首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil salinity is a major limitation to legume production in many areas of the world. The salinity sensitivity of soybean was studied to determine the effect of salinity on seed germination, shoot and root dry weights, and leaf mineral contents. Three soybean cultivars, Lee, Coquitt, and Clark 63, were planted in soils of different salinity levels. The electrical conductivity (EC) of the soils used in this experiment was 0.5 dS m?1. The soil salinity treatments were 0.5, 2.5 4.5, 6.5 and 8.5 dS m?1. Saline drainage water from a drainage canal with an EC of 15 dS m?1 was used to treat the soil samples in order to obtain the desired salinity levels. Germination percentages were recorded 10 days after planting. Shoot and root dry weights of 45‐day‐old plants were measured. Nutrient concentrations for Na+, K+, Ca2+, Mg2+ and Cl? were determined. Germination percentages were significantly reduced with increasing salinity levels. The cultivar Lee was less affected by salinity stress than Coquitt and Clark 63. At 8.5 dS m?1 a significant reduction in plant height was found in all three cultivars. However, Lee plants were taller than plants of the other two cultivars. Salinity stress induced a significant increase in leaf sodium (Na+) and chloride (Cl?) in all cultivars. However, the cultivar Lee maintained lower Na+ and Cl+ concentrations, a higher potassium (K+) concentration and a higher K+/Na+ ratio at higher salinity levels than Coquitt and Clark 63. Saline stress reduced the accumulation of K+, calcium (Ca2+) and magnesium (Mg2+) in the leaves of the cultivars studied. This study suggests that Lee is the most tolerant cultivar, and that there is a relationship between the salt tolerance of the cultivar and macronutrient accumulation in the leaves.  相似文献   

2.
Cowpea is widely cultivated in arid and semi‐arid regions of the world where salinity is a major environmental stress that limits crop productivity. The effects of moderate salinity on growth and photosynthesis were examined during the vegetative phase of two cowpea cultivars previously classified as salt‐tolerant (Pitiúba) and salt‐sensitive (TVu). Two salt treatments (0 and 75 mm NaCl) were applied to 10‐day‐old plants grown in nutrient solution for 24 days. Salt stress caused decreases (59 % in Pitiúba and 72 % in TVu) in biomass accumulation at the end of the experiment. Photosynthetic rates per unit leaf mass, but not per unit leaf area, were remarkably impaired, particularly in TVu. This response was unlikely to have resulted from stomatal or photochemical constraints. Differences in salt tolerance between cultivars were unrelated to (i) variant patterns of Cl? and K+ tissue concentration, (ii) contrasting leaf water relations, or (iii) changes in relative growth rate and net assimilation rate. The relative advantage of Pitiúba over TVu under salt stress was primarily associated with (i) restricted Na+ accumulation in leaves paralleling an absolute increase in Na+ concentration in roots at early stages of salt treatment and (ii) improved leaf area (resulting from a larger leaf area ratio coupled with a larger leaf mass fraction and larger specific leaf area) and photosynthetic rates per unit leaf mass. Overall, these responses would allow greater whole‐plant carbon gain, thus contributing to a better agronomic performance of salt‐tolerant cowpea cultivars in salinity‐prone regions.  相似文献   

3.
Salinity primarily affects plants by inhibiting shoot growth. Salt‐sensitive plants have been suggested to accumulate Na+ within their leaf apoplast under salinity, leading to a reduced water status. Evidence related to apoplastic Na+ accumulation is still enigmatic. We have focused on the effect of a short‐term salt treatment by using the salt‐sensitive Vicia faba. Moreover, we have examined the role of silicon in alleviating sodium accumulation in the apoplast. Salt‐sensitive field beans have been subjected to increasing levels of salinity, with and without the addition of silicon under hydroponic conditions. We have demonstrated that the dicot Vicia faba exhibits a rise in Na+ concentration in the leaf apoplast at higher salinity levels; this is significantly ameliorated by the addition of silicon. Further, enhanced shoot growth under high salt treatment in the presence of added silicon is correlated with a significant decrease in Na+ concentration in the leaves. The novelty of the current study is the detection of a high Na+ concentration in the leaf apoplast of the salt‐sensitive dicot field bean. Our results support Oertli's hypothesis that extracellular salt accumulation can lead to wilting leaves, plant growth reduction and cell death.  相似文献   

4.
Salt (NaCl)‐induced regulation of some key physio‐biochemical characteristics in two okra (Abelmoschus esculentus L.) cultivars (Nirali and Posa Sawni) was examined under greenhouse conditions. Plants of both cultivars were subjected for 30 days to sand culture salinized with four salt levels [0 (control), 50, 100 and 150 mm NaCl] in Hoagland’s nutrient solution. Salt stress significantly reduced the shoot and root fresh weights, transpiration rate, chlorophyll b content, net CO2 assimilation (A), transpiration rate (E), while enhanced leaf and root Na+ and Cl concentrations in both cultivars. In contrast, chlorophyll a content, stomatal conductance (gs), leaf internal CO2 (Ci), Ci/Ca ratio, water‐use efficiency (A/E) and fluorescence characteristics such as photochemical quenching (qP), non‐photochemical quenching (NPQ), efficiency of PS‐II (Fv/Fm), proline contents, and leaf and root K+, Ca2 + and N contents remained almost unaffected in both lines due to salt stress. The efficiency of PSII (Fv/Fm), A, chlorophyll b, root fresh weight and root N were higher in relatively salt tolerant cv. Nirali, whereas leaf Na+ and root Cl were higher in cv. Posa Sawni. The relatively more reduction in growth in the cv. Posa Sawni was found to be associated with higher accumulation of Na+ in its leaves and Cl in roots.  相似文献   

5.
Four bread wheat genotypes differing in salt tolerance were selected to evaluate ion distribution and growth responses with increasing salinity. Salinity was applied when the leaf 4 was fully expanded. Sodium (Na+), potassium (K+) concentrations and K+/Na+ ratio in different tissues including root, leaf‐3 blade, flag leaf sheath and flag leaf blade at three salinity levels (0, 100 and 200 mm NaCl), and also the effects of salinity on growth rate, shoot biomass and grain yield were evaluated. Salt‐tolerant genotypes (Karchia‐65 and Roshan) showed higher growth rate, grain yield and shoot biomass than salt‐sensitive ones (Qods and Shiraz). Growth rate was reduced severely in the first period (1–10 days) after salt commencements. It seems after 20 days, the major effect of salinity on shoot biomass and grain yield was due to the osmotic effect of salt, not due to Na+‐specific effects within the plant. Grain yield loss in salt‐tolerant genotypes was due to the decline in grain size, but the grain yield loss in salt‐sensitive ones was due to decline in grain number. Salt‐tolerant genotypes sequestered higher amounts of Na+ concentration in root and flag leaf sheath and maintained lower Na+ concentration with higher K+/Na+ ratios in flag leaf blade. This ion partitioning may be contributing to the improved salt tolerance of genotypes.  相似文献   

6.
Na+ accumulation in the leaf apoplast has been suggested to lead to dehydration, later wilting and finally, the death of the affected leaves. Our aim has been to evaluate whether the reduction in the plant growth of sensitive maize in response to salinity is correlated with higher amounts of Na+ and Cl? concentrations in the leaf apoplast. Subcellular ion patterns in intact leaves were investigated by using deionised water infiltration. We found an increase in soluble Na+ and Cl? concentrations of about 16‐ and 4‐fold, respectively, compared with the control. These concentrations characterized the apoplasts of expanding leaves that had entirely developed under salinity. Interestingly, the K+ concentration was significantly reduced by 64 % compared with its control in the symplast under salinity. Our finding of a significantly decreased Ca2+ concentration in shoots suggested a possible association of Ca2+ concentration with the reduction in leaf expansion under salinity. As the absolute increase in the apoplastic Na+ concentration during salt treatment was much lower compared with the increase in the symplastic Na+ concentration, salt treatment in maize appears not to result in osmotic stress imposed by a high apoplastic Na+ concentration as has been suggested for other plant species (Oertli hypothesis).  相似文献   

7.
Salinity is known to reduce chickpea yields in several regions of the world. Although ion toxicity associated with salinity leads to yield reductions in a number of other crops, its role in reducing yields in chickpea growing in saline soils is unclear. The purpose of this study was to (i) identify the phenological and yield parameters associated with salt stress tolerance and sensitivity in chickpea and (ii) identify any pattern of tissue ion accumulation that could relate to salt tolerance of chickpea exposed to saline soil in an outdoor pot experiment. Fourteen genotypes of chickpea (Cicer arietinum L.) were used to study yield parameters, of which eight were selected for ion analysis after being grown in soil treated with 0 and 80 mm NaCl. Salinity delayed flowering and the delay was greater in sensitive than tolerant genotypes under salt stress. Filled pod and seed numbers, but not seed size, were associated with seed yield in saline conditions, suggesting that salinity impaired reproductive success more in sensitive than tolerant lines. Of the various tissues measured for concentrations of Cl?, Na+ and K+, higher seed yields in saline conditions were positively correlated with higher K+ concentration in seeds at the mid‐filling stage (R2 = 0.55), a higher K+/Na+ ratio in the laminae of fully expanded young leaves (R2 = 0.50), a lower Na+ concentration in old green leaves (R2 = 0.50) and a higher Cl? concentration in mature seeds. The delay in flowering was associated with higher concentrations of Na+ in the laminae of fully expanded young leaves (R2 = 0.61) and old green leaves (R2 = 0.51). We conclude that although none of the ions appeared to have any toxic effect, Na+ accumulation in leaves was associated with delayed flowering that in turn could have played a role in the lower reproductive success in the sensitive lines.  相似文献   

8.
Soil salinity is a worldwide issue that affects agricultural production. The understanding of mechanisms by which plants tolerate salt stress is crucial for breeding varieties for salt tolerance. In this work, a large number of wheat (Triticum aestivum and Triticum turgidum) cultivars were screened using a broad range of physiological indices. A regression analysis was then used to evaluate the relative contribution of each of these traits towards the overall salinity tolerance. In general, most of the bread wheats showed better Na+ exclusion that was associated with higher relative yield. Leaf K+/Na+ ratio and leaf and xylem K+ contents were the major factors determining salinity stress tolerance in wheat. Other important traits included high xylem K+ content, high stomatal conductance and low osmolality. Bread wheat and durum wheat showed different tolerance mechanisms, with leaf K+/Na+ content in durum wheat making no significant contributions to salt tolerance, while the important traits were leaf and xylem K+ contents. These results indicate that Na+ sequestration ability is much stronger in durum compared with bread wheat, most likely as a compensation for its lesser efficiency to exclude Na+ from transport to the shoot. We also concluded that plant survival scores under high salt stress can be used in bread wheat as a preliminary selection for Na+ exclusion gene(s).  相似文献   

9.
为探明滨海盐土对费菜生长发育的影响,掌握其盐碱土壤栽植下的耐盐特性,通过3、5、7、9、 11 g/kg等5个梯度的滨海盐土处理,对费菜生长指标及Na+、K+分布等进行研究。结果表明,随着盐分升高,株高、分枝、鲜重、干重均减小,≥7 g/kg盐分对费菜生长具有较大抑制,但盐分达到11 g/kg植株仍能继续生长;≥9 g/kg高盐分显著抑制地上干物质积累,对地下部生物量影响明显小于地上部。随着盐分升高,根、茎、叶中Na+的含量有升高的趋势,从部位含量看,茎>叶>根;随着盐分含量升高,叶中的K+含量逐渐减少,根、茎有升高趋势,从部位看,茎、叶是根的3倍;随着盐分浓度升高,根、茎、叶的Na+/K+比值具升高趋势,≤9 g/kg盐分胁迫下,根保持高Na+/K+比值,是茎、叶的近4倍。低于7 g/kg盐土对费菜影响不大,其耐盐性可能与宿根特性及茎叶结构有关。费菜集食用、园林于一体,由于其耐盐性强,可在滨海盐碱区种植应用。  相似文献   

10.
Genetic relationships between salt tolerance and expression of various physiological traits during vegetative growth in tomato, Lycopersicon esculentum Mill., were investigated. Parental, F1, F2 and backcross progeny of a cross between a salt tolerant (PI174263) and a salt sensitive tomato cultivar (‘UCT5’) were evaluated in saline solutions with electrical conductivity of 0.5 (non-stress) and 20 dS/m (salt stress). Absolute growth, relative growth, tissue ion content, leaf solute potential and the rate of ethylene evolution were measured. Growth of both parents was reduced under salt stress; however, the reduction was significantly less in PI174263 than ‘UCT5’, suggesting greater salt tolerance of the former. Under salt stress, leaves of PI174263 accumulated significantly less Na+ and Cl? and more Ca2+ than leaves of ‘UCT5’. Across parental and progeny generations, growth under salt stress was positively correlated with leaf Ca2+ content and negatively correlated with leaf Na+ content. In contrast, no correlation was observed between growth and either leaf solute potential or the rate of ethylene evolution under salt stress. Generation means analysis indicated that under salt stress both absolute and relative growth and the Na+ and Ca2+ accumulations in the leaf were genetically controlled with additivity being the major genetic component. The results indicated that the inherent genetic capabilities of PI174263 to maintain high tissue Ca2+ levels and to exclude Na+ from the shoot were essential features underlying its adaptation to salt stress and that these features were highly heritable. Thus, tissue ion concentration may be a useful selection criterion when breeding for improved salt tolerance of tomato using progeny derived from PI174263.  相似文献   

11.
A greenhouse experiment was carried out to examine the differential morpho‐physiological responses of five cultivars of turnip (Brassica rapa L.) to salt stress. Five diverse cultivars of turnip (shaljum desi surakh, shaljum purple top, shaljum golden bal, neela shaljum, and peela shaljum) were subjected for 6 weeks to varying levels of NaCl, i.e. 0, 80 and 160 mm in Hoagland’s nutrient solution in sand culture. Imposition of varying levels of salt substantially decreased shoot and root fresh and dry weights, chlorophyll contents, leaf osmotic potential, relative water contents, different gas exchange attributes, total phenolics, malondialdehyde, activities of superoxide dismutase, peroxidase catalase, and leaf and root K+ levels while enhanced the proline contents, membrane permeability, level of H2O2, leaf and root Na+ and Cl? and leaf Ca2+ in all turnip cultivars under study. Of all cultivars, peela shaljum and neela shaljum were consistently higher in their growth than the other turnip cultivars at all salt concentrations of the growth medium. Photosynthetic capacity (A) and stomatal conductance (gs) were higher in high biomass‐producing cultivars, i.e. peela shaljum and neela shaljum, which provide to be potential selection criteria of salt tolerance in turnip. However, the regulation of antioxidant system was cultivar‐specific under saline conditions.  相似文献   

12.
13.
Salinity is one of the major limitations to wheat production worldwide. This study was designed to evaluate the level of genetic variation among 150 internationally derived wheat genotypes for salinity tolerance at germination, seedling and adult plant stages, with the aim of identifying new genetic resources with desirable adaptation characteristics for breeding programmes and further genetic studies. In all the growth stages, genotype and salt treatment effects were observed. Salt stress caused 33 %, 51 % and 82 % reductions in germination vigor, seedling shoot dry matter and seed grain yield, respectively. The rate of root and shoot water loss due to salt stress exhibited significant negative correlation with shoot K+, but not with shoot Na+ and shoot K+/Na+ ratio. The genotypes showed a wide spectrum of response to salt stress across the growth stages; however, four genotypes, Altay2000, 14IWWYTIR‐19 and UZ‐11CWA‐8 (tolerant) and Bobur (sensitive), exhibited consistent responses to salinity across the three growth stages. The tolerant genotypes possessed better ability to maintain stable osmotic potential, low Na+ accumulation, higher shoot K+ concentrations, higher rates of PSII activity, maximal photochemical efficiency and lower non‐photochemical quenching (NPQ), resulting in the significantly higher dry matter production observed under salt stress. The identified genotypes could be used as parents in breeding for new varieties with improved salt tolerance as well as in further genetic studies to uncover the genetic mechanisms governing salt stress response in wheat.  相似文献   

14.
Salinity reduces crop yield by limiting water uptake and causing ion‐specific stress. Soybean [Glycine max (L.) Merr.] is sensitive to soil salinity. However, there is variability among soybean genotypes and wild relatives for salt tolerance, suggesting that genetic improvement may be possible. The objective of this study was to identify differences in salt tolerance based on ion accumulation in leaves, stems and roots among accessions of four Glycine species. Four NaCl treatments, 0, 50, 75 and 100 mm , were imposed on G. max, G. soja, G. tomentella and G. argyrea accessions with different levels of salinity tolerance. Tolerant genotypes had less leaf scorch and a greater capacity to prevent Na+ and Cl? transport from soil solution to stems and leaves than sensitive genotypes. Magnitude of leaf injury per unit increase in leaf Na+ or Cl? concentrations was lower in tolerant than in susceptible accessions. Also, plant injury was associated more with Na+ rather than with Cl? concentration in leaves. Salt‐tolerant accessions had greater leaf chlorophyll‐meter readings than sensitive genotypes at all NaCl concentrations. Glycine argyrea and G. tomentella accessions possessed higher salt tolerance than G. soja and G. max genotypes.  相似文献   

15.
The effect of NaCl (?0.1, ?0.4 and ?0.7 MPa) on some physiological parameters in six 23‐day‐old soya bean cultivars (Glycine max L. Merr. namely A 3935, CX‐415, Mitchell, Nazl?can, SA 88 and Türksoy) at 25, 30 and 35 °C was investigated. Salt stress treatments caused a decline in the K+/Na+ ratio, plant height, fresh and dry biomass of the shoot and an increase in the relative leakage ratio and the contents of proline and Na+ at all temperatures. Effects of salt stress and temperature on Chl content, Chl a/b ratio (antenna size) and qN (heat dissipation in the antenna) varied greatly between cultivars and treatments; however, in all cases approximately the same qP value was observed. It indicates that the plants were able to maintain the balance between excitation pressure and electron transport activity. Pigment content and the quantum efficiency of photosystem II exhibited significant differences that depended on the cultivar, the salt concentration and temperature. The cultivars were relatively insensitive to salt stress at 30 °C however they were very sensitive both at 25 and 35 °C. Of the cultivars tested CX‐415 and SA 88 were the best performers at 25 °C compared with SA 88 and Türksoy at 35 °C.  相似文献   

16.
比较不同耐盐性品种在NaCl胁迫下的离子含量的差异,为耐盐玉米的筛选提供理论依据。玉米耐盐品种‘郑单958’和盐敏感品种‘齐单1号’在含0%、0.2%、0.4%、0.6%、0.8%、1.0% NaCl的砂子中生长,分别测定根、茎和叶片中Na+、K+、Ca2+含量。NaCl胁迫下,Na+、K+、Ca2+含量在两个玉米品种间、NaCl浓度间差异均达到极显著水平。NaCl胁迫下,两个玉米品种根茎叶中Na+含量均增加,根中Na+含量增加的幅度大于茎和叶,‘郑单958’根中的Na+含量高于‘齐单1号’;K+、Ca2+含量随NaCl浓度的升高而降低。高盐胁迫下,‘郑单958’根中K+含量降低的幅度大于‘齐单1号’,而茎中K+含量降低的幅度小于‘齐单1号’;‘郑单958’茎和叶片中Ca2+含量降低的幅度小于‘齐单1号’。两个玉米品种在离子含量间表现出的差异非常明显,Na+、K+、Ca2+含量可以作为玉米耐盐性鉴定和筛选指标。  相似文献   

17.
Summary Embryogenic calli isolated from immature embryos of four wheat cultivars were subjected to three in vitro selection methods for salt tolerance. The effect of NaCl on the selected and unselected cell lines has been investigated. The results indicated that the relative growth rate of callus decreased as the concentration of NaCl increased in both callus lines. The selected callus line gave a higher growth weight in the presence of NaCl in the medium and was highly significant as compared with unselected callus line across medium protocols in all wheat cultivars. The dry weight of both kinds of callus lines of all wheat cultivars increased markedly with increasing NaCl concentration in most cases. The Na+ and Cl- contents of both callus lines were increased with increasing salinity levels while K+ content was decreased. The selected callus line of each cultivar at the same salinity level produced significant amounts of Na+, K+ and Cl- higher than the unselected callus line in most salinity levels. However, the unselected callus lines of the cultivars Giza-157 and Sakha-90 at the same salinity level produced significant amounts of K+ higher than the selected callus line in most salinity levels. The proline content of both kinds of callus lines for all wheat cultivars was increased with increasing salinity level. However, the selected callus line gave a significantly higher proline content than the unselected callus line in all wheat cultivars at the same Salinity level. Results from the in vitro selection for NaCl tolerance showed that the stepwise method of increasing NaCl in the medium was more effective for plant regeneration than other methods.  相似文献   

18.
Wild Oryza species as potential sources of drought-adaptive traits   总被引:1,自引:0,他引:1  
L. Liu  R. Lafitte  D. Guan 《Euphytica》2004,138(2):149-161
Wild species of Oryza may serve as sources of superior drought tolerance alleles for cultivated rice. In a series of three screenhouse experiments, we compared traits associated with leaf water status, stomatal conductance, membrane stability, and root development in several wild Oryza accessions and O. sativa cultivars, when grown under well-watered or water-deficient conditions. One accession of O. longistaminata had greater stomatal conductance under stress and maintained leaf elongation better under stress than most other genotypes. Several upland-rice cultivars from the japonica subspecies also maintained greater conductance and leaf expansion than an indica cultivar or O. rufipogon accessions. Leaves of an accession of O. latifolia were particularly sensitive to water deficit. Oryza longistaminata and several O. rufipogon accessions had greater membrane stability, measured as electrolyte leakage from leaf disks after heat treatment, than cultivated rice. Drought treatments tended to reduce the levels of electrolyte leakage observed. Wild species had levels of osmotic adjustment under stress that were similar to O. sativa. Entries differed in the growth of roots with water deficit:O. longistaminata accessions and some japonica cultivars showed either an increase in total root mass or an increase in the proportion of root mass in deeper soil levels when water deficit was imposed, whereas indica cultivars and O. rufipogon accessions did not. Changes in root mass and distribution were correlated with values of stomatal conductance and leaf elongation; this suggests that leaf measurements made at key times in the drying cycle may reveal possible genetic differences in rooting behavior, which are otherwise difficult to measure. These studies indicate that O. longistaminata and O. rufipogon may serve as sources of novel alleles for improved leaf traits under drought stress–specifically, for maintenance of leaf elongation, stomatal conductance, and membrane stability. Alleles for improved root growth and distribution under water deficit exist in some japonica rice cultivars.  相似文献   

19.
Screening sorghum genotypes for salinity tolerant biomass production   总被引:1,自引:0,他引:1  
Genetic improvement of salt tolerance is of high importance due to the extent and the constant increase in salt affected areas. Sorghum [Sorghum bicolor (L.) Moench] has been considered relatively more salt tolerant than maize and has the potential as a grain and fodder crop for salt affected areas. One hundred sorghum genotypes were screened for salinity tolerance in pots containing Alfisol and initially irrigated with a 250-mM NaCl solution in a randomized block design with three replications. Subsequently 46 selected genotypes were assessed in a second trial to confirm their responses to salinity. Substantial variation in shoot biomass ratio was identified among the genotypes. The performance of genotypes was consistent across experiments. Seven salinity tolerant and ten salinity sensitive genotypes are reported. Relative shoot lengths of seedlings were genetically correlated to the shoot biomass ratios at all stages of sampling though the relationships were not close enough to use the trait as a selection criterion. In general, the whole-plant tolerance to salinity resulted in reduced shoot Na+ concentration. The K+/Na+ and Ca2+/Na+ ratios were also positively related to tolerance but with a lesser r 2. Therefore, it is concluded that genotypic diversity exists for salt tolerance biomass production and that Na+ exclusion from the shoot may be a major mechanism involved in that tolerance.  相似文献   

20.
Drought stress is a major limiting factor for crop production in the arid and semi‐arid regions. Here, we screened eighty barley (Hordeum vulgare L.) genotypes collected from different geographical locations contrasting in drought stress tolerance and quantified a range of physiological and agronomical indices in glasshouse trails. The experiment was conducted in large soil tanks subjected to drought treatment of eighty barley genotypes at three‐leaf stage and gradually brought to severe drought by withholding irrigation for 30 days under glasshouse conditions. Also, root length of the same genotypes was measured from stress‐affected plants growing hydroponically. Drought tolerance was scored 30 days after the drought stress commenced based on the degree of the leaf wilting, fresh and dry biomass and relative water content. These characteristics were related to stomatal conductance, stomatal density, residual transpiration and leaf sap Na, K, Cl contents measured in control (irrigated) plants. Responses to drought stress differed significantly among the genotypes. The overall drought tolerance was significantly correlated with relative water content, stomatal conductance and leaf Na+ and K+ contents. No significant correlations between drought tolerance and root length of 6‐day‐old seedling, stomatal density, residual transpiration and leaf sap Cl? content were found. Taking together, these results suggest that drought‐tolerant genotypes have lower stomatal conductance, and lower water content, Na+, K+ and Cl? contents in their tissue under control conditions than the drought‐sensitive ones. These traits make them more resilient to the forthcoming drought stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号