首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
建立了超高效液相色谱-串联质谱法(UHPLC-MS/MS)同时测定戊唑醇?肟菌酯及其代谢物肟菌酸在核桃中的残留检测方法?样品中待测农药组分采用2%乙酸乙腈溶剂振荡提取, 弗罗里硅土(florisil)净化, 利用乙腈和0.2%甲酸水作为流动相梯度洗脱, C18色谱柱分离, 在多反应监测模式下定量分析, 基质外标法定量?结果表明:戊唑醇添加水平为5~500 μg/kg时, 戊唑醇在核桃中添加回收率为80.3%~100.8%, 相对标准偏差(RSD)为2.5%~11.7%; 肟菌酯和肟菌酸添加水平为2~200 μg/kg时, 肟菌酯在核桃中添加回收率为91.1%~102.9%, 相对标准偏差(RSD)为1.7%~12.5%; 肟菌酸在核桃中添加回收率为91.7%~101.9%, 相对标准偏差(RSD)为3.7%~9.2%?戊唑醇?肟菌酯和肟菌酸溶剂标准曲线和基质标准曲线在1~1 000 μg/L范围内线性关系良好, 相关系数均大于0.99?戊唑醇定量限为5 μg/kg, 肟菌酯和肟菌酸定量限均为2 μg/kg?实际样品检测中, 戊唑醇残留结果为6~99 μg/kg, 肟菌酯残留结果为<2~103 μg/kg, 肟菌酸均小于检测限?该方法操作简便?快捷和准确, 满足在核桃实际样品中戊唑醇?肟菌酯及其代谢物肟菌酸的残留检测要求?  相似文献   

2.
本文建立了超高效液相色谱-串联质谱法(UPLC-MS/MS)同时测定豇豆中啶虫脒、阿维菌素、甲氨基阿维菌素苯甲酸盐、氟啶虫胺腈、灭蝇胺、苯醚甲环唑、吡唑醚菌酯和烯酰吗啉残留量的方法。样品经乙腈提取,采用ACQUITY_UPLCTMBEH C18色谱柱分离,应用UPLC-MS/MS正离子扫描进行定性定量分析。结果表明,在0.01~1μg/mL范围内,8种农药色谱峰面积与浓度均呈线性相关;3个添加水平下,回收率均在90%以上;8种农药在豇豆中的检出限为0.08~1.81μg/kg,定量限为0.024~0.603μg/kg。在实际豇豆样品检测中检测到5种农药残留,本方法灵敏度高、速度快,可为检测豇豆中8种农药残留量提供参考。  相似文献   

3.
建立了超高效液相色谱-串联质谱(UPLC-MS/MS)检测稻田土壤、田水、水稻植株、谷壳和糙米样品中速灭威残留的分析方法。样品经乙腈提取及盐析处理后,用乙二胺-N-丙基(PSA)和白炭黑(SiO2·nH2O)净化,UPLC-MS/MS 多离子反应监测模式下测定。结果表明,在0.005~1 mg/L 范围内,速灭威的仪器响应值与进样质量浓度间呈良好线性关系,相关系数(r)大于0.98。当添加水平为0.01~5 mg/kg(田水样品中为0.005~1 mg/L)时,速灭威在不同样品基质中的平均回收率为76.7% ~107.8%,相对标准偏差(RSD)为1.7% ~8.5%,最小检出量(LOD)均为2.0×10-13g,最低检测浓度(LOQ) 除在田水样品中为0.005 mg/L外,其余均为0.01 mg/kg。当按推荐剂量的1.5倍(有效成分45 g/hm2)分别施药2次和3次后,采用所建方法测得距最后一次施药10、14和21 d采收的糙米样品中速灭威的最终残留量均为未检出(低于0.01 mg/kg)。  相似文献   

4.
采用分散固相萃取(QuEChERS)为样品前处理方法,建立了超高效液相色谱-串联四极杆质谱(UPLC-MS/MS)快速同时检测黄瓜及番茄中异菌脲的残留分析方法。样品经乙腈提取,C18分散固相(dSPE)净化后,应用超高效液相色谱-电喷雾串联四级杆质谱仪,多反应监测模式(MRM)检测,外标法定量,结果显示,异菌脲在黄瓜和番茄基质中的线性关系良好,在0.02~1mg/L添加水平范围内,异菌脲在黄瓜和番茄中的平均回收率分别为82.7%~91.9%和89.8%~90.5%,相对标准偏差分别为4.7%~7.7%和4.8%~7.2%,最低检出浓度(LOQ)均为0.02mg/kg。  相似文献   

5.
建立了吡噻菌胺及其主要代谢物1-甲基-3- (三氟甲基)-1H-吡唑-4-甲酰胺 (PAM)和肟菌酯及其代谢物肟菌酸在番茄中残留的分析方法。样品经乙酸-乙腈提取,无水硫酸镁、N-丙基乙二胺 (PSA)和石墨化碳黑 (GCB)净化,高效液相色谱-串联质谱 (HPLC-MS/MS)检测。结果表明:吡噻菌胺、PAM、肟菌酯和肟菌酸在0.025~2 mg/L范围内的线性关系良好,R2≥0.999 2。在不同添加水平下,4种化合物在番茄中的平均回收率在88%~97%之间,相对标准偏差 (RSD)小于3.9%,定量限 (LOQ)均为0.05 mg/kg。按照《农作物中农药残留试验准则》在全国12个地区开展规范残留试验,30%吡噻菌胺 ? 肟菌酯悬浮剂以推荐剂量有效成分270 g/hm2,于番茄灰霉病发生初期喷雾施药2次,施药间隔7 d (推荐的安全间隔期为5 d)。在分别于末次施药后5和7 d采集的番茄样品中,吡噻菌胺的残留量均低于0.26 mg/kg,肟菌酯的均低于0.33 mg/kg,均未超出中国制定的吡噻菌胺和肟菌酯在番茄中的最大残留限量 (MRL)值。根据田间残留试验结果、膳食结构和毒理学数据进行了长期膳食风险评估。结果表明:普通人群吡噻菌胺和肟菌酯国家估算每日摄入量 (NEDI)分别为0.1382和0.2645 mg,膳食风险商 (RQ)均小于100%,说明在推荐的良好农业规范 (GAP)条件下施用30%吡噻菌胺 ? 肟菌酯悬浮剂不会对人体健康产生不可接受的风险。  相似文献   

6.
基于QuEChERS-超高效液相色谱-串联质谱(UPLC-MS/MS),建立了同时检测玉米粉中41种常见农药残留的分析方法.玉米粉样品经乙腈提取、QuEChERS方法净化后,采用UPLC-MS/MS检测分析.结果表明:在0.5~100μg/L范围内,41种待检农药质量浓度与对应的峰面积间均呈良好线性关系,决定系数均在0...  相似文献   

7.
建立了人参、黄芪、紫苏叶、白菊、益母草和五味子6种中药材中110种农药残留的超高效液相色谱-串联质谱(UPLC-MS/MS)分析方法。样品经乙腈提取,PSA固相萃取柱净化,正己烷液液分配,采用UPLC-MS/MS在正离子模式下以多反应监测扫描方式进行检测。结果表明:PSA柱结合正己烷液液分配净化可有效去除杂质干扰;分别在每种农药的定量限(LOQ)、5倍LOQ及20倍LOQ 3种浓度水平下进行添加回收率实验,110种农药的平均回收率在70.1%~95.7%之间,相对标准偏差(RSD)在0.8%~13.7%之间;供试110种农药的线性范围为其各自LOQ值的0.5~50倍,线性相关系数(r)在0.991~0.999之间;110种农药的检出限(LOD)在0.1~8.0 μg/kg之间,LOQ在2.0~100 μg/kg之间。该方法操作简单、净化效果好、灵敏度高,准确度和精密度均符合农药多残留分析的要求。  相似文献   

8.
建立了超高效液相色谱-三重四级杆串联质谱法(UPLC-MS/MS)同时检测柑橘中吡虫啉、啶虫脒、多菌灵、咪鲜胺、乐果和阿维菌素6种农药残留.样品经乙腈振荡提取,氯化钠盐析分层,上清液经以N-丙基乙二胺(PSA)为分散净化剂的QuEChERS方法净化.质谱采用电喷雾正离子模式(ESI+)和选择多反应监测方式(MRM)采集...  相似文献   

9.
采用超高效液相色谱-串联质谱法(UPLC-MS/MS),优选最佳QuEChERS样品前处理方法,建立了紫花地丁Viola yedoensis中82种农药残留的快速筛查和定量检测方法。通过正交试验设计9种组合,研究4种不同吸附剂(PSA、C18、GCB和SiO2)对紫花地丁净化效果的影响。紫花地丁样品分别经800 mg PSA、3 200 mg C18、1 600 mg GCB和1 600 mg SiO2提取与净化,采用phenomenex DOD-4475-AN C18色谱柱分离,0.1%甲酸(含10 mmol/L甲酸铵)-乙腈混合溶液进行梯度洗脱,标准曲线法定量。结果表明:82种农药在相应的线性范围内,色谱响应值与对应的质量浓度间均呈良好的线性关系(r ≥ 0.99),检出限(LOD)均在0.3~5 μg/kg之间,定量限(LOQ)均在1~20 μg/kg之间。在0.02、0.05和0.1 mg/kg 3个添加水平下,大多数农药的平均回收率介于70%~111%之间,相对标准偏差(RSD,n = 6)小于19%。该方法操作简单、准确、高效,可满足紫花地丁中82种农药残留同时检测的要求。  相似文献   

10.
为了解吡唑醚菌酯在苹果叶片中的残留动态,合理评估其持效期,比较了液液萃取、固相萃取以及QuEChERS(Quick、Easy、Cheap、Effective、Rugged、safe)3种样品前处理方法对苹果叶片中吡唑醚菌酯添加回收率的影响,优化了基于超高效液相色谱-串联质谱(UPLCMS/MS)的检测条件与方法。结果表明:采用QuEChERS法提取时回收率较高,所需有机溶剂少,时间短,重复性好,适合苹果叶片中吡唑醚菌酯的萃取和净化;对于苹果叶片,萃取和净化步骤中的填料可减少为乙二胺-N-丙基甲硅烷(PSA)和石墨化碳黑(GCB)2种,其最佳用量PSA为0.025 g/mL,GCB为0.020 g/mL;苹果叶组织对样品检测具有微弱的基质增强效应。通过对QuEChERS方法的改进以及对色谱-质谱检测参数的优化,建立了苹果叶片中吡唑醚菌酯残留的检测方法,该方法的线性范围为0.01~50.0 mg/L,定量限为0.01 mg/kg。在0.01~10 mg/kg4个添加水平下,吡唑醚菌酯在苹果叶片中的回收率为9 2%~9 9%,相对标准偏差为2.2%~5.3%。田间实测结果表明:苹果叶片喷施1 000 mg/L的25%吡唑醚菌酯乳油,其残留消解动态符合一级反应动力学模型ct=79.87 e-0.053 3 t,半衰期为13 d。  相似文献   

11.
UPLC-MS/MS法检测稻米及土壤中扑草净除草剂的残留量   总被引:1,自引:0,他引:1  
建立检测稻米及土壤中扑草净的UPLC-MS/MS方法。稻米和土壤样品经乙腈和混合液提取,甲醇/二氯甲烷溶解,PSA固相萃取柱净化,氮气吹干后经UPLC-MS/MS测定,外标法定量。建立了水稻及土壤中提取扑草净残留量的液相色谱-质谱/质谱测定方法。扑草净在稻米及土壤中的最低检测质量分数分别为0.01mg/kg;最小检出量5×10~11g;稻米添加回收率为82.7%~105.3%,土壤中添加回收率为79.6%~103.3%;稻米的RSD为2.6%~3.6%,土壤的RSD为3.2%~5.2%。建立方法准确、快速、灵敏度高,能够满足扑草净残留量分析的要求。  相似文献   

12.
本文采用QuEChERS方法,建立了超高效液相色谱-串联质谱(UPLC-MS/MS)快速测定氟唑菌酰胺在水稻糙米、水稻壳、水稻植株、稻田水和土壤样品中的残留分析方法。样品经乙腈提取,十八烷基硅烷键合硅胶(C18)、石墨化炭黑(GCB)和N-丙基乙二胺(PSA)净化后采用外标法进行定量分析。添加浓度为0.1、0.5和1mg/kg时,氟唑菌酰胺在水稻植株、土壤、糙米、稻壳和稻田水中的平均回收率为82.7%~111.7%,变异系数为1.6%~13.0%,氟唑菌酰胺在水稻植株、土壤、糙米、稻壳和稻田水中的最低检出浓度LOQs分别是18.89、2.85、10.27、30.21和3.21μg/kg。该方法的准确度和精密度等均符合农药残留分析的要求。田间试验结果表明,氟唑菌酰胺在水稻植株中的消解动态符合一级动力学方程,安徽、广西和北京三地的水稻植株上的消解半衰期分别为2.5、3.8和9.9d,表明氟唑菌酰胺属于易降解农药。  相似文献   

13.
应用超高效液相-串联质谱法(UPLC-MS/MS)建立了咪鲜胺在蒜薹中残留的分析方法.样品采用乙腈提取,乙二胺氮丙基硅烷(PSA)、石墨化碳(GCB)净化,UPLC-MS/MS检测,外标法(ESTD)定量.在0.005~1.0 mg/L质量浓度范围内,咪鲜胺的仪器响应值与质量浓度呈良好线性关系,相关系数为0.999 3,当咪鲜胺在蒜薹的添加质量分数为0.01~0.1 mg/kg时,平均回收率为91.3%~86.3%,变异系数在0.75%~2.4%之间.该方法快速、灵敏,适用于检测蒜薹中咪鲜胺的残留量.  相似文献   

14.
本研究建立了超高效液相色谱-串联质谱法(UPLC-MS/MS)同时检测豇豆中9种新烟碱类杀虫剂的多残留分析方法。豇豆样品用QuEChERS方法前处理, 用Kinetex Biphenyl色谱柱分离, 以甲醇和含0.1 mmol/L甲酸铵、0.001%甲酸的水作为流动相进行梯度洗脱, 使用超高效液相色谱串联质谱检测分析。定量限为0.01 mg/kg, 标准工作曲线在0.001~1 mg/kg范围内表现出良好的线性关系, 决定系数(R2)均大于0.99。目标杀虫剂在豇豆中的平均回收率为66.9%~109.8%, 相对标准偏差为1.2%~10.0%。应用该方法对某地16个农贸市场中采集的71份豇豆样本进行检测, 所有样品均符合我国所规定的豇豆(或豆类)中的最大残留限量标准要求。该方法简便、准确、灵敏度高, 适用于新烟碱类杀虫剂在豇豆中的残留监测。  相似文献   

15.
应用超高效液相色谱-串联质谱仪建立了多茵灵在黄瓜、番茄、葡萄、苹果和土壤中的残留检测方法。前处理方法采用乙酸乙酯提取,多反应离子监测技术确定多茵灵的2对离子m/z191.2/132和m/z191.2/160为定性离子.m/z191.2/160为定量离子。结果表明,本方法的最低检出浓度为O.001mg/L,线性范围为0.001-1mg/L,添加回收率范围为87.86%~112.71%,变异系数为1.54%-6.22%。  相似文献   

16.
超高效液相色谱—串联质谱法检测土壤中烟嘧磺隆的残留   总被引:2,自引:0,他引:2  
利用超高效液相色谱-串联质谱技术,建立了检测土壤样品中烟嘧磺隆残留量的分析方法。土壤样品用水和乙腈的混合溶液振荡提取,用UPLC—MS/MS测定。烟嘧磺隆在土壤中的平均回收率为83.1~106.2%,RSD为3.2~8.6%。该分析方法最低定量浓度为1.0μg/kg。该方法具有灵敏度高、操作简单、有机溶剂用量少等特点,可用于土壤样品中烟嘧磺隆的检测。  相似文献   

17.
采用超高效液相色谱-串联质谱法,建立了水样中藜芦碱的分析方法。以乙腈-0.2%甲酸水为流动相,在电喷雾正离子模式下,多反应监测(MRM)模式进行检测,外标法定量。结果表明,方法的线性范围为0.005~2mg/L,线性相关系数为0.997 4;在0.005、0.05和1mg/L 3个添加水平下,平均添加回收率为85.93%~89.65%,相对标准偏差(RSD)为3.94%~4.96%(n=5),检出限为0.5μg/L。该方法方便快捷,且灵敏度、准确度和精密度较高。  相似文献   

18.
在QuEChERS方法基础上,建立了棉花和土壤中呋虫胺残留的超高效液相色谱-串联质谱(UPLC-MS/MS)快速检测分析方法。方法选用乙腈为提取剂,N-丙基乙二胺(PSA)和石墨化炭黑(GCB)为净化剂,外标法定量。添加回收试验结果表明,不同添加浓度的呋虫胺(0.01、0.05和0.5mg/kg)在棉花植株、棉籽和土壤中的平均回收率为80.9%~107.5%,变异系数为3.3%~10.3%,定量限(LOQ)分别为4.81、3.41和2.26μg/kg。呋虫胺在棉花植株上的消解动态表明,呋虫胺在河南省和山东省两地棉花植株中的降解半衰期分别为1.9d和1.2d。  相似文献   

19.
应用超高效液相色谱-串联质谱(UPLC-MS/MS)建立了氟虫双酰胺(NNI-0001)及其代谢产物(NNI-des)在土壤和田水中的残留检测方法。样品采用乙腈提取,乙二胺-N-丙基硅烷吸附剂(PSA)净化,UPLC-MS/MS检测。氟虫双酰胺及其代谢产物NNI-des在土壤和田水中的最低检测浓度分别为0.002 mg/kg和0.001 mg/L,最小检出量分别为1.2×10-13和3.1×10-14 g。在土壤和田水中的添加水平为0.001~1 mg/kg(mg/L)条件下,氟虫双酰胺及其代谢产物NNI-des的平均回收率在78.2%~108.2%之间,相对标准偏差在8.2%~15.3%之间。消解动态试验结果表明,氟虫双酰胺在土壤和田水中的半衰期分别为1.0和 5.4 d。施药21 d后,消解率均在85%以上,属易降解农药。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号