首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价   总被引:1,自引:0,他引:1  
探讨不同水分条件下拔节期低温对小麦生理代谢的影响,构建综合生理指数精确评价冻害程度,对农业减损增效和宏观管理具有重要意义。以弱春性的偃展4110和兰考198以及半冬性的郑麦366和丰德存21为材料,在低温处理前1周进行灌水和不灌水处理,于雌雄蕊分化期将盆栽小麦移至低温模拟室进行低温处理,分别为正常(CK)、–2℃(T1)、–4℃(T2)、–6℃(T3)、–8℃(T4)和–10℃(T5)。在处理结束后第2天测定小麦生理指标和荧光参数,在成熟期收获小麦产量。结果表明,不同品种、水分和低温胁迫及其互作对小麦拔节期生理指标及荧光参数均具有显著影响。随着低温胁迫加重,叶片含水量、叶绿素a含量及荧光参数qp、Fv/Fm和Fv/Fo呈持续下降趋势,而可溶性蛋白、脯氨酸和可溶性糖含量及SOD活性表现先升后降特征,但MDA含量则相反。灌水处理在一定程度上缓解了低温胁迫对植株生理代谢的影响,低温对半冬性品种的影响相对较小。利用主成分分析将测定参数转化成4个独立的综合指标,且反映了88.55%的原始信息,并构建出冻害生理综合指数(FIPCI)。聚类分析热图显示的颜色越深,生理指标响应程度越大。依据生理指标聚...  相似文献   

2.
Y.P. Fedoulov 《Euphytica》1998,100(1-3):101-108
Morphophysiological and physicochemical parameters of sets of winter wheat genotypes were measured. High correlations were found between survival percentage of the winter wheat check variety under freezing and electroconductivity tests, stem electrical resistance after electric shock, and intensity of delayed leaf fluorescence at low temperatures. These correlations decreased when the number of varieties was increased to 35-100. Complex attribute of frost resistance was divided into large components using factor analysis. Biological interpretation was achieved for the first six components. Quantitative values for each component of frost resistance in the various genotypes were determined. The determination coefficient of multiple regression equations, where function was a level of frost resistance and arguments were the component's value for each genotype, varied from 0.80-0.94 over 10 years. It was proposed that the received equations might serve as a model for frost resistance and indicate which component of frost resistance determines the survival of plants in particular ecological conditions. The component structure concept of frost resistance is suggested and possible applications of this concept are discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
In a previous study (Dörffling et al., J. Plant Physiol. 142, 222–225, 1993) in vitro-selection and regeneration of hydroxyproline (Hyp)-resistant lines of winter wheat (Triticum aestivum cv. Jo 3063) with increased frost tolerance and increased proline contents was reported. In this study the heritability of these traits was investigated. The F 1progenies derived from the pollination of regenerated plants with pollen from wild type plants developed higher mean frost tolerance (lower LT 50values) and higher proline levels compared with in vitro-controls and wild type plants. In the F 2generation, which was obtained by self-pollination, segregation of the Hyp-lines in a 3:1 phenotypic ratio with regard to the traits frost tolerance and proline content was observed. Subsequent selection of extremes in the F 2yielded homozygous plants in the F 3generation. Lower LT 50values and increased proline contents in those F 3plants were significantly correlated. Furthermore, improved frost tolerance of one of the selected mutants was also observed in studies with whole plants in the F 4generation. These results, which are similar to results of parallel studies on winter barley, provide strong evidence for the heritability of the traits 'increased frost tolerance' and 'increased proline content' obtained by this in vitro-selection procedure. The mutation seems to be due to a single incompletely dominant gene. A comparison of frost tolerance values from F 3Hyp-progenies with those of seven standard varieties differing in frost tolerance indicates a considerable improvement of frost tolerance by the described in vitro-selection method.  相似文献   

4.
J.U. Chun  X.M. Yu  M. Griffith 《Euphytica》1998,102(2):219-226
Antifreeze proteins (AFPs) accumulate in the leaves of winter cereals during cold acclimation, where they may inhibit ice recrystallization during freezing and thawing cycles and provide nonspecific disease resistance. In this study, 21 wheat chromosome substitution lines and the parental lines Chinese Spring and Cheyenne wheat were used to determine the heritability of AFPs and the relationship between the accumulation of AFPs and winter survival. In cold-acclimated lines, antifreeze activity in leaf apoplastic extracts ranged from 1 (low) to 5 (high) with an average value of 3.2, and the accumulation of apoplastic proteins ranged from 30 μg (g FW)-1 to 115 μg (g FW)-1 with a mean value of 70 μ (g FW)-1. Examination of the individual lines revealed that Cheyenne chromosomes 5B and 5D carry major regulatory genes that increase both antifreeze activity and the accumulation of antifreeze proteins in plants grown at low temperature. Substitution lines carrying Cheyenne chromosomes 2A, 3A, 6B, and 7A exhibited lower freezing tolerance and also showed a marked decrease in the accumulation of specific AFPs during cold acclimation. Antifreeze activity and apoplastic protein content were not correlated with freezing tolerance (defined as % survival at -11 °C), but they were both significantly and positively correlated with winter field survival rates. Antifreeze activity (positively correlated) and total leaf fresh weight (negatively correlated) together accounted for about 55% of the variation in winter survival, indicating that high antifreeze activity and slow vegetative growth at low temperature are both important quantitative traits for winter survival. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Sharma  H. C.  Gill  B. S. 《Euphytica》1982,31(3):629-634
Summary Embryo age and composition of nutrient medium affected plant growth and response to vernalization in winter wheat (Triticum aestivum L.). Root and shoot development was more in older than in younger excised embryos, and more in a medium without kinetin than in one with kinetin. Kinetin (2 mg/l) in the medium did not accelerate vernalization, probably because it tended to inhibit seedling and plant growth.Embryo age and media did not completely replace vernalization. Twenty- and 16-day-old embryos responded by flowering after 4 weeks of vernalization. Among plants raised on a standard medium from 20-day-old embryos and vernalized for 4 weeks, 84.2% flowered by or before 50 days after transplanting. Time from embryo culture to heading for 20-day-old embryos with-4-week vernalization averaged 84.6 days. Immature embryos (16–20 days old) needed only 4 weeks of vernalization compared to 6 weeks for mature embryos. Excised embryos could be vernalized as efficiently as seedlings raised by embryo culture. Embryo culture at 16–20 days after anthesis coupled with 4-week cold treatment shortens generation time of winter wheat by about 40 days.Contribution No. 82-131-j, Department of Plant Pathology, Kansas Agricultural Experiment Station, Manhattan, KS 66506, USA.  相似文献   

6.
Embryogenic calli derived from anther cultures of the two-rowed winter barley cultivar Igri were plated on solid L3 medium containing the proline analogue hydroxyproline (Hyp), 10–20 mmol l–1. Exposure to Hyp caused severe degeneration of most of the calli. Hyp resistant calli, distinguishable by their lighter colour and higher growth rate, and control calli not exposed to Hyp were plated on L3 regeneration medium. From 22,500 anthers exposed to Hyp 46 Hyp resistant regenerates were obtained, which were transferred to soil. After cultivation for 5–10 weeks at normal growth conditions they were cold hardened at 2 C under short day conditions together with control regenerates. Frost tolerance assays with segments of fully grown leaves of unhardened and cold hardened plants revealed that Hyp resistant regenerants were significantly more frost tolerant than the control regenerants. Improved frost tolerance was found also in the progenies R1 to R9, and genotypic segregation in the R1 generation in a 1:2:1 ratio was indicated. Increased proline content was observed in the R2 generation and in subsequent generations and was significantly (P 0.001) correlated with increased frost tolerance in the Hyp lines. Comparative studies of R9 progenies from homozygous R2 plants with the wild type Igri under field conditions in winter at three locations in Europe as well as crossing experiments confirmed the heritable improvement of frost tolerance and winter survival, respectively, in the Hyp lines. The results support the hypothesis that proline accumulation in cold acclimated winter barley plants is causally related to the acquisition of frost tolerance. Moreover, the described biotechnological procedure may be applicable in breeding programs for improved winter hardiness and possibly also for other stress tolerances.  相似文献   

7.
8.
冬小麦抗旱性与膜脂过氧化的关系及其氮素调控机理   总被引:1,自引:1,他引:1  
苟升学 《中国农学通报》2009,25(20):149-153
在大田试验条件下,测定了两个不同抗旱性小麦品种郑麦9023(水地品种,抗旱性差)和长武134(旱地品种,抗旱性强)在不同施氮量条件下拔节期叶片MDA、H2O2含量以及SOD、CAT活性的变化。结果表明,抗旱性和小麦叶片的保护酶活性和膜质伤害物质的含量密切相关,而且受氮素营养的调控。抗旱品种相对不抗旱品种具有较高的SOD和CAT活性,而MDA和H2O2较低;MDA和H2O2含量随施氮量的增加呈现先降后升的趋势,而SOD和CAT则呈相反的变化趋势。  相似文献   

9.
近60年河北省冬小麦干旱风险时空规律   总被引:2,自引:0,他引:2  
张力  陈阜  雷永登 《作物学报》2019,45(9):1407-1415
干旱是造成作物减产的主要自然灾害,开展作物干旱成因机制和时空特征研究,对于稳定区域粮食生产有重要意义。本研究基于河北省内18个国家标准气象站点1958—2016年的长时间序列观测资料,采用水分亏缺指数(CWDI)作为干旱评价指标,分析了近60年来河北省冬小麦的干旱风险时空格局;通过CWDI对不同气象因子的敏感性分析,进一步探究了冬小麦干旱的成因机制。研究表明,冬小麦生育期需水量和干旱风险呈先增后减再增加的特征,在拔节–抽穗阶段的干旱风险最高,其次是抽穗-成熟阶段。冬小麦全生育期间干旱等级以重旱和特旱为主,特别在其产量形成的关键生长中后期,河北省东南部黑龙港地区面临较高的旱灾风险。冬小麦干旱受降水、气温、湿度等多种因素的影响,其中影响最大的是降水;气温是影响冬小麦生育后期干旱程度的关键因子,伴随近几十年气候变化冬小麦生长期内温度明显升高,将增加冬小麦生长期的耗水量和灌溉需求。本研究揭示了气候变化影响下河北省冬小麦干旱风险的时空演变规律,识别出了干旱灾害的高风险区和关键生育期阶段,可为优化冬小麦灌溉管理和农田防灾减灾提供参考依据。  相似文献   

10.
A recombinant inbred line (RIL) population derived from the cross Arina/Forno was field tested for 2 years against Puccinia graminis f. sp. tritici under artificially created epidemic conditions. Both parents showed intermediate adult plant stem rust responses and the RIL population showed continuous variation for this trait. Composite interval mapping identified genomic regions controlling low stem rust response on chromosomes 5B and 7D consistently across all experiments. These genomic regions were named QSr.Sun-5BL and QSr.Sun-7DS and explained on an average 12% and 26% of the phenotypic variation in adult plant stem rust response, respectively. QSr.Sun-5BL mapped close to Xglk0354 and was contributed by Arina. The Lr34-linked markers csLV34 and swm10 were closely associated with QSr.Sun-7DS suggesting the involvement of Lr34 in controlling adult plant stem rust response of cultivar Forno. Additional minor and inconsistent QTLs explaining variation in adult plant stem rust response were identified on chromosome arms 1AS and 7BL. The QTL located on chromosome 7BL corresponded to the stem rust resistance gene Sr17 carried by cultivar Forno. A seedling stem rust resistance gene carried by Arina, SrAn1, was ineffective under field conditions and was mapped on the long arm of chromosome 2A. Genotypes carrying combinations of QSr.Sun-5BL and QSr.Sun-7DS based on positive alleles of the respective closest marker loci Xglk0354 and XcsLV34 or Xswm10 exhibited a lower response than either parent indicating an additive effect of these genes. Transfer of these genes into cultivars carrying Sr2 would provide a more effective and durable resistance against the stem rust pathogen. Markers csLV34 and/or swm10 could be used in marker assisted selection of QSr.Sun-7DS in breeding programs.  相似文献   

11.
In previous studies in vitro-selection of proline overaccumulating lines of winter wheat (Triticum sativum L. cv. Jo 3063) with increased frost tolerance was reported. These traits were found to be genetically stable. In the present study the improvement of frost tolerance (winter hardiness) under field conditions is confirmed for F7 progenies of the mutants. Moreover, the mutants accumulated higher levels of glucose and fructose, soluble protein and abscisic acid (ABA) in addition to proline than the wild type under cold hardening conditions in a growth chamber as well as under cold hardening field conditions. ABA and proline levels peaked when the temperature decreased, whereas carbohydrate levels increased more slowly at decreasing temperature. Soluble protein levels also increased during cold hardening, but in addition showed sharp declines during frost periods. Increased carbohydrate levels of the mutants were associated with lower osmotic potential values. The differences in carbohydrate, protein and ABA levels between the mutants and the wild type are probably due to pleiotropic effects of the mutation.  相似文献   

12.
M. Özgen    M. Türet    S. Özcan  C. Sancak 《Plant Breeding》1996,115(6):455-458
Seven genotypes of winter durum wheat (Triticum durum Desf.) were cultured to establish an efficient method of callus formation and plant regeneration from mature embryo culture, and to compare the responses of immature and mature embryo cultures. Immature embryos were aseptically dissected from seeds and placed, with the scutellum upwards, in dishes containing Murashige and Skoog's (MS) mineral salts and 2mg 2,4- dichlorophenoxyacetic acid (2,4-D) per litre. Calli and regenerated plants were maintained on 2,4-D-free medium. Mature embryos were moved slightly on the imbibed seeds. For callus formation, the seeds with moved embryos were placed, furrow downwards, in dishes containing 8 mg 2,4-D per litre. The developed calli and regenerated plants were maintained on the MS medium. Plants regenerated from both embryo cultures were vernalized and grown to maturity in soil. Variability was observed among the wheat genotypes tested for various culture responses in both explant cultures. Callus induction rate and regeneration capacity of callus were independent of each other. Mature embryos have a low frequency of callus induction but a high regeneration capacity. Considering availability, rapidity and reliability, this form of mature embryo culture can be used as an alternative method for immature embryo culture.  相似文献   

13.
D. Singh    R. F. Park  R. A. Mcintosh   《Plant Breeding》2001,120(6):503-507
Genetic studies were conducted to gain an understanding of the inheritance of adult plant resistance (APR) to leaf rust in six common wheat varieties. The Australian varieties ‘Cranbrook’ and ‘Harrier’ each carry two genes for APR to leaf rust. These genes are genetically independent of the seedling resistance genes Lr23 and Lrl7b, carried by the respective varieties. Adult plant resistance in ‘Suneca’ was conferred by at least two genes, in addition to the seedling genes Lr1 and Lrli. It is likely that the APRs in ‘Cranbrook’, ‘Harrier’ and ‘Suneca’ are conferred by uncharacterized gene(s). Tests of allelism confirmed that seedling resistances in the varieties ‘Avocet R’, ‘Hereward’, ‘Moulin’ and ‘Pastiche’ are conferred by Lrli. Adult plant resistance in the variety ‘Hereward’ was inherited monogenically, whereas varieties ‘Moulin’ and ‘Pastiche’ each carried two dominant genes. On the basis of rust specificity and pedigree analysis, it would seem likely that the APR genes in ‘Hereward’, ‘Moulin’ and ‘Pastiche’ are also currently uncharacterized.  相似文献   

14.
Using a pair of near-isogenic lines(NILs) of winter wheat (Triticumaestivum L.) contrasting for the Ppd-D1 and ppd-D1 alleles, in eachof Mercia and Cappelle-Desprez, experimentsin two seasons (1997/8 and 1998/9) on aloamy medium sand examined differences inflowering date, resource capture, biomassproduction and grain yield responses toirrigation. Drought did not occur for anysustained period in unirrigated conditionsin 1998 due to high seasonal rainfall. In1999, drought developed post-floweringunder unirrigated conditions. Ppd-D1on average advanced flowering by 12 days inMercia and 9 days in Cappelle-Desprez.Earlier flowering with Ppd-D1 was dueto a shorter thermal duration from cropemergence to GS31, with no effect on thethermal duration from GS31 to GS61. In bothgenetic backgrounds, Ppd-D1 decreasedabove-ground dry matter (AGDM) at harvestin irrigated conditions by 0.3–0.9 tha-1 (p< 0.05), but thiswas compensated for by increases inharvest index (HI), so that grain yield wasconserved. Although Ppd-D1 decreasedmaximum green area index (GAI) by 0.8–1.9this was countered by greater maintenanceof green area after flowering, so thatradiation interception during grain fillingwas conserved. The Ppd-D1 alleledecreased season-long crop water uptake inthe Mercia NILs in irrigated conditions by39 mm. Effects of drought in 1999,averaging across NILs, were todecrease machine-harvested grain yield by 0.6 t ha-1 in Mercia and by 1.8 tha-1 in Cappelle-Desprez (p<0.05). The Ppd-D1 and ppd-D1NILs, though, responded similarly todrought in both genetic backgrounds. Earlyflowering with Ppd-D1 decreasedpre-flowering water uptake underunirrigated conditions by ca. 25 mm,but increased post-flowering uptake by only10 mm, compared to ppd-D1. This was aresult of smaller season-long water uptakefor Ppd-D1 compared to ppd-D1.Ppd-D1 decreased stem solublecarbohydrate measured shortly afterflowering under drought by ca. 0.3 tha-1. Effects of Ppd-D1 onother drought-resistance traits, such aswater-use efficiency (WUE; AGDM per unitcrop evapotranspiration) and maximumrooting depth, appeared to be neutral. Itis concluded that the effects of the Ppd-D1 allele appeared to be largelyneutral on yield potential and late-seasondrought resistance in the UK's temperateenvironment in these genetic backgrounds.However, there were indications that Ppd-D1 may offer scope for breeding winterwheat cultivars with more efficientproduction of grain DM per unit seasonalcrop evapotranspiration, associated withimproved HI, compared to currentlycommercial UK genotypes.  相似文献   

15.
16.
采用节水栽培并减少氮肥用量是实现豫北冬小麦生产的高产、高效和环境友好发展的必然选择,探明限水减氮对冬小麦产量和植株各层次器官干物质运转的影响,可为该地区冬小麦节水栽培和合理施用氮肥提供科学依据。2009—2010和2010—2011年连续2年在河南浚县钜桥进行小麦田间裂区试验,主区设置2个灌溉水平[拔节水(W1)和拔节水+开花水(W2)],副区设置5个氮肥水平[330 kg hm~(–2) (N4,豫北地区小麦生产中常规施氮量)、270 kg hm~(–2) (N3)、210 kg hm~(–2) (N2)、120 kg hm~(–2) (N1)、0 kg hm~(–2) (N0)],测定了籽粒产量和植株各层次器官干物质运转量、运转率和对籽粒贡献率。减量施氮与N4相比,各营养器官向籽粒运转的干物质量均有增加,其中,穗轴+颖壳的干物质运转量增加了323.2%,增幅远高于茎节的24.5%和叶片的4.6%,且穗轴+颖壳的干物质运转率和对籽粒贡献率增幅也远高于茎节和叶片。减量施氮处理的叶片干物质运转量的增加主要源于倒三叶和倒四叶,分别增加28.7%和201.1%,而茎节干物质运转量的增加主要源于除穗位节外的其他茎节,分别增加21.7%(倒二节)、71.8%(倒三节)、44.5%(倒四节)和31.1%(余节)。与W2相比, W1干物质运转量无显著差异,但干物质运转率略高(24.6%vs. 23.8%),对籽粒贡献率较高(35.1%vs. 30.0%),籽粒产量降低11.2%,水分供应量减少750 m3 hm~(–2)。可见,减量施氮促进了营养器官,尤其是穗轴+颖壳和下层器官(倒三叶、倒四叶、倒三节、倒四节和余节)的干物质向籽粒的运转,提高了对籽粒贡献率,有利于提高籽粒产量。  相似文献   

17.
Latest published information is limited on agronomic responses of winter wheat to irrigation quantity and the necessity of irrigation at the anthesis stage. This study was conducted to (1) evaluate winter wheat yield, water use, assimilate redistribution and economic benefit with respect to water input and (2) quantify relationship between water input and yield to develop a standard for withholding irrigation at anthesis. A 4-year long field experiment was conducted to evaluate winter wheat water use, yield formation pathway and farmers' income under three irrigation regimes: rainfed, irrigation at sowing and jointing (SJ-W) and irrigation at sowing, jointing and anthesis (SJA-W). The yield formation pathway was correlated with the water-induced variation in assimilate redistribution and accumulation. Throughout the experimental period, wheat yield was 19–38% lower in rainfed than that under other irrigation treatments. Moreover, SJ-W treatment substantially increased biomass accumulation at anthesis, accelerated assimilate redistribution in vegetative organs and eventually resulted in a similar wheat yield to that of SJA-W. Simultaneously, the SJ-W treatment had lower irrigation water, reduced additional irrigation cost, suppressed yield loss and obtained a similar farmer's net income to the SJA-W treatment. Water-induced variations in yield were determined by irrigation, rainfall and soil water storage. SJ-W plots receiving 204–331 mm water input (rainfall + irrigation) before anthesis and holding 549–587 mm soil water during anthesis stage achieved higher irrigation water use efficiency and yield relative to the rainfed and SJA-W plots. In contrast, water input under rainfed plots exceeded 200 mm before anthesis, limiting yield substantially even when seasonal soil water consumption exceeded 160 mm. Developing a standard for withholding irrigation at the anthesis stage should incorporate 204–331 mm of water input (rainfall + irrigation) before anthesis and 549–587 mm soil water storage at anthesis, which could achieve a high wheat yield and save water resources.  相似文献   

18.
Summary Winter wheat cultivars released in the Netherlands before 1930 carried durable resistance to yellow rust. Cultivars released in the period between 1930 and 1950 often were durably resistant while recent cultivars infrequently showed durable resistance. This durable resistance was not difficult to transfer to new cultivars. Twenty nine older cultivars with durable resistance and eight recent non-durably resistant cultivars were tested in the seedling stage and in the adult plant stage against 12 West-European yellow rust races and against some non-European races in the seedling stage only. The adult plant tests were carried out in race nursery tests in the Flevopolder. Per race nursery all 37 cultivars, planted in hills of about 20 plants on both sides of the highly susceptible cv. Michigan Amber, were exposed to one race.The infection type of each cultivar-race combination was scored on 0 to 9 scale once in the seedling stage and twice in the adult plant stage. In the race nurseries the percentage leaf area affected was evaluated three times to be used to calculate the area under the disease progress curve (AUDPC). This AUDPC multiplied with the mean infection type in the field gave the susceptibility index (SI).The infection types were classified into resistant (R), intermediate (I) or susceptible (S) when the infection types were 0 to 3, 4 to 6 or 7 to 9, respectively. Four categories of resistance were discerned on the basis of the three infection type scores: 1) RRR, overall resistance; complete or near-complete resistant at all stages. 2) SRR, adult plant resistance, complete- or near-complete resistant at the adult plant stage only. 3) SRS and SSR, temperature sensitive resistance, the resistance changed from the one evaluation data to the other. 4) SSS and an SI lower than that of Michigan Amber, partial resistance.The frequencies of overall, adult plant and temperature sensitive resistance were 1.4, 52 and 54% in the older cultivars and 40, 62 and 22% in the recent ones, respectively. Among the older cultivars all had a fair to high level of partial resistance, the SI being on average only 20% of that of Michigan Amber, while most cultivars also seemed to carry temperature sensitive resistance. The partial resistance of the recent cultivars was of a much lower level with a mean SI compared to that of Michigan Amber of 61%. Partial resistance was highly correlated (r = –0.94) with the mean resistance scores from the Dutch Recommended Cultivars Lists. It was concluded that partial resistance and temperature sensitive resistance were the major components of the durable resistance in the older cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号