个百分点。使用相同的数据集和预处理的对比分析表明,该方法优于SSD、Faster RCNN和YOLOv4等其他经典深度学习方法,平均精度均值比SSD、Faster RCNN、YOLOv4分别高17.18个百分点、6.52个百分点和4.78个百分点。该方法可实现对茶尺蠖的智能检测,减少人力成本,有助于实现精准施药,提高茶叶的产量和品质。  相似文献   

8.
采用改进YOLOv3算法检测青皮核桃   总被引:2,自引:2,他引:0  
使用机器视觉对果实检测并进行估产是实现果园智能化管理的重要途径,针对自然环境下青皮核桃与叶片颜色差异小、核桃体积较小导致青皮核桃不易检出的问题,提出一种基于改进YOLOv3的青皮核桃视觉检测方法。依据数据集特征进行数据增强,引入Mixup数据增强方法,该研究使模型从更深的维度学习核桃特征;针对核桃单种类目标检测比较不同预训练模型,选择精度提升更明显的Microsoft Common Objects in Context(COCO)数据集预训练模型;依据标注框尺寸统计对锚框进行调整,避免锚框集中,提升模型多尺度优势。在消融试验中,前期改进将平均精度均值提升至93.30%,在此基础上,引入MobilNet-v3骨干网络替换YOLOv3算法中原始骨干网络,提升模型检测能力及轻量化。试验表明,基于改进YOLOv3的青皮核桃检测平均精度均值为94.52%,超越YOLOv3其他2个骨干网络和Faster RCNN-ResNet-50网络。本文改进模型大小为88.6 M,检测速度为31帧/s,检测速度是Faster RCNN-ResNet-50网络的3倍,可以满足青皮核桃实时准确检测需求。该方法可为核桃果园智能化管理中的估产、采收规划等提供技术支撑,也可为近背景颜色的小果实实时准确检测提供思路。  相似文献   

9.
基于迁移学习与YOLOv8n的田间油茶果分类识别   总被引:1,自引:1,他引:0  
为降低视觉引导式油茶果采摘机器人采摘被遮挡油茶果时造成的果树和抓取装置损伤,该研究提出了一种基于迁移学习和YOLOv8n算法的油茶果分类识别方法,将油茶果分成无遮挡和遮挡两类。首先,采用COCO128目标检测数据集作为源域,苹果数据集为辅助域的迁移学习方法训练模型。其次,将学习方法、训练数据量、学习率和训练轮数这4种因素组合,共进行了52组YOLOv8n检测性能的消融试验。最后,将YOLOv8n模型与YOLOv3-tiny、YOLOv5n和YOLOv7-tiny等模型进行比较。试验结果表明,随机权重初始化方式受训练数据量和学习率影响较大,学习率为0.01时模型检测效果最好;而迁移学习方法仅用随机权重初始化1/2的数据量即可达到与其相当的平均精度均值;迁移学习方式下,YOLOv8n模型的平均精度均值最高达到92.7%,比随机权重初始化方式提升1.4个百分点。与YOLOv3-tiny、YOLOv5n和YOLOv7-tiny等模型相比,YOLOv8n模型的平均精度均值分别提高24.0、1.7和0.4个百分点,研究结果可为YOLOv8n模型训练参数优化和油茶果分类识别提供参考。  相似文献   

10.
为提高松木表面缺陷检测精确度,保证检测速率,该研究提出一种改进RT-DETR的检测模型RIC-DETR。首先,从木材表面缺陷公开数据集中获取图片,并进行标注及数据增强,构建一个包含13642张图片的表面缺陷数据集;其次,对比VGG11、VGG13、ResNet18和VanillaNet13等网络架构,选用计算复杂度低且检测精度较高的ResNet18作为主干特征提取基准网络;然后,引入反向残差移动模块更新ResNet18中的基本块,扩展模型的感受野,改善层间的特征交互;最后,使用EfficientViT模型中的级联分组注意力机制对反向残差移动模块进行二次创新改进,降低计算资源的消耗,提升模型的表达能力。试验结果表明,RIC-DETR的精确率、召回率、平均精度值分别为95.4%、96%、97.2%,均优于目前主流的YOLO系列模型,对比基准模型RT-DETR,RIC-DETR在保持高精度的情况下,参数量、浮点运算量和内存占用量大幅减少,分别降低了54、57、52个百分点,同时检测速度可达63.5帧/s。RIC-DETR模型具有复杂度低、准确率高、检测速度快的特点,可为松木的表面缺陷检测提供技术支持。  相似文献   

11.
为解决复杂跨域场景下猪个体的目标检测与计数准确率低下的问题,该研究提出了面向复杂跨域场景的基于改进YOLOv5(You Only Look Once version 5)的猪个体检测与计数模型。该研究在骨干网络中分别集成了CBAM(Convolutional Block Attention Module)即融合通道和空间注意力的模块和Transformer自注意力模块,并将CIoU(Complete Intersection over Union)Loss替换为EIoU(Efficient Intersection over Union)Loss,以及引入了SAM (Sharpness-Aware Minimization)优化器并引入了多尺度训练、伪标签半监督学习和测试集增强的训练策略。试验结果表明,这些改进使模型能够更好地关注图像中的重要区域,突破传统卷积只能提取卷积核内相邻信息的能力,增强了模型的特征提取能力,并提升了模型的定位准确性以及模型对不同目标大小和不同猪舍环境的适应性,因此提升了模型在跨域场景下的表现。经过改进后的模型的mAP@0.5值从87.67%提升到98.76%,mAP@0.5:0.95值从58.35%提升到68.70%,均方误差从13.26降低到1.44。以上研究结果说明该文的改进方法可以大幅度改善现有模型在复杂跨域场景下的目标检测效果,提高了目标检测和计数的准确率,从而为大规模生猪养殖业生产效率的提高和生产成本的降低提供技术支持。  相似文献   

12.
绿色高效杀线农药是现阶段防治植物线虫病的有效手段之一,针对在大规模杀线农药活性筛选测试阶段,传统人工镜检工作存在耗时长、准确率低、工作量大等问题,提出一种基于坐标注意力机制与高效边界框回归损失的线虫快速识别方法YOLOFN(YOLO for Nematodes)。基于YOLOv5s目标检测理论框架,在主干网络嵌入坐标注意力机制特征提取模块,融合线虫特征图位置信息于通道注意力中;进一步,平衡考量线虫目标的重叠比例、中心点距离、预测框宽高以及正负样本比例,以精确边界框回归的高效损失函数(Efficient IoU,EIoU)和焦点损失函数(Focal loss)优化定位损失函数和分类损失函数,最小化真实框与预测框的宽高差值,动态降低易区分样本的权重,快速聚焦有益训练样本,以提升模型对重叠黏连线虫目标的解析能力和回归精度。试验结果表明,YOLOFN在准确率、召回率和平均精度均值(mean Average Precision,mAP)性能指标上较改进前提高了0.2、4.4和3.8个百分点,与经典检测算法YOLOv3、SSD、Faster R-CNN3相比,mAP分别提高了1.1、31.7和15.1个百分点;与轻量化主干算法深度可分离卷积-YOLOv5、Mobilenetv2-YOLOv5、GhostNet-YOLOv5相比,在推理时间基本无差别情况下,mAP分别高出11、16.3和15个百分点。YOLOFN模型可快速、准确、高效完成线虫镜检统计工作,满足植物线虫病农药研发的实际需求,为加快植物线虫病防治新药的研制提供有力技术支持。  相似文献   

13.
在植物图像实例分割任务中,由于植物种类与形态的多样性,采用全监督学习时人们很难获得足量、有效且低成本的训练样本。为解决这一问题,该研究提出一种基于自生成标签的玉米苗期图像实例分割网络(automatic labelling based instance segmentation network,AutoLNet),在弱监督实例分割模型的基础上加入标签自生成模块,利用颜色空间转换、轮廓跟踪和最小外接矩形在玉米苗期图像(俯视图)中生成目标边界框(弱标签),利用弱标签代替人工标签参与网络训练,在无人工标签条件下实现玉米苗期图像实例分割。试验结果表明,自生成标签与人工标签的距离交并比和余弦相似度分别达到95.23%和94.10%,标签质量可以满足弱监督训练要求;AutoLNet输出预测框和掩膜的平均精度分别达到68.69%和35.07%,与人工标签质量相比,预测框与掩膜的平均精度分别提高了10.83和3.42个百分点,与弱监督模型(DiscoBox和Box2Mask)相比,预测框平均精度分别提高了11.28和8.79个百分点,掩膜平均精度分别提高了12.75和10.72个百分点;与全监督模型(CondInst和Mask R-CNN)相比,AutoLNet的预测框平均精度和掩膜平均精度可以达到CondInst模型的94.32%和83.14%,比Mask R-CNN模型的预测框和掩膜平均精度分别高7.54和3.28个百分点。AutoLNet可以利用标签自生成模块自动获得图像中玉米植株标签,在无人工标签的前提下实现玉米苗期图像的实例分割,可为大田环境下的玉米苗期图像实例分割任务提供解决方案和技术支持。  相似文献   

14.
针对现有目标检测模型对自然环境下茶叶病害识别易受复杂背景干扰、早期病斑难以检测等问题,该研究提出了YOLOv5-CBM茶叶病害识别模型。YOLOv5-CBM以YOLOv5s模型为基础,在主干特征提取阶段,将一个带有Transformer的C3模块和一个CA(coordinate attention)注意力机制融入特征提取网络中,实现对病害特征的提取。其次,利用加权双向特征金字塔(BiFPN)作为网络的Neck,通过自适应调节每个尺度特征的权重,使网络在获得不同尺寸特征时更好地将其融合,提高识别的准确率。最后,在检测端新增一个小目标检测头,解决了茶叶病害初期病斑较小容易出现漏检的问题。在包含有3种常见茶叶病害的数据集上进行试验,结果表明,YOLOv5-CBM对自然环境下的初期病斑检测效果有明显提高,与原始YOLOv5s模型相比,对早期茶饼病和早期茶轮斑病识别的平均精度分别提高了1.9和0.9个百分点,对不同病害检测的平均精度均值达到了97.3%,检测速度为8ms/幅,均优于其他目标检测算法。该模型具有较高的识别准确率与较强的鲁棒性,可为茶叶病害的智能诊断提供参考。  相似文献   

15.
基于改进型YOLOv4-LITE轻量级神经网络的密集圣女果识别   总被引:9,自引:9,他引:0  
对密集圣女果遮挡、粘连等情况下的果实进行快速识别定位,是提高设施农业环境下圣女果采摘机器人工作效率和产量预测的关键技术之一,该研究提出了一种基于改进YOLOv4-LITE轻量级神经网络的圣女果识别定位方法。为便于迁移到移动终端,该方法使用MobileNet-v3作为模型的特征提取网络构建YOLOv4-LITE网络,以提高圣女果果实目标检测速度;为避免替换骨干网络降低检测精度,通过修改特征金字塔网络(Feature Pyramid Networks,FPN)+路径聚合网络(Path Aggregation Network,PANet)的结构,引入有利于小目标检测的104×104尺度特征层,实现细粒度检测,在PANet结构中使用深度可分离卷积代替普通卷积降低模型运算量,使网络更加轻量化;并通过载入预训练权重和冻结部分层训练方式提高模型的泛化能力。通过与YOLOv4在相同遮挡或粘连程度的测试集上的识别效果进行对比,用调和均值、平均精度、准确率评价模型之间的差异。试验结果表明:在重叠度IOU为0.50时所提出的密集圣女果识别模型在全部测试集上调和均值、平均精度和准确率分别为0.99、99.74%和99.15%,同比YOLOv4分别提升了0.15、8.29个百分点、6.54个百分点,权重大小为45.3 MB,约为YOLOv4的1/5,对单幅416×416像素图像的检测,在图形处理器(Graphics Processing Unit,GPU)上速度可达3.01 ms/张。因此,该研究提出的密集圣女果识别模型具有识别速度快、识别准确率高、轻量化等特点,可为设施农业环境下圣女果采摘机器人高效工作以及圣女果产量预测提供有力的保障。  相似文献   

16.
针对破壳鸡蛋(破口蛋和裂纹蛋)缺陷差异性大,在线检测要求实时,以及人工检测依靠主观经验且检测速度慢、检测精度不高等问题,该研究提出一种基于改进的YOLOv7(You Only Look Once v7)模型的破壳鸡蛋在线实时检测系统。即以YOLOv7网络为基础,将YOLOv7网络的损失函数CIoU(complete-IoU)替换为WIoUv2(wise-IoU),在骨干网络(backbone)中嵌入坐标注意力模块(coordinate attention,CA)和添加可变形卷积DCNv2(deformable convnet)模块,同时将YOLOv7网络中的检测头(IDetect)替换为具有隐式知识学习的解耦检测头(IDetect_Decoupled)模块。在PC端的试验结果表明,改进后的模型在测试集上平均精度均值(mean average precision,mAP)为94.0%,单张图片检测时间为13.1 ms,与模型改进之前相比,其mAP提高了2.9个百分点,检测时间仅延长1.0 ms;改进后模型的参数量为3.64×107,较原始模型降低了2.1%。最后通过格式转换并利用ONNXRuntime深度学习框架把模型部署至设备端,在ONNXRuntime推理框架下进行在线检测验证。试验结果表明:该算法相较原始YOLOv7误检率降低了3.8个百分点,漏检率不变,并且在线检测平均帧率约为54帧/s,满足在线实时性检测需求。该研究可为破壳鸡蛋在线检测研究提供技术参考。  相似文献   

17.
森林遥感影像数据在采集过程中会因为光照的影响产生阴影区域,为了解决这些阴影区域对单棵树木检测的干扰问题,该研究在快速区域卷积神经网络(Faster Region Convolutional Neural Networks,Faster RCNN)目标检测框架基础上,提出基于生成对抗网络的抗阴影树木检测方法(GenerativeAdversarialBasedFasterRegionConvolutionalNeural Networks,GA-FasterRCNN),通过采用基于对抗生成策略的树木生成器,提高分类网络对树木信息的敏感度,降低阴影的干扰。该研究对3块树木阴影与郁闭度各不相同的测试样地高分遥感影像进行了树木检测试验,并与现存的3种算法进行了对比。结果显示,基于生成对抗网络的抗阴影干扰树木检测方法在3块样地的综合性能指标F1值分别达到了78.4%、91.6%和81.7%,均高于另外3种算法,并且树木识别准确率比现有方法有了明显的提高,漏检数和误检数也均明显减少。此外,在采用不同特征提取网络时该算法依然能保持其检测的稳定性。研究结果表明通过对抗生成训练策略学习表征树木的最少特征信息可有效降低阴影对树木检测的干扰。  相似文献   

18.
智能虫情测报灯对农业生产中及时察觉虫害、虫灾问题起重大作用,准确的害虫分类识别是给虫情测报提供可靠数据支撑的关键。该研究对智能虫情测报灯所需核心识别算法进行改进,针对分类目标多尺度、存在多种相似非目标害虫干扰、易产生目标粘连等问题,提出一种基于改进Mask-RCNN(mask region-based convolutional neural network)模型的害虫图像智能识别模型。该模型使用DeAnchor算法改进Mask-RCNN的锚框引导机制,使用NDCC(novelty detection consistent classifiers)训练分类器进行联合分类和检测,改善非目标杂虫的误识别问题。改进后模型对无杂虫、不同虫体密度图像的识别准确率最高达到96.1%,最密集时可达90.6%,比原Mask-RCNN模型识别准确率平均提高4.7个百分点。对于含杂虫图片,在仅有非目标的图片识别中,误检率降至9%,非目标与目标共存且密度为40虫/图的误检率降至15%。试验表明,该文所提模型在现有分类模型的基础上,增强了对密集区域的检测能力,改善了非目标误识别问题,在实际检测环境下的害虫分类识别精度更高,可为虫害防治工作提供数据参考。  相似文献   

19.
杂草作为一种常见的农业问题,对农作物的生长造成比较严重的影响,控制和管理杂草是农业生产活动中的重要一环。近年来,随着无人机技术和人工智能技术的快速发展,基于无人机平台的特定区域杂草管理是目前除草作业的主流研究,而精确高效地对田间杂草进行识别和检测是实现自动化杂草管理的重要前提。但高效的识别模型往往意味着大量的农业数据。为了降低对农业标签数据的依赖性,该研究提出了一种UANP-MT (uncertainty aware and network perturbed mean teacher)的半监督语义分割网络。该模型基于PSPNet结构与MT (mean teacher)的思想,首先通过对教师网络做扩增输出,令该部分做出若干次推理并取其均值,以此来保证网络预测的鲁棒性,其次在网络的一致性学习部分构建不确定性系数来约束不同网络间的输出差异,提高预测的置信度和可靠性,从而提高模型的识别准确度。为了验证所提出的模型的有效性,设计消融试验,包括对网络参数的取值设置,特征提取网络backbone的选取,以及在不同数据量的数据集下对模型进行性能测试,试验过程中确定了模型的一些最佳的参数设置。结果表明...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号