首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most wildfires occur during summer in the northern hemisphere, the area burned annually is increasing, and fire effects during this season are least understood. Understanding plant response to grazing following summer fire is required to reduce ecological and financial risks associated with wildfire. Forty 0.75-ha plots were assigned to summer fire then 0, 17, 34 or 50% biomass removal by grazing the following growing season, or no fire and no grazing. Root, litter, and aboveground biomass were measured before fire, immediately after grazing, and 1 yr after grazing with the experiment repeated during 2 yr to evaluate weather effects. Fire years were followed by the second driest and fifth wettest springs in 70 yr. Biomass was more responsive to weather than fire and grazing, with a 452% increase from a dry to wet year and 31% reduction from a wet to average spring. Fire reduced litter 53% and had no first-year effect on productivity for any biomass component. Grazing after fire reduced postgrazing grass biomass along the prescribed utilization gradient. Fire and grazing had no effect on total aboveground productivity the year after grazing compared to nonburned, nongrazed sites (1 327 vs. 1 249 ± 65 kg · ha-1). Fire and grazing increased grass productivity 16%, particularly for Pascopyrum smithii. The combined disturbances reduced forbs (51%), annual grasses (49%), and litter (46%). Results indicate grazing with up to 50% biomass removal the first growing season after summer fire was not detrimental to productivity of semiarid rangeland plant communities. Livestock exclusion the year after summer fire did not increase productivity or shift species composition compared to grazed sites. Reduction of previous years' standing dead material was the only indication that fire may temporarily reduce forage availability. The consistent responses among dry, wet, and near-average years suggest plant response is species-specific rather than climatically controlled.  相似文献   

2.
Fire plays a central role in influencing ecosystem patterns and processes. However, documentation of fire seasonality and plant community response is limited in semiarid grasslands. We evaluated aboveground biomass, cover, and frequency response to summer, fall, and spring fires and no fire on silty and clayey sites in semiarid, C3-dominated grassland. The magnitude of change in biomass between years was greater than any differences among fire treatments. Still, differences existed among seasons of fire. Summer fire reduced non-native annual forb frequency (3% vs. 10% ± 2%) and Hesperostipa comata, reduced native annual forbs the first year, increased Poa secunda and bare ground, and increased Vulpia octoflora the second year. Fall fire increased grass biomass (1224 vs. 1058 ± 56 kg ? ha? 1), but fall fire effects were generally similar to those of summer fire. Spring fire effects tended to be intermediate between no fire and summer and fall fire with the exception that spring fire was most detrimental to H. comata the first growing season and did not increase bare ground. All seasons of fire reduced litter, forb biomass, and frequency of Bromus japonicus and Artemisia spp., and they reduced H. comata, V. octoflora, and native annual forbs the first year, but increased basal cover of C3 perennial grasses (2.2% vs. 0.6% ± 0.4%). Fire during any season increased dominance of native species compared with no fire (6.6% vs. 2.0% ± 1.0% basal cover) and maintained productivity. Seasonal timing of fire manipulated species composition, but increased C3 perennial grass cover and native species dominance with fire during any season indicated that using fire was more important than the season in which it occurred. In addition, fire effects on the vegetation components tended to be counter to previously observed effects of grazing, suggesting fire and grazing may be complementary.  相似文献   

3.
There is increased interest in the use of summer-season fires to limit woody plant encroachment into grasslands, but effects of these fires on grasses are poorly understood. We quantified effects of repeated winter fires, repeated summer fires, and clipping (to simulate grazing) on aboveground total yield, live yield, and percentage of live tissue of C3 Texas wintergrass (Nassella leucotricha [Trin. & Rupr.] Pohl.), and C4 buffalograss (Buchloë dactyloides [Nutt.] Engelm.) in 2 experiments. Monospecific patches of each species were exposed to 1 of 3 fire treatments (no-fire, 2 winter fires in 3 years, or 2 summer fires in 3 years) and 1 of 2 clip treatments (no clip or clip once each spring). Experiment 1 evaluated effects of fire without grazing or clipping on late-growing season (late-season) yields. Late-season total yield of both species recovered from winter and summer fires within 1 or 2 growing seasons post-fire. By 3 years post-fire, Texas wintergrass late-season total yield was 2 times greater in the summer fire treatment than the winter fire or no-fire treatments, and buffalograss late-season total yield was 3 times greater in summer and winter fire treatments than in the no-fire treatment. Experiment 2 evaluated combined effects of fire and clipping the previous spring on spring-season yields. Clipping alone or with fire (summer or winter) reduced Texas wintergrass yields on more sample dates than occurred with buffalograss. By 3 years post-fire, buffalograss spring total yield was greater in all fire and fire + clip treatments than in the clip only or untreated controls. Results suggest: 1) both species were tolerant of summer fire, 2) fire in either season with or without clipping stimulated buffalograss production, and 3) buffalograss was more tolerant than Texas wintergrass to the combined effects of clipping + fire (either season).  相似文献   

4.
Disturbances, such as fire and grazing, play important roles in determining grassland plant community composition and soil microbial dynamics, as well as regulating the flows of carbon (C) and nitrogen (N) between the two groups of organisms. In a mixed grassland of the southern Great Plains, we tested the hypotheses that spring-season fire would increase the absolute biomass and relative proportion of C4 grasses in the plant community, and decrease soil microbial biomass N, thereby increasing microbial C∶N ratios. We also tested the hypothesis that clipping (to simulate grazing) would reduce effects of fire, with a greater reduction of fire effect corresponding to an increased frequency of clipping. Contrary to our hypothesis, C4 grasses showed no significant treatment responses. Treatment effects were limited to C3 grasses, and clipping was more important than fire in terms of effects on plant community composition. However, because of its greater capacity to reduce aboveground litter, fire had the greater impact on soil microbial C. Contrary to the hypothesized outcome, no significant effects of disturbance on soil microbial N were observed. This suggests that control of N cycling in this ecosystem is primarily microbial in nature, though dependent on inputs of plant C via litter. Interactions between fire and clipping were observed in litter mass, highlighting the importance of litter inputs for plant–soil nutrient feedbacks.  相似文献   

5.
本研究采用野外样方调查和室内分析相结合的方法,分析了黄土高原典型草原冬季火烧区和未火烧区植物群落的物种组成、功能群组成、物种多样性、地上生物量,以及土壤有机碳和全氮。结果表明:冬季火烧显著降低了多年生禾草的重要值,而提高了多年生杂类草的重要值,而对一、二年生草本和灌木、半灌木功能群的重要值影响不显著。冬季火烧显著提高了灌木、半灌木在群落中的比例,并且降低了一、二年生草本的比例,但对多年生禾草和多年生杂类草的比例影响不显著。灌木、半灌木功能群的丰富度指数在火烧地显著大于未火烧地,而一、二年生草本的丰富度指数显著小于未火烧地。冬季火烧显著降低多年生禾草功能群的生物量和显著提高多年生杂类草功能群的生物量。火烧草地的土壤有机碳和全氮含量在0~10 cm土层中均显著高于未火烧草地。  相似文献   

6.
Purple threeawn (Aristida purpurea Nutt. varieties) is a native grass capable of increasing on rangelands, forming near monocultures, and creating a stable state. Productive rangelands throughout the Great Plains and Intermountain West have experienced increases in purple threeawn abundance, reducing overall forage quality. Our objectives were to 1) reveal the effects of prescribed fire and nitrogen amendments on purple threeawn abundance and 2) assess nontarget plant response posttreatment. Season of fire (no fire, summer fire, fall fire) and nitrogen addition (0 kg N · ha?1, 46 kg N · ha?1, and 80 kg N · ha?1) were factorially arranged in a completely randomized design and applied to two similar sites in southeastern Montana. We evaluated fire and nitrogen effects on purple threeawn basal cover, relative composition, and current-year biomass one growing season postfire at two sites treated during different years. Spring weather following fire treatments was very different between years and subsequently impacted community response. Initial purple threeawn biomass at both sites was 1 214 ± 46 kg · ha?1 SEc. When postfire growing conditions were wet, current-year biomass of purple threeawn was reduced 90% and 73% with summer and fall fire, respectively. Under dry postfire growing conditions, purple threeawn current-year biomass was reduced 73% and 58% with summer and fall fire, respectively. Nitrogen additions had no effect on purple threeawn current-year biomass at either site. Current-year biomass of C3 perennial grass doubled with nitrogen additions and was not impacted by fire during a wet spring. Nitrogen additions and fire had no effect on C3 perennial grass current-year biomass following a dry spring. Prescribed fire appears to be a highly effective tool for reducing purple threeawn abundance on semiarid rangelands, with limited detrimental impacts to nontarget species.  相似文献   

7.
The fire-grazing interaction is well studied in mesic grasslands worldwide, but research is limited in semiarid systems. We examined the principal drivers and feedbacks of the fire-grazing interaction on the strength of cattle grazing selection, herbaceous biomass, crude protein, and vegetation structure and composition in two pastures in the Northern Great Plains. Cattle showed significant preference, use, and grazing utilization in recently burned patches that declined as time since fire increased. Cattle selection was driven by significantly increased crude protein in recent burns. Grazing utilization of 70% in patches with < 1 yr after fire established low herbaceous biomass, but the extent to which it was maintained varied with precipitation. Herbaceous biomass increased to nonburned levels 2 yr after fire, and crude protein decreased to nonburned levels 120 d after fire. Species composition was influenced primarily by site and year, though bare ground and litter were influenced by the fire-grazing interaction. Our data indicate that mixed-grass prairies of the Northern Great Plains are resilient to the fire-grazing interaction and that rest from grazing following fire is likely ecologically unnecessary. The use of the fire-grazing interaction is an alternative management strategy suitable for the Northern Great Plains, effectively increasing heterogeneity of grassland habitat.  相似文献   

8.
Long-term (> 100 yr) fire exclusion is associated with numerous ecological consequences in grasslands and savannas, including transitions into shrub- or tree-dominated systems. Several studies have reported differences in woody vegetation after multiple fires among burned and unburned rangelands, but none have reported the impacts of fire exclusion after a period of fire management. We evaluated effects of fire exclusion on herbaceous and woody canopy cover and herbaceous biomass in semiarid savanna of southwest Texas in pastures with known burn histories. Pastures were burned in summer and winter in 1994, 2000, and 2006, followed by 11 yr of fire exclusion. Between 2006 and 2017, woody subcanopy increased (5–21%) in all treatments while overstory canopy remained unchanged. Herbaceous cover decreased (5–18%) in all treatments but remained higher in burned treatments. From 2006 to 2017, herbaceous biomass declined in all treatments by > 650 kg·ha−1 and was not statistically different among treatments. These trends support other research demonstrating the importance of historical mean fire return interval in maintaining grasslands and savannas.  相似文献   

9.
State-and-transition models for semiarid grasslands in the North American Great Plains suggest that the presence of herbivorous black-tailed prairie dogs (Cynomys ludovicianus) on a site 1) creates a vegetation state characterized by increased dominance of annual forbs and unpalatable bunchgrasses and increased bare soil exposure and 2) requires long-term (> 40 yr) prairie dog removal to transition back to a vegetation state dominated by palatable perennial grasses. Here, we examine 1) how the recent history of prairie dog occupancy on a site (1–10 yr) influences the magnitude of prairie dog effects on vegetation composition and 2) how occupancy history affects vegetation dynamics following extirpation of prairie dogs. We used a natural experiment in the shortgrass steppe of northeastern Colorado, USA, where prairie dogs were extirpated from multiple sites during an outbreak of epizootic plague. On sites occupied by prairie dogs for 1–4 yr prior to extirpation, plant cover and composition recovered to conditions similar to unoccupied sites within a single growing season. Larger reductions in perennial C4 grasses occurred on sites occupied for the prior 7–10 yr compared to sites with shorter occupancy histories (< 6 yr). On sites occupied for the prior 7–10 yr, C4 perennial grasses recovered after 5 yr following prairie dog extirpation; in addition, C3 perennial graminoids and forbs remained more abundant (compared to sites with no history of prairie dogs) throughout the 5-yr period. Our findings showcase that prior site occupancy (up to 10 yr) by prairie dogs did not induce irreversible shifts in vegetation state in this semiarid grassland. Rather, vegetation changes induced by prairie dogs represent primarily a phase shift in landscapes where prairie dog populations are regulated by epizootic plague.  相似文献   

10.
Many nonnative invasive grasses alter fire regimes to their own benefit and the detriment of native organisms. In southern Arizona the nonnative Lehmann lovegrass (Eragrostis lehmanniana Nees) dominates many semiarid grasslands where native grasses were abundant. Managers are wary of using prescribed fire in this fire-prone community partly due to the perceived effects of a grass/fire cycle. However, examples of the grass/fire cycle originate in ecosystems where native plants are less fire-tolerant than grasses and the invasive plant does not mimic the physiognomy of the native community. We investigate the effects of prescribed fire and livestock grazing on a semiarid grassland community dominated by a nonnative invasive grass. Lehmann lovegrass does not appear to alter the fire regime of semiarid grasslands to the detriment of native plants. Prescribed fire reduced the abundance of Lehmann lovegrass for 1 to 2 yr while increasing abundance of native grasses, herbaceous dicotyledons and fall richness, and diversity. Effects of livestock grazing were less transformative than the effects of fire in this long-grazed area, but grazing negatively affected native plants as did the combination of prescribed fire and livestock grazing. Although Lehmann lovegrass produces more fuel than native plants, fire frequency in semiarid grasslands appears to be limited by the paucity of above-average precipitation, which constrains high fuel loads. In addition, many native grasses tolerate high temperatures produced by Lehmann lovegrass fires. Consistent with previous research, fire does not promote the spread of Lehmann lovegrass, and more importantly human alteration of the fire regime is greater than the nominal effects of Lehmann lovegrass introduction on the fire regime.  相似文献   

11.
There has been increasing interest in the use of summer fires to limit woody plant encroachment on grasslands, but information regarding effects of such fires on perennial grass recovery and annual forb production is also needed. Our objective was to examine effects of fire seasonality and intensity on the woody legume honey mesquite (Prosopis glandulosa Torr.), the C4 midgrass tobosagrass (Pleuraphis mutica Buckl.), and the annual forb common broomweed (Amphiachyris dracunculoides [DC.] Nutt.). Treatments included summer fires, high-intensity winter fires, low-intensity winter fires, and no burn in replicated plots. None of the fire treatments caused whole-plant mortality (root kill) in mesquite. Mesquite aboveground mortality (top kill) was much greater after summer and high-intensity winter fires than low-intensity winter fires. Tobosagrass total yield (live + dead) was lower following summer fires and was not enhanced by any of the fire treatments for two growing seasons postfire when compared to the no-burn condition. However, tobosagrass live yield was 40% greater in the high-intensity winter fire treatment than the no-burn condition the first summer postfire and recovered in the other fire treatments by the end of the first growing season postfire. Tobosagrass percentage of live tissue was greatest in the summer fire treatment at the end of each of the two growing seasons postfire. Common broomweed cover increased in the summer fire treatment and decreased in both winter fire treatments relative to the no-burn condition by the end of the first growing season postfire. Summer fire offered no clear advantage over high-intensity winter fire with respect to mesquite suppression. However, the increase in late-season tobosagrass percentage live tissue caused by summer fire may be advantageous for forage quality. In addition, patch burning summer fires to increase broomweed cover in selected areas may be useful for wildlife habitat.  相似文献   

12.
13.
14.
Pinyon and juniper expansion into sagebrush ecosystems results in decreased cover and biomass of perennial grasses and forbs. We examine the effectiveness of spring prescribed fire on restoration of sagebrush ecosystems by documenting burn effects on soil nutrients, herbaceous aboveground biomass, and tissue nutrient concentrations. This study was conducted in a central Nevada woodland and included control and burn treatment plots sampled before and after a prescribed fire. Six native understory plant species (Crepis acuminata, Eriogonum umbellatum, Eriogonum elatum, Poa secunda secunda, Festuca idahoensis, and Lupinus argenteus) important for native sagebrush obligate foragers were chosen to represent the understory plant community. L. argenteus is also important for system nutrient cycling and nitrogen fixation. Plants were collected from three microsites (under tree canopy, under shrub canopy, and interspace) common in transitional woodlands during peak growth the summer before a spring prescribed burn and each of two summers following the burn. Soils were collected from corresponding locations at two depth intervals (0–8 and 8–52 cm) to determine the relationships between soil and plant nutrients following fire. Microsite affected soil nutrients but did not influence plant tissue concentrations with the exception of F. idahoensis. Burning resulted in increases in soil surface NH+4, NO3, inorganic N, Ca2+, Mn2+, and Zn2+. Increases in NO3, inorganic N, and Zn2+ were also observed in deeper horizons. Burning did not affect aboveground plant biomass or nutrient concentrations in the first year with the exception of F. idahoensis, which had increased tissue P. By the second year, all species had statistically significant responses to burning. The most common response was for increased aboveground plant weight and tissue N concentrations. Plant response to burning appeared to be related to the burn treatment and the soil variables surface K+, NO3, and inorganic N.  相似文献   

15.
We examined the effect of fire on vegetation composition with the use of an experiment with four different fire frequencies (annual, 2-yr interval, 4-yr interval, and an intended control with no burning) over a 27-yr period in an infertile, old-field grassland at the Cedar Creek Ecosystem Science Reserve, located in Minnesota, United States. We measured the plant species' aboveground biomass in permanent plots in 1983, 1987, 1991, 2000, and 2010. None of these fire frequencies, even after 27 yr, had a large impact on the vegetation composition. The plant functional groups' responses to fire frequency were consistent with their respective dominant species. The most abundant C4 grass, little bluestem (Schizachyrium scoparium Michx.), did not change in biomass with fire frequency over time. The biomass of the introduced, invasive grass, Kentucky bluegrass (Poa pratensis L.) decreased significantly with increasing fire frequency, but this decrease did not result in change to the rate and trajectory of vegetation change. Bush clover (Lespedeza capitata Michx.), the only legume in the community, strongly increased with more frequent fire, but only after 20 yr. Species richness and litter mass decreased significantly with increasing fire frequency. These small fire-induced vegetation changes contrast with large fire-induced vegetation changes in fertile grasslands. Management strategies using fire in infertile grasslands can lower Poa abundance; however, increased fire also decreased overall plant diversity.  相似文献   

16.
Wyoming big sagebrush (Artemisia tridentata subsp. wyomingensis [Beetle & A. Young] S.L. Welsh) plant communities of the Intermountain West have been greatly reduced from their historic range as a result of wildfire, agronomic practices, brush control treatments, and weed invasions. The impact of prescribed fall burning Wyoming big sagebrush has not been well quantified. Treatments were sagebrush removed with burning (burned) and sagebrush present (control). Treatments were applied to 0.4-ha plots at 6 sites. Biomass production, vegetation cover, perennial herbaceous vegetation diversity, soil water content, soil inorganic nitrogen (NO-3, NH+4), total soil nitrogen (N), total soil carbon (C), and soil organic matter (OM) were compared between treatments in the first 2 years postburn. In 2003 and 2004, total (shrub and herbaceous) aboveground annual biomass production was 2.3 and 1.2 times greater, respectively, in the control compared to the burned treatment. In the upper 15 cm of the soil profile, inorganic N concentrations were greater in the burned than control treatment, while soil water, at least in the spring, was greater in the control than burned treatment. Regardless, greater herbaceous aboveground annual production and cover in the burned treatment indicated that resources were more available to herbaceous vegetation in the burned than the control treatment. Exotic annual grasses did not increase with the burn treatment. Our results suggest in some instances that late seral Wyoming big sagebrush plant communities can be prescribed fall burned to increase livestock forage or alter wildlife habitat without exotic annual grass invasion in the first 2 years postburn. However, long-term evaluation at multiple sites across a larger area is needed to better quantify the effects of prescribed fall burning on these communities. Thus, caution is advised because of the value of Wyoming big sagebrush plant communities to wildlife and the threat of invasive plants.  相似文献   

17.
The composition and abundance of legumes affect the economic value and ecological sustainability of natural grasslands. We collected data on species richness and aboveground biomass of legumes and their percentages of the total community at 78 field sites in Chinese natural grasslands on the Tibetan Plateau (alpine steppe and alpine meadow) and in Inner Mongolia (meadow steppe, typical steppe, and desert steppe), and analyzed the association between these attributes with community, climate, and soil factors. At least one legume species occurred in 89.7% of the sites studied; the genera Astragalus, Oxytropis, and Medicago were dominant among the 12 legume genera recorded. Generally, within 1 m2 of grassland, only one legume species was present with an aboveground biomass of 1.1 g; this accounted for 9.1% of community species richness and 1.7% of total aboveground biomass. In comparison with many other types of grassland around the world, both the legume aboveground biomass and its percentage of the total were low in Chinese grasslands, especially in Inner Mongolia. The low biomass of legumes in grassland might be attributable to the low growing-season temperature on the Tibetan Plateau, while in Inner Mongolia, low precipitation combined with high temperatures during the growing season may be the main reason. Although legumes in Chinese grasslands have substantial potential for nitrogen fixation and contain a variety of forage species, their ecological and economic value has been limited by their low biomass. Suggestions to enhance legume biomass in Chinese grasslands are provided.  相似文献   

18.
Knowledge of how tallgrass prairie vegetation responds to fire in the late growing season is relatively sparse and is based upon studies that are either spatially or temporally limited. To gain a more robust perspective of vegetation response to summer burning and to determine if repeated summer fire can drive vegetational changes in native tallgrass prairie, we evaluated species cover and richness over a 14-yr period on different topographic positions from ungrazed watersheds that were burned biennially in the growing season. We found that annual forbs were the primary beneficiaries of summer burning, but their fluctuations varied inconsistently among years. Concomitantly, species richness and diversity increased significantly with summer burning but remained stable through time with annual spring burning. After 14 yr, species richness was 28% higher in prairie that was burned in the summer than in prairie burned in the spring. Canopy cover of big bluestem (Andropogon gerardii Vitman) and Indiangrass (Sorghastrum nutans [L.] Nash) increased significantly over time with both summer and spring burning, whereas heath aster (Symphyotrichum ericoides [L.] Nesom), aromatic aster (Symphyotrichum oblongifolium [Nutt.] Nesom), and sedges (Carex spp.) increased in response to only summer burning. Kentucky bluegrass (Poa pratensis L.) cover declined in both spring-burned and summer-burned watersheds. Repeated burning in either spring or summer did not reduce the cover or frequency of any woody species. Most perennial species were neutral in their reaction to summer fire, but a few species responded with large and inconsistent temporal fluctuations that overwhelmed any clear patterns of change. Although summer burning did not preferentially encourage spring-flowering forbs or suppress dominance of the warm-season grasses, it is a potentially useful tool to increase community heterogeneity in ungrazed prairie.  相似文献   

19.
围栏封育对昭苏马场春秋草地地上植物量的影响   总被引:8,自引:3,他引:5  
通过对昭苏马场春秋草地不同围栏封育年限草地地上植物量的研究,结果表明:草地地上植物量随着围栏封育年限的延长呈增加趋势,围栏封育5和6年草地地上植物量随季节的变化呈“S”型增长曲线,未围栏封育草地地上植物量累积变化呈双峰曲线;围栏封育5和6年与围栏封育1年和未围栏封育草地的禾草类和豆科草类间差异极显著(P〈0.01),随着围栏封育年限的延长,杂类草所占比例下降,而优良禾草类比例明显升高,在群落中占据优势地位,不同围栏封育年限草地地上植物量的绝对生长率和相对生长率的季节变化相似,在植物营养生长初期率都较大,此后都呈下降趋势。  相似文献   

20.
Long-term control of the invasive annual grass cheatgrass is predicated on its biological suppression. Perennial grasses vary in their suppressive ability. We compared the ability of a non-native grass (“Hycrest” crested wheatgrass) and two native grasses (Snake River wheatgrass and bluebunch wheatgrass) to suppress cheatgrass. In a greenhouse in separate tubs, 5 replicates of each perennial grass were established for 96 d, on which two seeds of cheatgrass, 15 cm apart, were then sown in a semicircular pattern at distances of 10 cm, 30 cm, and 80 cm from the established perennial bunchgrasses. Water was not limiting. After 60 d growth, cheatgrass plants were harvested, dried, weight recorded, and tissue C and N quantified. Soil N availability was quantified at each location where cheatgrass was sown, both before sowing and after harvest. Relative to cheatgrass grown at 80 cm, all perennial grasses significantly reduced aboveground biomass at 30 cm (68% average reduction) and at 10 cm (98% average reduction). Sown at 10 cm from established perennial grasses, cheatgrass aboveground biomass was inversely related with perennial grass root mass per unit volume of soil. All cheatgrass sown at 10 cm from “Hycrest” crested wheatgrass died within 38 d. Before sowing of cheatgrass, soil 10 cm from established perennial grasses had significantly less mineral N than soil taken at 30 cm and 80 cm. Relative to cheatgrass tissue N for plants grown at 80 cm, cheatgrass nearest to the established perennial grasses contained significantly less tissue N. All perennial grasses inhibited the NO2 to NO3 nitrification step; for “Hycrest” crested wheatgrass, soil taken at 10 cm from the plant had a molar proportion of NO2 in the NO2 + NO3 pool of > 90%. In summary, a combination of reduced nitrogen availability, occupation of soil space by perennial roots, and attenuation of the nitrogen cycle all contributed to suppression of cheatgrass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号