共查询到20条相似文献,搜索用时 15 毫秒
1.
《Strength and Conditioning Journal》2008,61(2):204-210
This 9-yr study tested steer gains, residual aboveground biomass (AGB) in mid-July and early October, and economic returns and risk for tallgrass prairie grazed annually under season-long stocking (SLS) at 1.62 ha · steer−1 until early October or intensive early stocking (IES) at 0.81 ha · steer−1 until mid-July compared to a composite grazing system. The three-pasture, three-herd “IES+ System” is a 3-yr fixed sequence of SLS, IES, and IES (0.81 ha · steer−1) plus late-season grazing (LSG; 1.62 ha · steer−1) until early October (IES/LSG). All grazing treatments began in late April. Average gains per steer for SLS and SLS in the IES+ System did not differ, but were significantly less than gains for steers that grazed the entire season under IES/LSG. Gains per steer in mid-July under IES alone or in combination with LSG were similar to the same repeated grazing treatments, but were significantly less than those for steers grazed season-long. Gains per hectare under SLS did not differ, but were significantly less than those for IES treatments and the IES+ System. Gain per hectare in July was similar for IES repeated annually and IES/LSG, but there was greater gain per hectare for IES-treated pastures rotated within the system. Residual grass and total aboveground biomass (AGB) in mid-July did not vary among years and was generally greater on SLS than IES. In early October, grass AGB was similar for all treatments except IES/LSG, which had less residual AGB. When pasture rent was charged per head, the IES+ System increased the 20-yr mean return per hectare by $5.98 compared to repeated use of IES, and $8.52 compared to using only SLS. Measures of economic risk were generally intermediate for the IES+ system compared to IES, which consistently had the highest risk, and SLS. 相似文献
2.
《Strength and Conditioning Journal》2007,60(2):186-190
We studied short-term (1–3 years) responses of plant species and functional group abundances, richness, evenness, diversity, and similarity following cessation of 25 years (1972–1997) of herbicide application in a remnant of Blackland Tallgrass Prairie in central Texas. Substantial increases in plant cover from 1998 to 2000 were observed for annual forbs (359%–900%), primarily attributable to firewheel (Gaillardia pulchella Foug), but C4 perennial grass cover only marginally increased (22%–23%). These disproportionate increases elicited a directional compositional change in the plant community with dominance shifting from C4 perennial grasses to annual forbs. Species richness, evenness, and diversity decreased from 1998 to 2000 for May, but increased for June, sampling date. Conservation efforts pertaining to remnants of Blackland Tallgrass Prairie need to be cognizant that dramatic short-term effects on vegetation dynamics will occur following cessation of annual herbicide applications, and that enhancement of perennial forbs may require seeding or transplanting species. 相似文献
3.
《Strength and Conditioning Journal》2008,61(5):509-520
Knowledge of how tallgrass prairie vegetation responds to fire in the late growing season is relatively sparse and is based upon studies that are either spatially or temporally limited. To gain a more robust perspective of vegetation response to summer burning and to determine if repeated summer fire can drive vegetational changes in native tallgrass prairie, we evaluated species cover and richness over a 14-yr period on different topographic positions from ungrazed watersheds that were burned biennially in the growing season. We found that annual forbs were the primary beneficiaries of summer burning, but their fluctuations varied inconsistently among years. Concomitantly, species richness and diversity increased significantly with summer burning but remained stable through time with annual spring burning. After 14 yr, species richness was 28% higher in prairie that was burned in the summer than in prairie burned in the spring. Canopy cover of big bluestem (Andropogon gerardii Vitman) and Indiangrass (Sorghastrum nutans [L.] Nash) increased significantly over time with both summer and spring burning, whereas heath aster (Symphyotrichum ericoides [L.] Nesom), aromatic aster (Symphyotrichum oblongifolium [Nutt.] Nesom), and sedges (Carex spp.) increased in response to only summer burning. Kentucky bluegrass (Poa pratensis L.) cover declined in both spring-burned and summer-burned watersheds. Repeated burning in either spring or summer did not reduce the cover or frequency of any woody species. Most perennial species were neutral in their reaction to summer fire, but a few species responded with large and inconsistent temporal fluctuations that overwhelmed any clear patterns of change. Although summer burning did not preferentially encourage spring-flowering forbs or suppress dominance of the warm-season grasses, it is a potentially useful tool to increase community heterogeneity in ungrazed prairie. 相似文献
4.
Prescribed burning of aboveground biomass in tallgrass prairie is common and may influence dynamics and magnitudes of carbon (C) movement between the surface and atmosphere. Carbon dioxide (CO2) fluxes were measured for 2 yr using conditional sampling systems on two adjacent watersheds in an ungrazed tallgrass prairie near Manhattan, Kansas. One watershed was burned annually (BA) and the other biennially (BB). Leaf and soil CO2 fluxes were measured in the source area. Net ecosystem exchange (NEE) of CO2 reached a maximum daily gain of 26.4 g CO2·m?2·d?1 (flux toward surface is positive) in July 1998 (year when both sites were burned and precipitation was above normal); gains were similar between sites in 1998. The maximum daily NEE loss of CO2 was ?21.8 g CO2·m?2·d?1 from BA in September 1997 (year when only BA was burned and precipitation was below normal). When data were integrated over the two years, both sites were net sources of atmospheric CO2; NEE was ?389 g C·m?2·2 yr?1 on BA and ?195 g C·m?2·2 yr?1 on BB. Burning increased canopy size and photosynthesis, but the greater photosynthesis was offset by corresponding increases in respiration (from canopy and soil). Carbon losses from fire represented 6–10% of annual CO2 emissions (bulk came from soil and canopy respiration). Data suggest that annual burning promotes C loss compared to less-frequently burned tallgrass prairie where prairie is not grazed by ungulates. Greater precipitation in 1998 caused large increases in biomass and a more positive growing season NEE, indicating that C sequestration appears more likely when precipitation is high. Because C inputs (photosynthesis) and losses (canopy and soil respiration) were large, small measurement or modeling errors could confound attempts to determine if the ecosystems are long-term CO2 sources or sinks. 相似文献
5.
Fuel loading information is important for prescribed fire planning, evaluating wildfire risk, and understanding fire effects in grassland. Yet fuel loads in grasslands often go unmeasured because of the time required to clip plots and process samples, as well as limited access or proximity to a drying oven. We tested the digital photography biomass estimation technique for measuring fuel load in grasslands in two national parks in the eastern Great Plains. The method consists of using percentage image obstruction, as determined by digital photography, to estimate vegetation biomass based on a linear transformation (i.e., regressing dry clipped weights against percent digital obstruction). We used the technique with some modification and measured digital obstruction at two sites at Wilson’s Creek National Battlefield, Missouri (WICR), and three sites at Tallgrass Prairie National Preserve, Kansas (TAPR). The method did not result in strong correlations at either of the two sites at WICR (Site 1: r2=0.02; Site 2: r2=0.32), but performed relatively well at TAPR (Site 1 [<1 yr since burn]: r2=0.82; Site 2 [2 yr since burn]: r2=0.57; Site 3 [1 yr since burn]: r2=0.88). Linear regressions for the three sites at TAPR did not differ in slope (P>0.05). In general, the denser the vegetation, the weaker the relationship between the vegetation biomass of clip plots and the percentage image obstruction of digital images. The digital photography technique may not be useful for estimating fuel loads in grasslands with relatively high biomass (>80 g · 0.1 m?2) or digital image obstruction >50%. Large amounts of litter may also potentially reduce the accuracy of the technique. 相似文献
6.
Sonisa Sharma Tyson E. Ochsner Dirac Twidwell J.D. Carlson Erik S. Krueger David M. Engle Samuel D. Fuhlendorf 《Strength and Conditioning Journal》2018,71(3):356-362
Accurate estimation of standing crop and herbaceous fuel moisture content (FMC) are important for grazing management and wildfire preparedness. Destructive sampling techniques have been used to accurately estimate standing crop and FMC, but those techniques are laborious and time consuming. Existing nondestructive methods for estimating standing crop in tallgrass prairie have limitations, and few studies have examined nondestructive estimation techniques for FMC in this environment. Therefore, our objective was to develop robust models for nondestructive estimation of standing crop and FMC in tallgrass prairie. We calibrated and validated stepwise multiple linear regression (SMLR) and artificial neural network (ANN) models for standing crop and FMC using data collected in tallgrass prairies near Stillwater, Oklahoma. Day of year (DOY), canopy height (CH), Normalized Difference Vegetation Index (NDVI), and percent reflectance in five wavelength bands were candidate input variables for the models. The study spanned two growing seasons and nine patches located within three pastures under patch burn management, and the resulting data set with > 3 000 observations was split randomly with 85% for model calibration and 15% withheld for validation. Standing crop ranged from 0 to 852 g m? 2, and FMC ranged from 0% to 204%. With DOY, CH, and NDVI as predictors, the SMLR model for standing crop produced a root mean squared error (RMSE) of 119 g m? 2 on the validation data, while the RMSE of the corresponding ANN model was 116 g m? 2. With the same predictors, the SMLR model for FMC produced an RMSE of 26.7% compared with 23.8% for the corresponding ANN model. Thus, the ANN models provided better prediction accuracy but at the cost of added computational complexity. Given the large variability in the underlying datasets, the models developed here may prove useful for nondestructive estimation of standing crop and FMC in other similar grassland environments. 相似文献
7.
《Strength and Conditioning Journal》2007,60(5):548-552
Landscapes with structural heterogeneity or patchiness can support diverse and stable wildlife populations. Visual obstruction methods (i.e., Robel pole and Nudd's coverboard) are common and useful techniques for quantifying vegetation structure; however, both rely on ocular estimations, which can be highly variable between observers. Our objectives were to 1) compare measurement and observer variation for visual obstruction among the two standard methods and the digital image method we developed using a digital camera; and 2) compare the performance of the Robel pole and digital image to estimate standing crop. The mean variation across the five observers using the digital image method (6.8%) was significantly lower (P < 0.05) than both the Nudds' coverboard (32.1%) and the Robel pole (52.2). There were no significant differences among locations for the digital image method; however, there were for both the Robel pole and Nudds' cover board (P < 0.05). The digital image method provided a better estimate of standing crop (r2 = 0.89) compared to the Robel pole (r2 = 0.68), accounting for 21% more of the observed variation in biomass. Long-term research programs that utilize seasonal field technicians to quantify habitat structure with a visual obstruction method could benefit from implementing use of the digital image method we developed. The low measurement error observed with this technique relative to the more traditional methods compared in this study might limit year-to-year and within-year variability of habitat structure data collected by numerous technicians with a high annual turnover. 相似文献
8.
9.
《Strength and Conditioning Journal》2020,73(1):104-118
Tallgrass prairie may respond differently to prescribed burning and subsequent preferential grazing, termed pyric herbivory, under variable climate conditions. This 6-yr study (2011−2016) compared tallgrass prairie pastures that were subjected to burned and unburned conditions while exposed to grazing under differing climate conditions in the Southern Great Plains of the United States. The study area consisted of six pastures, three burned and three unburned. Each burned pasture was further divided into three patches and subjected to a 3-yr rotational burning cycle. The Enhanced Vegetation Index (EVI) derived from Landsat 7/8 (EVILS) and Moderate Resolution Imaging Spectroradiometer (MODIS, EVIMOD) was used to indicate vegetation production depending on size of pastures. On the basis of EVILS, most burned patches (11 of 18) had lesser production (overall difference of 3%) than unburned patches within the same pasture. The differences were larger (13%) in a drought yr (2011) compared with normal (3% in 2013) and wet (<1% in 2015) yrs. The distribution of precipitation controlled EVILS for periods during and after grazing. The burned patches tended to have lower EVILS during grazing periods than the unburned patches within the same pasture, probably because of selective grazing of newly grown grass in recently burned patches. In contrast, the differences in EVILS between during and after grazing periods were mostly (78%) smaller in burned than unburned patches. However, more variations in EVILS existed among pasture comparisons due to landscape heterogeneity. Similar results were observed with EVIMOD. Overall, results demonstrated that pyric herbivory management and climate determine the impacts of grazing on tallgrass prairie systems. The contrasting seasonal forage availabilities in burned and unburned patches, indicated by different seasonality of EVI, also suggests that patch burning might better balance the quantity and quality of the grass available for cattle grazing. 相似文献
10.
《Strength and Conditioning Journal》2014,67(4):397-405
Woody plant encroachment in natural grasslands is a widely documented global phenomenon that alters ecosystem dynamics by altering historic vegetation composition and suppressing herbaceous productivity. Abundant woody plants often suppress native plants sufficiently to establish successional thresholds difficult to reverse without species augmentation. Juniper (Juniperus virginiana L.) is expanding in North American tallgrass prairie, but it is currently unknown if encroachment creates successional restrictions that limit restoration potential. We selected 16 50×50-m sites with juniper canopy cover ranging from zero to approximately 75% in tallgrass prairie near Stillwater, Oklahoma, USA. Juniper trees were removed from 7 of the sites along the gradient of juniper canopy cover. Canopy cover of plant species and herbaceous plant productivity were estimated at each site 1 year before and 1, 2, and 5 years after tree removal. Before trees were removed, plant species richness and productivity declined as juniper canopy cover increased, and plant community composition dissimilarity of reference sites increased as juniper canopy cover increased. These relationships remained consistent on all non-removal sites throughout the study. The first year after juniper removal, species richness increased on all removal sites compared to intact sites and productivity on removal sites increased two years after removal. Plant community dissimilarity between reference sites and juniper removal sites remained relatively high (30–60%) the first two years after tree removal on all removal sites, but dissimilarity was about 22% 5 years after juniper removal. Within 5 years, removal sites were comparable to reference plant communities. Grassland restoration frequently requires species manipulation and additional seeding, particularly when overcoming successional limitations. Juniper encroachment into tallgrass prairie alters plant community species composition and productivity. However, in our study, juniper associated succession limitations were not apparent, and complete autogenic restoration was achieved within 5 years without seeding or species manipulation. 相似文献
11.
《Strength and Conditioning Journal》2020,73(4):491-500
Large mammal grazing is considered an important biological process that structures many grassland plant communities. While herbivorous arthropods are also important consumers in terrestrial systems, their interaction with large mammal grazing is poorly studied. We performed a field experiment in a tallgrass prairie manipulating arthropod abundance in both bison-grazed and ungrazed areas following a prescribed burn and monitored the plant community for 15 mo. Total plant biomass was unchanged by the end of the experiment, but individual biomass of forbs and grasses was altered by our manipulations. Forb biomass in the bison-grazed/arthropod-reduced plots was two to three times higher than other treatments, while grass biomass was higher in bison-grazed plots where arthropods were unmanipulated. Grass and forb richness showed smaller responses, with a significant difference only in ungrazed areas. Our results suggest that bison grazing and arthropod herbivory work in a complementary way; bison reduce grass biomass, allowing forbs to increase, while herbivorous arthropods reduce forb biomass, allowing grasses to increase. Our study showed that removing herbivorous arthropods may have lengthened the transition from forb to grass dominance, therefore delaying the return of conditions conducive to future disturbance by fire. Therefore, we argue that arthropod herbivory, interacting with large mammal grazing, is an additional important process affecting the plant community composition and disturbance patterns in tallgrass prairies and should be investigated further in additional grassland systems. 相似文献
12.
Restoration of grasslands dominated by tall fescue (Schedonorus phoenix [Scop.] Holub) to native tallgrass prairie usually requires burning, herbicides, or reseeding. We tested seasonal grazing by livestock in winter, combined with cessation of fertilization, as a restoration tool for modifying the competitive dynamics among herbaceous plants to restore tallgrass prairie communities in southeastern Kansas. In 2004–2005, we compared responses of grassland plants and birds across a chronosequence of pastures that were winter-grazed from 1 yr to 5 yr. We compared winter-grazed pastures to pastures grazed year-round and to local native prairie remnants as starting and endpoints for restoration, respectively. Abundance of native warm-season grasses increased from 2% to 3% mean relative frequency in pastures grazed year-round to 18% to 30% in winter-grazed pastures, and increased with duration of winter-grazing. Native warm-season grasses accounted for 1–6% of total live aboveground biomass in pastures grazed year-round, 1–34% in winter-grazed pastures, and 31–34% in native prairie remnants. Tall fescue abundance and biomass were similar among grazing treatments, with a trend for tall fescue to be less dominant in winter-grazed pastures. Tall fescue made up 9–40% of total aboveground biomass in year-round grazed pastures and 10–25% in winter-grazed pastures. Grassland birds showed variable responses to winter-grazing. Dickcissels (Spiza americana) and Henslow’s sparrows (Ammodramus henslowii) were more abundant in winter-grazed pastures, whereas eastern meadowlarks (Sturnella magna) and grasshopper sparrows (A. savannarum) had similar abundance in pastures grazed year-round and during winter. Winter-grazing of pastures dominated by tall fescue combined with suspension of nitrogen fertilization could be an effective restoration technique that allows use of prairie rangeland while improving habitat for sensitive grassland birds. 相似文献
13.
《The Professional Animal Scientist》2003,19(6):416-423
A 4-yr study was conducted to determine performance of stocker calves on tallgrass prairie under three grazing management strategies. Pastures were assigned to one of three grazing treatments. Grazing was initiated in June, and pastures were grazed only during the summer months for 57 to 104 d (79.5 ± 20.7 d). Two of the pastures were grazed season-long. Calves in one of the season-long treatments were fed a protein supplement during the second half of the grazing season; calves in the other season-long treatment were not supplemented (control group). The third pasture, an intensive early stocking (IES) treatment, was grazed at twice the stocking rate used in the season-long pastures for the first half of the grazing season (40 ± 11 d) and rested for the second half (39.5 ± 10 d). Individual stocker performance during the first half of the summer was similar among grazing treatments. Providing supplemental protein during the second half of the grazing season increased BW gain by 30 kg/ha during the last 40 d of the 80-d grazing season and increased BW gain by 12 kg/ha for the entire summer. Over the summer, IES stocker calves produced 24% more gain/ha than season-long stocked calves. Nonetheless, IES management was not more profitable than season-long grazing with or without protein supplementation. Under short-term ownership of calves in the IES system, fixed costs represented a large portion of the total cost. 相似文献
14.
Alexander J. Smart Tabithia K. Scott Sharon A. Clay David E. Clay Michelle Ohrtman Eric M. Mousel 《Strength and Conditioning Journal》2013,66(6):680-687
Defoliation aimed at introduced cool-season grasses, which uses similar resources of native grasses, could substantially reduce their competitiveness and improve the quality of the northern tallgrass prairie. The objective was to evaluate the use of early season clipping and fire in conjunction with simulated increased levels of atmospheric nitrogen deposition on foliar canopy cover of tallgrass prairie vegetation. This study was conducted from 2009 to 2012 at two locations in eastern South Dakota. Small plots arranged in a split-plot treatment design were randomized in four complete blocks on a warm-season grass interseeded and a native prairie site in east-central South Dakota. The whole plot consisted of seven treatments: annual clip, biennial clip, triennial clip, annual fire, biennial fire, triennial fire, and undefoliated control. The clip plots consisted of weekly clipping in May to simulate heavy grazing. Fire was applied in late April or early May. The subplot consisted of nitrogen applied at 0 or 15 kg N · ha?1 in early June. All treatments were initially applied in 2009. Biennial and triennial treatments were reapplied in 2011 and 2012, respectively. Canopy cover of species/major plant functional groups was estimated in late August/early September. Annual clipping was just as effective as annual fire in increasing native warm-season grass and decreasing introduced cool-season grass cover. Annual defoliation resulted in greater native warm-season grass cover, less introduced cool-season grass cover, and less native cool-season grass cover than biennial or triennial defoliation applications. Low levels of nitrogen did not affect native warm-season grass or introduced cool-season cover for any of the defoliation treatments, but it increased introduced cool-season grass cover in the undefoliated control at the native prairie site. This study supports the hypothesis that appropriately applied management results in consistent desired outcomes regardless of increased simulated atmospheric nitrogen depositions. 相似文献
15.
Lois Wright Morton Elise Regen David M. Engle James R. Miller Ryan N. Harr 《Strength and Conditioning Journal》2010,63(6):645-654
Successful prairie restoration will depend in part on convincing private landowners with agricultural and recreational use goals to implement appropriate rangeland management practices, such as prescribed burning and cattle grazing, to control invasive species and encroachment of woody plants. However, landowners have been slow to adopt appropriate practices in the US Midwest. The purpose of this study was to explore attitudes and behaviors of private landowners toward prescribed burning and moderate stocking as rangeland management tools. A survey was mailed to 193 landowners (response rate 51%) in the Grand River Grasslands region of southern Iowa and northern Missouri. While 68% of landowners viewed grazing as a legitimate land management tool, only half of landowners thought of fire as a legitimate tool. Over 75% of respondents believed that the increase in eastern redcedar and other trees in grasslands was a problem, with 44% considering it a major problem. Although 84% of landowners said that they had taken action to control eastern redcedar, only 25% had participated in a prescribed burn. Income from agriculture and recreational goals were negatively and significantly correlated (-0.252, P = 0.035). While holding recreational goals constant in the analysis, landowners reporting income from agriculture goals as very or extremely important were negatively and significantly associated with reporting environment and grassland factors as very or extremely important. Adoption of prescribed burning by private landowners might be more widespread if proponents focus on the effectiveness of fire for controlling eastern redcedar, which is viewed as a problem by most landowners in the region. Intervention efforts must include landowners with different goals as part of the promotion and educational process. 相似文献
16.
Influence of Abrams M1A1 Main Battle Tank Disturbance on Tallgrass Prairie Plant Community Structure
Peggy S. Althoff Mary Beth Kirkham Timothy C. Todd Stephen J. Thien Philip S. Gipson 《Strength and Conditioning Journal》2009,62(5):480-490
The Department of Defense's Range and Training Land Assessment program provides information and recommendations to range managers regarding the condition of training lands. This information is used to assist in scheduling training areas and in monitoring the effectiveness of rehabilitation projects. Fort Riley Military Installation is a major training reservation located in the Flint Hills of northeastern Kansas, within the tallgrass prairie ecosystem. A randomized complete block design composed of three treatments (M1A1 Abrams tank traffic during wet and dry soil conditions, and a nontrafficked control) with three replications was established in each of two soil types, a silty clay loam and a silt loam soil, on Fort Riley in 2003. Disturbance was created by driving the tank for five circuits in a figure-eight pattern during either during wet or dry soil conditions. Two additional experimental treatments were added during the study: five additional tank passes on one-half of each figure eight in 2004 and burning in 2006. Two areas, a curve and straightaway, within each traffic intensity (and later, burn treatment) subplot were designated for sampling. Aboveground biomass, species composition, and ground cover were measured during each growing season. Recovery of grass and total aboveground biomass in silty clay loam soil was delayed for curve areas and following disturbance in wet soil conditions, respectively. Species composition and ground cover continued to exhibit significant disturbance effects in 2007, with greatest damage observed for repeated traffic under wet soil conditions. Fire effects on vegetation were variable and generally greater for undisturbed control plots than for disturbed areas. The tallgrass prairie typically is considered to be among the most resilient of military training lands, but our research suggests that resiliency is dependent upon soil type and training conditions, and may require longer periods of recovery than previously thought. 相似文献
17.
Ryan F. Limb David M. Engle Aaron L. Alford Eric C. Hellgren 《Strength and Conditioning Journal》2010,63(6):638-644
North American grasslands make up less than 75% of their historic pre-European settlement area, and they continue to be converted to woodlands by woody plant encroachment. Conversion of grassland to woodland alters nutrient cycling, water use, and light penetration, which drives herbaceous plant community dynamics. Because studies examining this relationship among Juniperus species are limited largely to individual trees, we designed a study to examine the relationship between stand-level canopy cover of eastern redcedar (Juniperus virginiana L.) and the herbaceous plant community. We documented herbaceous plant species composition, abundance, and biomass within a North American tallgrass prairie invaded by eastern redcedar in which canopy cover of eastern redcedar ranged from 0% to 80%. Herbaceous species richness declined as a function of increased canopy cover of eastern redcedar and subsequent loss of open space, but this decrease in species richness closely followed a species–area model. Moreover, composition of C3 and C4 grasses and forbs did not change with increasing canopy cover. Herbaceous biomass, which declined with increasing canopy cover, varied most within those plots with intermediate canopy cover. While we found that species richness and biomass declined as canopy cover increased, the decline followed a species–area relationship and was without abrupt change typical of ecological thresholds. We recommend additional research with removal of eastern redcedar trees over a range of canopy cover to assess restoration potential along the encroachment gradient. 相似文献
18.
《Strength and Conditioning Journal》2007,60(4):426-434
Plant frequency is a pragmatic surrogate for plant density in protocols designed for the long-term monitoring of diverse communities. Frequency estimates are based on presence/absence data from plots of fixed size, and plots are usually spatially aggregated into sites (often transects) to reduce field effort. Using a combination of statistical models and computer simulations, we identify sampling designs that maximize statistical power for detecting changes in underlying plant density based on the analysis of plant frequency. The optimal plot size for collecting frequency data decreases both with increasing spatial variation in local density (spatial structure) and with increasing numbers of plots per site. Over realistic ranges for these parameters, plots of optimal size yield mean frequencies that vary from 20% to 80%. However, with the exception of highly overdispersed populations, power is relatively insensitive to plot size; consequently, a plot size that yields a mean frequency of 50% usually provides nearly maximal power. For population monitoring, in which comparisons are made between successive samples from the same population, repeated measures from fixed sites improve statistical power substantially if there is spatial structure among sites, provided that the spatial pattern is at least partially consistent over time. However, there is still a power loss to the extent that the pattern of spatial structure among sites changes over time (a site-by-time interaction). This power loss can be mitigated by increasing the spacing between plots within sites, which has the effect of increasing the within-site structure and reducing the between-site structure. With more than 1 plot per site, there is no statistical advantage to obtaining repeated measures from fixed plots; relocating plots within sites in successive samples may therefore be advisable to minimize disturbance to the community. 相似文献
19.
20.
《Strength and Conditioning Journal》2020,73(4):511-519
Grassland bird populations are declining faster than any other avian guild in North America, and promotion of favorable habitat conditions in rangeland breeding cores is important for their maintenance. There is much information on associations between breeding grassland songbirds and vegetation attributes. However, previous results have been difficult to translate into management practices due to mismatch between the scale and metrics used in biological sampling and those used in management. Here, we evaluate the response of imperiled grassland bird species to vegetation conditions using metrics and scales accessible to managers. We focus on four species that are experiencing particularly severe population declines: Baird's sparrow (Centronyx bairdii), chestnut-collared longspur (Calcarius ornatus), McCown's longspur (Rynchophanes mccownii), and Sprague's pipit (Anthus spragueii). In 2017 and 2018, we evaluated the abundances of these species within their core distributions in northern Montana. We used temporally replicated point-counts and hierarchical models to estimate abundance and associations with plot-level (9-ha) vegetation conditions while accounting for spatially and temporally variable detectability. Exotic grass encroachment and shrub cover had negative or neutral effects on all species. Birds responded strongly to biomass at this scale, with chestnut-collared longspurs and Sprague's pipit preferring a range of 1 100 kg ha−1 to 1 400 kg ha−1, and McCown's longspurs selecting for the lowest available. Residual grass and litter cover were important for Baird's sparrows. Variable results among species emphasize the need for heterogeneity in vegetation structure and composition at scales larger than the plot. Our results provide guidance for managers interested in improving habitat for these species. 相似文献