首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
磷酸烯醇式丙酮酸羧化酶(phosphoenolpyruvatecarboxylase,PEPC)是C4植物光合作用关键酶,并在植物多种代谢途径及逆境信号应答过程中起重要作用。本研究通过序列比对,从谷子基因组中筛选出6个SiPEPC候选基因。SiPEPC蛋白特征参数相似度很高,序列非常保守,都含有PEPC基因特征功能域PEPcase Motif。SiPEPC成员主要被定位在细胞质、细胞核和线粒体。在SiPEPC成员启动子序列中含大量有光、激素、逆境以及其他生长调控相关的顺式应答元件。苗期逆境qRT-PCR表达谱分析表明,5个SiPEPC基因(SiPEPC1、SiPEPC2、SiPEPC3、SiPEPC5、SiPEPC6)不同程度受ABA、PEG、高盐和低温诱导表达,表明其参与了苗期对非生物逆境的响应。5个SiPEPC基因表达量在正常生长条件下随着谷子的生长呈增强趋势,且在不同生育时期干旱胁迫下明显增加,表明其参与了拔节、抽穗、灌浆期的干旱胁迫应答。拔节期弱光可诱导5个SiPEPC基因的表达,而在拔节期中等强度光照以及抽穗期和灌浆期的中等光照和弱光照下表达量均急剧降低,揭示光照强度严重影响...  相似文献   

2.
从谷子品种延谷11号克隆生物钟基因SiPRR37,通过生物信息学分析、组织特异性表达分析、4种不同光温组合条件的昼夜表达模式分析以及对NaCl、ABA、PEG、低温、Fe 5种非生物胁迫的响应特点分析,揭示SiPRR37参与谷子光温互作调控以及应对非生物胁迫的作用机制;并对160份谷子材料重测序检测SiPRR37基因的突变位点进行单倍型分析,探究该基因对谷子主要农艺性状的影响。结果表明,SiPRR37基因蛋白质编码区(sequence coding for amino acids in protein,CDS)全长2247 bp,编码748个氨基酸,含有REC和CCT 2个结构域,基于PRR37蛋白的系统进化分析发现,谷子与糜子、高粱、玉米亲缘关系最近;启动子预测分析发现,SiPRR37启动子区存在光、温、生长素、赤霉素、脱落酸、茉莉酸甲酯、干旱和盐胁迫等多种应答元件。SiPRR37相对表达量从高到低依次为根、穗颈、穗、顶叶、次顶叶、茎秆;4个光温组合条件SiPRR37均只在光照期出现1个表达峰,无论高温(27℃)还是低温(22℃),短日照相比长日照表达峰均要提前,无论长日照还是短日照,低温(22℃)相比高温(27℃)表达峰均要提前;NaCl、低温(15℃)胁迫能够抑制SiPRR37表达,PEG模拟干旱胁迫和Fe胁迫能够诱导SiPRR37基因表达,SiPRR37参与了ABA信号传导过程。位于SiPRR37 CDS区的10个SNP将160份谷子材料分为19个单倍型,其中3个单倍型(Hap_7、Hap_10、Hap_19)是改善穗部性状的有利单倍型。谷子SiPRR37基因表达具有昼夜节律性,同时受光周期和温度调控,并且参与了谷子对盐胁迫、低温胁迫、干旱胁迫和铁胁迫的应答反应,同时SiPRR37与抽穗期和多个穗部性状相关,在开展谷子高产分子辅助选育中具有一定应用潜力。  相似文献   

3.
High temperature and drought stress are projected to reduce crop yields and threaten food security. While effects of heat and drought on crop growth and yield have been studied separately, little is known about the combined effect of these stressors. We studied detrimental effects of high temperature, drought stress and combined heat and drought stress around anthesis on yield and its components for three wheat cultivars originating from Germany and Iran. We found that effects of combined heat and drought on the studied physiological and yield traits were considerably stronger than those of the individual stress factors alone, but the magnitude of the effects varied for specific growth‐ and yield‐related traits. Single grain weight was reduced under drought stress by 13%–27% and under combined heat and drought stress by 43%–83% but not by heat stress alone. Heat stress significantly decreased grain number by 14%–28%, grain yield by 16%–25% and straw yield by 15%–25%. Cultivar responses were similar for heat but different for drought and combined heat and drought treatments. We conclude that heat stress as imposed in this study is less detrimental than the effects of those other studied stresses on growth and yield traits.  相似文献   

4.
The genetic diversity among an international collection of 40 maize accessions has been evaluated using DNA ISSR fingerprinting. Among the 180 ISSR markers scored by 15 primers, 161 markers (89.59%) were polymorphic and 19 were unique in 16 accessions. A cluster tree based on the average distance coefficients and the Dice similarity indices divided the accessions into three major groups, each including clusters of accessions assigned to their subspecies. However, a low level of genetic differentiation among the accessions was demonstrated by the STRUCTURE analysis of ISSR data in agreement with the low gene flow (Nm) value among the accessions. A scatter diagram of the principal component analysis (PCA) based on ISSR data analysis revealed that the accessions were differentiated into three groups comparable to those produced by the cluster analysis, in which some accessions of the same subspecies showed a close similarity to each other. A scatter diagram of the principal coordinate analysis (PCoA) based on the drought tolerance indices (DTIs) showed that nine genetically similar accessions share drought tolerance characteristics; these include four of subsp. indurata, three of subsp. everata, and two of subsp. indentata. An abundance of unique ISSR alleles found in the 16 accessions, including the nine drought-tolerant accessions, represents rich untapped genetic resources and these accessions may be exploited in the future breeding of maize commercial lines.  相似文献   

5.
张健强 《中国农学通报》2013,29(16):106-109
研究了在高温胁迫下,以不同种类外源抗氧化剂处理,对苹果果皮组织抗坏血酸过氧化物酶、超氧化物歧化酶的活性和维生素C含量的影响,实验结果表明高温胁迫下抗坏血酸过氧化物酶、超氧化物歧化酶的活性和维生素C含量有显著提高,说明施用抗氧化剂后苹果果皮组织抗氧化能力提高,尤其是施用复合抗氧化剂效果更明显。  相似文献   

6.
高温胁迫对无柄小叶榕光合作用的影响   总被引:1,自引:0,他引:1  
本研究以无柄小叶榕为材料,研究了不同天数高温处理对无柄小叶榕气体交换参数、叶绿素荧光参数和Rubisco活力的影响。结果表明,随着高温处理的持续,净光合速率(Pn)持续下降,而气孔导度(Gs)下降非常缓慢,蒸腾速率(Tr)则先开始快速上升随后保持稳定,但是胞间CO2浓度(Ci)却没有明显变化,说明高温处理引起无柄小叶榕Pn的下降不是由于气孔因素引起的。进一步研究发现,在高温胁迫下,开放PSII反应中心激发能捕获效率(Fv′/Fm′)、光化学猝灭(qP)、PSII实际量子产额(ФPSII)和电子传递速率(ETR)都持续下降。Rubisco初始活力下降速度则快于这些荧光参数的变化。非光化学猝灭(NPQ)则是先迅速上升后来略有下降。这些结果表明高温抑制无柄小叶榕的光合作用,首先是由于高温抑制了Rubisco活力,进而影响PSII活力和电子传递。  相似文献   

7.
8.
以大面积生产应用的Bt棉常规种‘泗抗1号’和杂交种‘泗抗3号’为材料,于扬州大学遗传生理重点实验室人工气候室,以盆栽方式设计高温胁迫试验。2017年设蕾期38℃高温持续胁迫72h终止、2018年设38℃高温持续胁迫96 h终止处理后不同时间(0、12、24、48、72和96 h)研究棉蕾Bt杀虫蛋白表达量变化及相关氮代谢生理。结果表明,盛蕾期38℃持续胁迫72 h、96 h终止后棉蕾Bt杀虫蛋白表达量均能恢复到相应对照水平,并且恢复所需时间随胁迫持续时间的延长而增加。胁迫72 h终止后,常规种泗抗1号经72 h、杂交种泗抗3号经48h蕾的Bt杀虫蛋白表达量与对照已无显著差异;胁迫96 h终止后,泗抗1号经96 h、泗抗3号经72 h,棉蕾Bt杀虫蛋白表达量与对照已无显著差异。相关分析表明,高温胁迫终止后,蕾中可溶性蛋白表达量、谷氨酸丙酮酸转氨酶(GPT)活性、谷氨酸草酞乙酸转氨酶(GOT)活性与Bt杀虫蛋白表达量呈极显著正相关(相关系数分别为0.964**、0.981**、0.971**);而游离氨基酸含量、蛋白酶和肽酶的活性与Bt杀虫蛋白表达量呈极显著负相关(相关系数分别为-0.894**、-0.912**、-0.834**)。因此,生产上可根据高温持续时间预测棉蕾Bt杀虫蛋白表达量的恢复程度,合理防治棉铃虫等相关害虫。  相似文献   

9.
为了明确大豆多肽对香蕉耐高温特性的调控作用,本试验以巴西蕉幼苗为试材,用不同浓度的大豆多肽溶液进行叶面喷施,研究经42 ℃高温处理后其叶片相关生理指标的变化。结果表明,在高温胁迫下,大豆多肽预处理能有效降低巴西蕉幼苗叶片的相对电导率和丙二醛(MDA)含量,提高叶片SOD、POD活性及脯氨酸和可溶性蛋白含量,降低超氧阴离子(O2.-)产生速率,说明大豆多肽可减轻高温胁迫引起的伤害,提高巴西蕉幼苗的抗高温能力。在所设四个浓度中以0.6% 的大豆多肽预处理效果最佳。  相似文献   

10.
植物光敏色素作用因子(phytochrome interacting factors,PIFs)属于碱性-螺旋-环-螺旋(basic helix-loop-helix,bHLH)转录因子家族,通过将光和温度等外部环境信号与植物体内源信号途径相整合,进而形成复杂的信号转导网络来精密调控植物的生长发育进程。目前,关于马铃薯PIF家族基因的研究较少,鉴定和分析StPIF家族成员有助于进一步提高马铃薯的产量和品质。本研究运用生物信息学方法,以拟南芥PIF家族成员蛋白序列作为源序列,通过在马铃薯基因组数据库中进行BlastP分析鉴定出7个StPIFs家族成员,并对其进行系统进化、染色体分布、复制事件、蛋白理化性质、基因结构、Motif预测、启动子顺式作用元件、基因表达模式以及对高温胁迫的响应分析。结果显示,StPIF家族所有成员均含有Motif 1 (bHLH结构域)、Motif 2 (APB结构域)基序;在StPIF基因的启动子区域预测到多个参与光响应、激素、干旱、低温、昼夜节律以及防御和应激反应调控元件;基因表达模式和现蕾期高温胁迫响应分析表明,家族成员具有明显的组织表达特异性,基因存在功能...  相似文献   

11.
We conducted a proteomic comparison between thermo‐sensitive genic male sterility (TGMS) SP2S and its near‐isogenic line SP2F grown at 22°C. The proteomes at microsporocyte meiosis and uninucleate microspore stages were profiled using 2‐dimensional gel electrophoresis. Twenty‐five well‐reproducible spots (10 spots at microsporocyte meiosis stage and 15 spots at uninucleate microspore stage) containing 28 proteins were successfully identified by MALDI‐TOF/TOF mass spectrometry. An elongation factor EF‐2 at microsporocyte stage and 4 proteins (aconitate hydratase, triosephosphate isomerase, serine/arginine‐rich mRNA splicing factor and glutathione S‐transferase) at uninucleate microspore stage accumulated in SP2S, but more proteins were lost or reduced, including those associated with amino acid metabolism, photosynthesis, synthesis and degradation of protein, lipid metabolism, cytoskeleton, RNA modification, oxidoreductase and defence response. The dramatic decrease of tubulin, actin and Translationally controlled tumour protein (TCTP) crucial for microtubule and cell division and three enzymes for amino acid metabolite at early stage indicated a serious defect on the cytokinesis. They were important clues for us to search the TGMS genes and its interacting genes.  相似文献   

12.
With the changing climatic scenario and increasing global mean temperature, heat stress became a major limiting factor for today's agriculture. To identify the underlying mechanism associated with heat tolerance in peanut, two experiments (field and growth chamber) were conducted with four genotypes (ICGS 44, GG 7, AK 159 and DRG 1) having differential high temperature stress sensitivity. Field grown plants under three different temperature (D1, D2 and D3) regimes simulated three temperature treatment effects with a variability of 3–4/4–5°C in mean day/night temperature, respectively. In growth chamber, imposition of heat shock (10°C above ambient inside growth chamber) revealed not only rapid induction (within 0.5 hr) of HSPs, especially small HSPs (HSP 17, HSP 40) in tolerant genotypes, but also its sustenance for longer duration (2 hr), which might help them to have better physiological adaptation strategies under high temperature stress. This was evident from significant advancement in phenophases observed with increase in temperature by 15–18 days at physiological maturity, while pollen viability and membrane stability reduced below 50% and 41%, respectively in DRG 1 with increase in mean day/night temperature. Maintenance of higher photosynthesis and transpiration rate and stomatal conductance helped the tolerant genotype ICGS 44 to keep relatively cooler canopy and higher photosynthates, ensuring better physiological condition in this genotype under heat stress. Significant increase (~2.5‐fold) in inositol and hexoses (glucose and fructose) content and reduction (>50%) in sucrose content in leaf tissues indicated degradation of storage carbohydrates for improved osmotic adjustment especially in tolerant genotypes under elevated temperature.  相似文献   

13.
冬前高温和播期密度对小麦苗期个体及群体生长的影响   总被引:1,自引:1,他引:1  
在山西临汾采用连续递增密度试验小区设计法,开展了播期密度对小麦苗期个体和群体生长的影响研究。结果表明,在冬前气温偏高的年型条件下,播种密度在225~450万粒/hm2范围内,随着播种密度的增加株高增加,单株茎数、单株次生根数、单株绿叶数减少并存在显著性差异,而主茎叶龄则无显著性差异;播种期在9月24日~10月4日范围内,株高、主茎叶龄和单株次生根3个性状均随播种期的推迟株高降低、主茎叶龄和单株次生根减少,单株茎数和绿叶均为9月29日播种的居多;播种期和播种密度对株高、主茎叶龄、单株茎数、单株次生根数和单株绿叶性状的变异系数影响不同。9月24日和9月29日播种的4个播种量冬前群体均分别不足1200万/hm2和超过了1200万/hm2。本试验达到壮苗和合理群体指标的组合为播期10月4日、播种量225万/hm2  相似文献   

14.
Quinoa (Chenopodium quinoa Willd.) has gained considerable attention worldwide during the past decade due to its nutritional and health benefits. However, its susceptibility to high temperatures has been reported as a serious obstacle to its global production. The objective of this study was to evaluate quinoa growth and pollen morphology in response to high temperatures. Pollen morphology and viability, plant growth and seed set, and several physiological parameters were measured at anthesis in two genotypes of quinoa subjected to day/night temperatures of 22/16°C as a control treatment and 40/24°C as the heat stress treatment. Our results showed that heat stress reduced the pollen viability between 30% and 70%. Although no visible morphological differences were observed on the surface of the pollen between the heat‐stressed and non‐heat‐stressed treatments, the pollen wall (intine and extine) thickness increased due to heat stress. High temperature did not affect seed yield, seed size and leaf greenness. On the other hand, high temperature improved the rate of photosynthesis. We found that quinoa has a high plasticity in response to high temperature, though pollen viability and pollen wall structure were affected by high temperatures in anthesis stage. This study is also the first report of quinoa pollen being trinucleate.  相似文献   

15.
High temperature has become a bottleneck limiting rice production in many rice‐growing districts. Silicon is considered as a beneficial element for rice development, being involved in mitigating adversity stress. In order to ascertain how high temperature and silicon affect nitrogen (N), phosphorous (P) and potassium (K) translocation efficiencies and allocation in rice plants, a field experiment with split plot design was conducted in two consecutive years. Silicon fertilizer treatments, including applying silicon fertilizer and without applying silicon fertilizer, were regarded as main plots. Temperature treatments, including high daytime temperature (HDT) and normal temperature (NT), were assigned as subplots. The results indicated that, as compared to NT, HDT reduced the translocation efficiencies of N, P and K in leaves and stems plus sheaths except for the K translocation efficiency in stems plus sheaths. Moreover, HDT decreased grain yield and the allocation rates of N, P and K in panicles at maturity. Under HDT, the application of silicon fertilizer obviously enhanced the N translocation efficiency of leaves and stems plus sheaths, and the K translocation efficiency of leaves. The application of silicon fertilizer increased grain yield and the allocation rates of N and K in panicles at maturity under HDT. Correlation analysis showed that rice grain yield was positively significantly correlated with N, P and K translocation efficiencies of leaves and their allocation rates in panicles at maturity. Conversely, grain yield was negatively related to the N and P allocation rates in leaves and stems plus sheaths at maturity. These results imply that HDT generated adverse effect on the translocation efficiency of nutrition in rice plants, which might be another damage induced by high temperature to the formation of rice grain yield. Additionally, silicon fertilizer could play a key role in positively regulating the N and K translocation efficiencies and allocation rates in rice under HDT.  相似文献   

16.
Atmospheric CO2 enrichment affects C3 crops both directly via increased carbon gain and improved water use efficiency and indirectly via higher temperatures and more frequent climatic extremes. Here we investigated the response of spring wheat (Triticum aestivum L. cv. Triso) to CO2 enrichment (550 vs. 380 µmol/mol) and heat, applied as a constant +4°C increase or a typical heat wave either before or after anthesis, or as two typical heat waves before and after anthesis. We applied a climate chamber approach closely mimicking ambient conditions. CO2 enrichment increased above‐ground biomass and yield by c. 7 and 10%, but was not able to compensate for adverse heat stress effects, neither before nor after anthesis, with few exceptions only. Yield depression due to heat stress was most severe when two heat waves were applied (?19%). This adverse effect was, however, compensated by CO2 enrichment. Applying heat stress before or after anthesis did not exert different effects on yield for both +4°C warming and heat wave application. However, +4°C depressed yield more than a heat wave at ambient CO2, but not so at elevated CO2. Thus, the interactive effects were complex and prediction of future wheat yield under CO2 enrichment and climate extremes deserves more attention.  相似文献   

17.
探究大气CO_2浓度倍增条件下冬小麦气体交换参数对高温干旱及复水过程的生理响应机制,有助于提高生态过程模型的模拟精度,更加准确地预测全球气候变化对农田生态系统初级生产力及其生态服务功能的影响。利用4个可精准控制CO_2浓度和温度的大型人工气候室,研究了CO_2浓度倍增条件下高温干旱及复水过程对冬小麦气孔特征和气体交换参数的影响。结果表明, CO_2浓度倍增(E)导致冬小麦远轴面气孔密度增加、气孔宽度减小、气孔空间分布规则程度降低,但提高叶片的净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)和水分利用效率(WUE)。高温干旱(HD)使叶片气孔长度、密度、周长和面积减小,导致叶片气体交换参数均显著下降。然而,高CO_2浓度及高温干旱(EHD)导致气体交换参数下降幅度相对较小,表明高CO_2浓度对高温干旱具有一定的缓解作用。此外,干旱复水后,不同处理条件下冬小麦叶片气体交换参数均有所升高,但高温干旱下叶片的气体交换参数仍未能恢复到对照水平,暗示光合器官可能在高温干旱时遭到损伤和破坏。  相似文献   

18.
In pot experiments under controlled conditions we investigated the effects of water stress on oilseed rape. Yield and yield components were mainly affected by water shortage occurring from flowering to the end of seed set. The greatest reduction (48%) was observed when only 37% of full water requirement was supplied to the plant during this stage. The number of seeds per plant was the main yield component affected. Some compensation occurred when the water supply was restored. The 1000-seed weight was only affected by a water stress from the stage when the pods were swollen until the seeds colored stage. The results demonstrated a marked reduction in oil concentration when water deficit occurred from anthesis to maturity. There was an inverse relationship between oil and protein concentration. The most marked effect observed in this experiment was on the glucosinolate concentration where increases of up to 60% were observed. These results may explain effects on seed quality of field grown oilseed rape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号