首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Little is known about how cultivation legacies affect the outcome of rehabilitation seedings in the Great Basin, even though both frequently co-occur on the same lands. Similarly, there is little known about how these legacies affect native species re-establishment into these seedings. We examined these legacy effects by comparing areas historically cultivated and seeded to adjacent areas that were seeded but never cultivated, for density of seeded crested wheatgrass (Agropyron cristatum [L.] Gaertn.) and native perennial grasses, vegetation cover, and ground cover. At half of the sites, historically cultivated areas had lower crested wheatgrass density (P < 0.05), and only one site had a higher density of crested wheatgrass (P < 0.05). Likewise, the native shrub Wyoming big sagebrush (Artemisia tridentata Nutt. subsp. wyomingensis Beetle & Young) had lower cover (P < 0.05) in historically cultivated areas at half the sites. Sandberg bluegrass (Poa secunda J. Presl.) density was consistently lower in historically cultivated areas relative to those seeded-only. At sites where black greasewood (Sarcobatus vermiculatus [Hook.] Torr.) and bottlebrush squirreltail (Elymus elymoides [Raf.] Swezey) were encountered, there was either no difference or a higher density and cover within historically cultivated areas (P < 0.05). Likewise, cover of exotic forbs, especially halogeton (Halogeton glomeratus [M. Bieb.] C. A. Mey.), was either not different or higher in historically cultivated areas (P < 0.05). Bare ground was greater in historically cultivated areas at three sites (P < 0.05). These results suggest that cultivation legacies can affect seeding success and re-establishment of native vegetation, and therefore should not be overlooked when selecting research sites or planning land treatments that include seeding and or management to achieve greater native species diversity.  相似文献   

2.
Degradation of shrublands around the world from altered fire regimes, overutilization, and anthropogenic disturbance has resulted in a widespread need for shrub restoration. In western North America, reestablishment of mountain big sagebrush (Artemisia tridentata Nutt. ssp. vaseyana [Rydb.] Beetle) is needed to restore ecosystem services and function. Western juniper (Juniperus occidentalis ssp. occidentalis Hook) encroachment is a serious threat to mountain big sagebrush communities in the northern Great Basin and Columbia Plateau. Juniper trees can be controlled with fire; however, sagebrush recovery may be slow, especially if encroachment largely eliminated sagebrush before juniper control. Short-term studies have suggested that seeding mountain big sagebrush after juniper control may accelerate sagebrush recovery. Longer-term information is lacking on how sagebrush recovery progresses and if there are trade-offs with herbaceous vegetation. We compared seeding and not seeding mountain big sagebrush after juniper control (partial cutting followed with burning) in fully developed juniper woodlands (i.e., sagebrush had been largely excluded) at five sites, 7 and 8 yr after seeding. Sagebrush cover averaged ~ 30% in sagebrush seeded plots compared with ~ 1% in unseeded plots 8 yr after seeding, thus suggesting that sagebrush recovery may be slow without seeding after juniper control. Total herbaceous vegetation, perennial grass, and annual forb cover was less where sagebrush was seeded. Thus, there is a trade-off with herbaceous vegetation with seeding sagebrush. Our results suggest that seeding sagebrush after juniper control can accelerate the recovery of sagebrush habitat characteristics, which is important for sagebrush-associated wildlife. We suggest land manager and restoration practitioners consider seeding sagebrush and possibly other shrubs after controlling encroaching trees where residual shrubs are lacking after control.  相似文献   

3.
Big sagebrush (Artemisia tridentata Nutt.) plant communities often require management to reduce shrub density and rehabilitate understory vegetation. We studied vegetation responses to a two-way chain harrow treatment and broadcast seeding of 12 herbaceous species at eight Wyoming big sagebrush (A. tridentata Nutt. subsp. wyomingensis Beetle & Young) sites. These sites differed in land-use history; five were cultivated for dryland wheat production during the 1950 ? 1980s and then seeded with introduced forage grasses (C-S), while three had not been exposed to this land-use legacy (non C-S). Our objective was to evaluate whether the C-S legacy influences the magnitude of vegetation change following contemporary treatment. Before treatment, C-S sites had lower sagebrush cover, higher dead sagebrush cover, and higher broom snakeweed (Gutierrezia sarothrae [Pursh] Britton & Rusby) cover than adjacent non C-S sites. Plant community change 3 years after treatment, determined with multivariate ordination analysis of species composition, varied between site histories, and response to treatment was most strongly correlated with reductions in sagebrush cover, increases in perennial grasses, and increases in 10 other herbaceous species—including some undesirable species and four that were seeded in 2010. Five years after treatment, mature sagebrush cover remained reduced for both land-use histories, yet density of sagebrush seedlings and broom snakeweed increased in C-S sites during the second and third years after treatment. In addition, perennial forb cover increased for C-S sites, while perennial grass biomass increased for non C-S sites. Our results emphasize that broad variability in plant community responses to sagebrush reduction and seeding is possible within the same ecological site classification and that legacy effects due to the combination of past cultivation and seeding should be considered when planning restoration projects, including the consideration that seeding may not always be necessary on C-S sites.  相似文献   

4.
Dominant plant species are often used as indicators of site potential in forest and rangelands. However, subspecies of dominant vegetation often indicate different site characteristics and, therefore, may be more useful indicators of plant community potential and provide more precise information for management. Big sagebrush (Artemisia tridentata Nutt.) occurs across large expanses of the western United States. Common subspecies of big sagebrush have considerable variation in the types of sites they occupy, but information that quantifies differences in their vegetation characteristics is lacking. Consequently, wildlife and land management guidelines frequently do not differentiate between subspecies of big sagebrush. To quantify vegetation characteristics between two common subspecies of big sagebrush, we sampled 106 intact big sagebrush plant communities. Half of the sampled plant communities were Wyoming big sagebrush (A. tridentata subsp. wyomingensis [Beetle & A. Young] S. L. Welsh) plant communities, and the other half were mountain big sagebrush (A. tridentata subsp. vaseyana [Rydb.] Beetle) plant communities. In general, mountain big sagebrush plant communities were more diverse and had greater vegetation cover, density, and biomass production than Wyoming big sagebrush plant communities. Sagebrush cover was, on average, 2.4-fold higher in mountain big sagebrush plant communities. Perennial forb density and cover were 3.8- and 5.6-fold greater in mountain compared to Wyoming big sagebrush plant communities. Total herbaceous biomass production was approximately twofold greater in mountain than Wyoming big sagebrush plant communities. The results of this study suggest that management guidelines for grazing, wildlife habitat, and other uses should recognize widespread subspecies as indicators of differences in site potentials.  相似文献   

5.
Sagebrush (Artemisia L.) taxa historically functioned as the keystone species on 1 090 000 km2 of rangeland across the western United States, and Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle and Young) is or was dominant on a substantial amount of this landscape. Wyoming big sagebrush provides habitat for numerous wildlife species. Nevertheless, Wyoming big sagebrush communities are commonly manipulated to decrease shrub cover and density and increase the productivity and diversity of herbaceous plants. We examined relationships between management-directed changes in Wyoming big sagebrush and greater sage-grouse (Centrocercus urophasianus), elk (Cervus elaphus), pronghorn (Antilocapra americana), and mule deer (Odocoileus hemionus), species commonly associated with these ecosystems. We focused on herbicide applications, mechanical treatments, and prescribed burning, because they are commonly applied to large areas in big sagebrush communities, often with the goal to improve wildlife habitats. Specifically, our objective was to identify treatments that either enhance or imperil sagebrush habitats for these wildlife species. The preponderance of literature indicates that habitat management programs that emphasize treating Wyoming big sagebrush are not supported with respect to positive responses by sage-grouse habitats or populations. There is less empirical information on ungulate habitat response to Wyoming big sagebrush treatments, but the value of sagebrush as cover and food to these species is clearly documented. A few studies suggest small-scale treatments (≤ 60-m width) in mountain big sagebrush (Artemisia tridentata ssp. vaseyana &lsqb;Rydb.] Beetle) may create attractive foraging conditions for brooding sage-grouse, but these may have little relevance to Wyoming big sagebrush. Recommendations or management programs that emphasize treatments to reduce Wyoming big sagebrush could lead to declines of wildlife species. More research is needed to evaluate the response of sagebrush wildlife habitats and populations to treatments, and until that time, managers should refrain from applying them in Wyoming big sagebrush communities.  相似文献   

6.
7.
Treatments to reduce shrub cover are commonly implemented with the objective of shifting community structure away from shrub dominance and toward shrub and perennial grass codominance. In sagebrush (Artemisia L.) ecosystems, shrub reduction treatments have had variable effects on target shrubs, herbaceous perennials, and non-native annual plants. The factors mediating this variability are not well understood. We used long-term data from Utah’s Watershed Restoration Initiative project to assess short-term (1  4 yr post-treatment) and long-term (5  12 yr post-treatment) responses of sagebrush plant communities to five shrub reduction treatments at 94 sites that span a range of abiotic conditions and sagebrush community types. Treatments were pipe harrow with one or two passes, aerator, and fire with and without postfire seeding. We analyzed effect sizes (log of response ratio) to assess responses of sagebrush, perennial and annual grasses and forbs, and ground cover to treatments. Most treatments successfully reduced sagebrush cover over the short and long term. All treatments increased long-term perennial grass cover in Wyoming big sagebrush (A. tridentata Nutt. ssp. wyomingensis Beetle & Young) communities, but in mountain big sagebrush (ssp. vaseyana [Rydb.] Beetle) communities, perennial grasses increased only when seeded after fire. In both sagebrush communities, treatments generally resulted in short-term, but not long-term, increases in perennial forb cover. Annual grasses (largely invasive cheatgrass, Bromus tectorum L.) increased in all treatments on sites dominated by mountain big sagebrush but stayed constant or decreased on sites dominated by Wyoming big sagebrush. This result was unexpected because sites dominated by Wyoming big sagebrush are typically thought to be less resilient to disturbance and less resistant to invasion than sites dominated by mountain big sagebrush. Together, these results indicate some of the benefits, risks, and contingent outcomes of sagebrush reduction treatments that should be considered carefully in any future decisions about applying such treatments.  相似文献   

8.
Disturbances and their interactions play major roles in sagebrush (Artemisia spp. L.) community dynamics. Although impacts of some disturbances, most notably fire, have been quantified at the landscape level, some have been ignored and rarely are interactions between disturbances evaluated. We developed conceptual state-and-transition models for each of two broad sagebrush groups—a warm-dry group characterized by Wyoming big sagebrush (Artemisia tridentata Nutt. subsp. wyomingensis Beetle & Young) communities and a cool-moist group characterized by mountain big sagebrush (Artemisia tridentata Nutt. subsp. vaseyana [Rydb.] Beetle) communities. We used the Vegetation Dynamics Development Tool to explore how the abundance of community phases and states in each conceptual model might be affected by fire, insect outbreak, drought, snow mold, voles, sudden drops in winter temperatures (freeze-kill), livestock grazing, juniper (Juniperus occidentalis var. occidentalis Hook.) expansion, nonnative annual grasses such as cheatgrass (Bromus tectorum L.), and vegetation treatments. Changes in fuel continuity and loading resulted in average fire rotations of 12 yr in the warm-dry sagebrush group and 81 yr in the cool-moist sagebrush group. Model results in the warm-dry sagebrush group indicated postfire seeding success alone was not sufficient to limit the area of cheatgrass domination. The frequency of episodes of very high utilization by domestic livestock during severe drought was a key influence on community phase abundance in our models. In the cool-moist sagebrush group, model results indicated at least 10% of the juniper expansion area should be treated annually to keep juniper in check. Regardless, juniper seedlings and saplings would remain abundant.  相似文献   

9.
The growth of landscape-scale land management necessitates the development of methods for large-scale vegetation assessment. Field data collection and analysis methods used to assess ecological condition for the 47 165-h North Spring Valley watershed are presented. Vegetation cover data were collected in a stratified random design within 6 Great Basin vegetation types, and the probability of detecting change in native herbaceous cover was calculated using power analyses. Methods for using these quantitative assessment data are presented to calculate a departure index based on reference condition information from LANDFIRE (an interagency effort to map and model fire regimes and other biophysical characteristics at a mid-scale for the entire United States) Biophysical Setting models for the mountain big sagebrush (Artemisia tridentata Nutt. subsp. vaseyana [Rydb.] Beetle) vegetation type. For mountain big sagebrush in the North Spring Valley landscape, we found that the earliest successional classes were underrepresented and that mountain big sagebrush moderately invaded by conifers was more abundant than predicted by the LANDFIRE reference based on the historic range of variability. Classes that were most similar to the reference were mountain big sagebrush with the highest conifer cover and late development mountain big sagebrush with perennial grasses. Overall, results suggested that restoration or approximation of the historic fire regime is needed. This method provides a cost-effective procedure to assess important indicators, including native herbaceous cover, extent of woody encroachment, and ground cover. However, the method lacks the spatial information that would allow managers to comprehensively assess spatial patterns of vegetation condition across the mosaics that occur within each major vegetation type. The development of a method that integrates field measurements of key indicators with remotely sensed data is the next critical need for landscape-scale assessment.  相似文献   

10.
In March 2006 the East Amarillo Complex (EAC) wildfires burned over 367 000 ha of short and mixed grass prairie of the southern High Plains, USA. We studied EAC wildfire effects on perennial grass mortality and peak standing crop on Deep Hardland and Mixedland Slopes ecological sites. Deep Hardlands were dominated by blue grama (Bouteloua gracilis H.B.K. [Griffiths]) and buffalograss (Buchloe dactyloides [Nutt.] Engelm.); common species on Mixedland Slopes were little bluestem (Schizachyrium scoparium [Michx.] Nash.) and sideoats grama (Bouteloua curtipendula [Michx.] Torr.) with scattered sand sagebrush (Artemisia filifolia Torr.) sometimes present. We hypothesized that perennial grass mortality would increase and standing crop would decrease following severe wildfire, and that these responses would be greater than documented prescribed fire effects. Frequency of perennial grass mortality was higher on both sites in burned areas than nonburned areas through three growing seasons following wildfire; however, standing crop was minimally affected. Results suggest that post-wildfire management to ameliorate wildfire effects is not necessary, and that wildfire effects in this area of the southern High Plains are similar to prescribed fire effects.  相似文献   

11.
In sagebrush ecosystems invasion of annual exotics and expansion of piñon (Pinus monophylla Torr. and Frem.) and juniper (Juniperus occidentalis Hook., J. osteosperma &lsqb;Torr.] Little) are altering fire regimes and resulting in large-scale ecosystem transformations. Management treatments aim to increase resilience to disturbance and enhance resistance to invasive species by reducing woody fuels and increasing native perennial herbaceous species. We used Sagebrush Steppe Treatment Evaluation Project data to test predictions on effects of fire vs. mechanical treatments on resilience and resistance for three site types exhibiting cheatgrass (Bromus tectorum L.) invasion and/or piñon and juniper expansion: 1) warm and dry Wyoming big sagebrush (WY shrub); 2) warm and moist Wyoming big sagebrush (WY PJ); and 3) cool and moist mountain big sagebrush (Mtn PJ). Warm and dry (mesic/aridic) WY shrub sites had lower resilience to fire (less shrub recruitment and native perennial herbaceous response) than cooler and moister (frigid/xeric) WY PJ and Mtn PJ sites. Warm (mesic) WY Shrub and WY PJ sites had lower resistance to annual exotics than cool (frigid to cool frigid) Mtn PJ sites. In WY shrub, fire and sagebrush mowing had similar effects on shrub cover and, thus, on perennial native herbaceous and exotic cover. In WY PJ and Mtn PJ, effects were greater for fire than cut-and-leave treatments and with high tree cover in general because most woody vegetation was removed increasing resources for other functional groups. In WY shrub, about 20% pretreatment perennial native herb cover was necessary to prevent increases in exotics after treatment. Cooler and moister WY PJ and especially Mtn PJ were more resistant to annual exotics, but perennial native herb cover was still required for site recovery. We use our results to develop state and transition models that illustrate how resilience and resistance influence vegetation dynamics and management options.  相似文献   

12.
Protected-area sagebrush steppe ecosystems are few in number and increasingly important to the North American conservation network as sagebrush steppe faces growing threats from land use, climate change, and invasive species. We analyzed the distribution and abundance of native perennial and invasive annual plants to better understand patterns of plant invasion within two protected areas: John Day Fossil Beds National Monument (JODA), located in central Oregon, and Craters of the Moon National Monument and Preserve (CRMO), located in southeast Idaho. We used multivariate analysis to examine vegetation monitoring datasets and illuminate geographic variation in plant cover along gradients of well-known aspects of resistance to plant invasion (elevation, exposure [slope and aspect], precipitation and proximity to disturbance). Topographically mediated resistance to invasion appeared to manifest in the park with greater topographic variability (JODA), while increased elevation was more strongly associated with resistant sites in the park, which spanned a greater elevational gradient (CRMO). Factors that may mitigate moisture-mediated resistance also differed between sites. Slope and aspect were factors of apparent resistance for bunchgrass communities in JODA, while high crop year precipitation appeared to benefit medusahead (Taeniatherum caput-medusae [L.] Nevski) and the weedy native subshrub broom snakeweed (Gutierrezia sarothrae [Pursh] Britton & Rusby) over bunchgrasses and Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle & Young). Increased elevation and distance to disturbed areas were the most important factors of resistance in forb-rich communities at CRMO, with the invasive annuals cheatgrass (Bromus tectorum L.), tumblemustard (Sisymbrium altissimum L.), and Descurainia spp. Webb & Bethel. invading in low elevations and in close proximity to roads or agricultural fields. Such complexity underscores the idiosyncratic nature of the manifestation of resistance and the need for place-based empirical studies to provide information for guiding protected-area management.  相似文献   

13.
A decrease in fire frequency and past grazing practices has led to dense mountain big sagebrush (Artemisia tridentata Nutt. subsp. vaseyana [Rydb.] Beetle) stands with reduced herbaceous understories. To reverse this trend, sagebrush-reducing treatments often are applied with the goal of increasing herbaceous vegetation. Mechanical mowing is a sagebrush-reducing treatment that commonly is applied; however, information detailing vegetation responses to mowing treatments generally are lacking. Specifically, information is needed to determine whether projected increases in perennial grasses and forbs are realized and how exotic annual grasses respond to mowing treatments. To answer these questions, we evaluated vegetation responses to mowing treatments in mountain big sagebrush plant communities at eight sites. Mowing was implemented in the fall of 2007 and vegetation characteristics were measured for 3 yr post-treatment. In the first growing season post-treatment, there were few vegetation differences between the mowed treatment and untreated control (P > 0.05), other than sagebrush cover being reduced from 28% to 3% with mowing (P < 0.001). By the second growing season post-treatment, perennial grass, annual forb, and total herbaceous vegetation were generally greater in the mowed than control treatment (P < 0.05). Total herbaceous vegetation production was increased 1.7-fold and 1.5-fold with mowing in the second and third growing seasons, respectively (P < 0.001). However, not all plant functional groups increased with mowing. Perennial forbs and exotic annual grasses did not respond to the mowing treatment (P > 0.05). These results suggest that the abundance of sagebrush might not be the factor limiting some herbaceous plant functional groups, or they respond slowly to sagebrush-removing disturbances. However, this study suggests that mowing can be used to increase herbaceous vegetation and decrease sagebrush in some mountain big sagebrush plant communities without promoting exotic annual grass invasion.  相似文献   

14.
Fire plays a large role in structuring sagebrush ecosystems; however, we have little knowledge of how vegetation changes with time as succession proceeds from immediate postfire to mature stands. We sampled at 38 sites in southwest Montana dominated by 3 subspecies of big sagebrush (Artemisia tridentata Nutt.). At each site we subjectively located 1 sample plot representing the burned area and an unburned macroplot in similar, adjacent, unburned vegetation. Canopy cover of sagebrush was estimated, and plants were counted in 10 microplots. Age and height of randomly chosen sagebrush plants in each size class were determined from 5 microplots. Average postfire time to full recovery of mountain big sagebrush (ssp. vasseyana [Rydb.] Beetle) canopy cover was 32 years, shorter for basin (ssp. tridentata) and much longer for Wyoming (ssp. wyomingensis Beetle & Young) big sagebrush. Height recovered at similar rates. There was no difference in canopy cover or height recovery between prescribed fires and wildfires in stands of mountain big sagebrush. We found no relationship between mountain big sagebrush canopy cover recovery and annual precipitation, heat load, or soil texture. Nearly all unburned sagebrush macroplots were uneven-aged, indicating that recruitment was not limited to immediate postfire conditions in any of the subspecies. Average canopy cover of three-tip sagebrush (A. tripartita Rydb.) did not increase following fire, and many three-tip sagebrush plants established from seed instead of sprouting. Our results suggest that the majority of presettlement mountain big sagebrush stands would have been in early to midseral condition in southwest Montana assuming a mean fire interval of 25 years. Only long fire-return intervals will allow stands dominated by Wyoming big sagebrush to remain on the landscape in our study area. We speculate that effects of site-specific factors conducive to sagebrush recovery are small compared to stochastic effects such as fire.  相似文献   

15.
Russian knapweed (Acroptilon repens [L.] DC.), an exotic perennial forb, has invaded many native ecosystems in western North America. Russian knapweed's success is attributed to allelopathy, extensive tap rooting, zinc accumulation in soils, and a lack of North American predators. Revegetation following chemical control slows exotic reestablishment, but the impacts of Russian knapweed-invaded soils on the establishment of native forbs and shrubs have not been determined. In a greenhouse experiment, we monitored the establishment of two native forbs, Indian blanketflower (Gaillardia aristata Pursh) and purple prairie clover (Dalea purpurea Vent.) and two native shrubs, winterfat (Krascheninnikovia lanata [Pursh] A.D.J. Meeuse & Smit syn. Ceratoides lanata) and Wyoming big sagebrush (Artemisia tridentata Nutt. subsp. wyomingensis [Hook.] Nutt.) in soils obtained from three Russian knapweed invasions and adjacent noninvaded areas. We analyzed soils collected near Greybull and Riverton, Wyoming, and Greeley, Colorado, for cation exchange capacity, organic matter, electroconductivity, pH, and total nitrogen, carbon, and plant-available potassium, zinc, manganese, copper, and phosphate. We documented seedling emergence of the four natives and Russian knapweed every two days for 14–17 weeks, harvested seedlings biweekly to assess their growth, and determined their zinc accumulation. All species established in invaded soil and seedlings were larger in invaded than in noninvaded soils. Invaded rangeland soils had greater organic matter (8.6% and 1.1% in invaded vs. 2.5% and 0.4% in noninvaded soils) and lower pH (7.4 in invaded versus 8.0 noninvaded soils). Zinc concentrations in invaded soils (from 0.15 to 6.56 mg · kg-1) were not high enough to limit plant growth. Reports that Russian knapweed is a hyper-accumulator of zinc are not supported by our seedling data, which suggests that previously invaded soils may not limit native seedlings.  相似文献   

16.
Shrub recruitment in arid and semiarid regions often occurs in pulses controlled by specific weather events. Previous research suggested that Wyoming sagebrush in Wyoming is no exception. We examined four species/subspecies of sagebrush in Nevada, in 2009 and 2010, to discover if evidence of recruitment pulses was contained in the annual growth-ring records. Sagebrush species and subspecies occur on a wide variety of ecological sites that require different management strategies. Species included black sagebrush (Artemisia nova A. Nelson), Wyoming big sagebrush (Artemisia tridentata subsp. wyomingensis Beetle & Young), Lahontan sagebrush (Artemisia arbuscula subsp. longicaulis Winward & McArthur), and low sagebrush (Artemisia arbuscula Nutt. ssp. arbuscula). Eighty stem sections were collected from each of 24 stands (6 stands per species or subspecies) at different geographic locations along east-west or north-south gradients where each species or subspecies naturally occurred. Annual growth-ring analysis was used to determine the year of establishment and the relationship between recruitment and weather events. Results indicated stand ages and locations were different (P > 0.001) among species and subspecies, and years of recruitment were strongly correlated with local and hemispheric weather patterns. Linear and multiple regressions modeled recruitment pulses for all four species. Weather-based predictor variables indicated complex interactions between recruitment and climatic controls. Pacific Decadal Oscillation (PDO) index variables were prominent predictors for all four species at their associated sites. Other important local weather variables included total annual precipitation the year before recruitment, the year of recruitment, and the year following recruitment. In Nevada and the Great Basin, it is imperative that successful sagebrush seeding technologies are discovered and implemented. Ecological restoration and postfire rehabilitation methods should be timed correctly with respect to precipitation patterns (positive phase PDO) and/or designed to mimic conditions responsible for natural sagebrush recruitment.  相似文献   

17.
A threshold represents a point in space and time at which primary ecological processes degrade beyond the ability to self-repair. In ecosystems with juniper (Juniperus L. spp.) encroachment, ecological processes (i.e., infiltration) are impaired as intercanopy plant structure degrades during woodland expansion. The purpose of this research is to characterize influences of increasing juniper on vegetation structure and hydrologic processes in mountain big sagebrush–western juniper (Artemisia tridentata Nutt. subsp. vaseyana [Rydb.] Beetle–Juniperus occidentalis Hook.) communities and to identify and predict states and thresholds. Intercanopy plant cover and infiltration rates were sampled in relation to juniper canopy cover. Study plots, arranged in a randomized complete-block design, represented low shrub–high juniper, moderate shrub–moderate juniper, and high shrub–low juniper percentage of canopy cover levels at four primary aspects. In field plots, percentage of plant cover, bare ground, and steady-state infiltration rates were measured. In the laboratory, juniper canopy cover and topographic position were calculated for the same area using high-resolution aerial imagery and digital elevation data. Parametric and multivariate analyses differentiated vegetation states and associated abiotic processes. Hierarchical agglomerative cluster analysis identified significant changes in infiltration rate and plant structure from which threshold occurrence was predicted. Infiltration rates and percentage of bare ground were strongly correlated (r2 = 0.94). Bare ground was highest in low shrub–high juniper cover plots compared to both moderate and high shrub–low juniper cover levels on south-, east-, and west-facing sites. Multivariate tests indicated a distinct shift in plant structure and infiltration rates from moderate to low shrub–high juniper cover, suggesting a transition across an abiotic threshold. On north-facing slopes, bare ground remained low, irrespective of juniper cover. Land managers can use this approach to anticipate and identify thresholds at various landscape positions.  相似文献   

18.
Anthropogenic disturbances, wildfires, and weedy-plant invasions have destroyed and fragmented many sagebrush (Artemisia L. spp.) habitats. Sagebrush-dependent species like greater sage-grouse (Centrocercus urophasianus) are vulnerable to these changes, making habitat monitoring essential to effective management. Conventional ground inventory methods are time consuming (expensive) and have lower data collection potentials than remote sensing. Our study evaluated the feasibility of ground (0.3-mm ground surface distance [GSD]) and aerial imagery (primarily, 1-mm GSD) to assess ground cover for big sagebrush (Artemisia tridentata Nutt.) and other vegetation functional groups important in sage-grouse breeding habitat (lekking, nesting, and brood rearing). We surveyed ∼ 526 km2 of the upper Powder River watershed in Natrona County, Wyoming, USA, a region dominated by Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle & Young) communities interspersed with narrow riparian corridors. Our study area was used year-round by sage-grouse and included 16 leks. In June 2010, we acquired aerial images (1-mm resolution) for 3 228 systematic sampling locations; additional images were acquired as rapid-succession bursts where aerial transects crossed riparian areas and for 39 riparian and 39 upland ground locations (0.3-mm resolution) within 3.2-km of leks. We used SamplePoint software to quantify cover for plant taxa and functional groups using all ground images and a systematic sampling of aerial images. Canopy cover of sage-grouse food forbs—as averaged across aerial and ground imagery around all leks—was 1.8% and 7.8% in riparian and 0.5% and 4.0% in upland areas, respectively. Big sagebrush cover was 8.7% from upland aerial images and 9.4% from upland ground images. Aerial and ground imagery provided similar values for bare ground and shrubs in riparian and upland areas, whereas ground imagery provided finer-scale herbaceous-cover data that complemented the aerial imagery. These and other image-derived archival data provide a practical basis for landscape-scale management and are a cost-effective means for monitoring extensive sagebrush habitats.  相似文献   

19.
Invasion and dominance of weedy species is facilitated or constrained by environmental and ecological factors that affect resource availability during critical life stages. We compared the relative effects of season, annual weather, site, and disturbance on potential cheatgrass (Bromus tectorum L.) germination in big sagebrush (Artemisia tridentata Nutt.) communities. Soil water status and temperature in the seedbed were measured continuously for 4 years on 9 big sagebrush sites in Nevada and Utah. Field plots at lower-, middle-, and upper-elevation sites were either undisturbed, or were burned, sprayed with herbicide, or both sprayed and burned. Spraying removed perennial herbaceous vegetation, whereas burning removed sagebrush. We used thermal-germination data from laboratory incubation studies of 18 cheatgrass seedlots and field soil moisture and temperature measurements to model and predict potential germination in the field plots for periods when seedbeds were continuously wet (above -0.5, -1, or -1.5 MPa) and across intermittent wet and dry periods. Season had the greatest effect on potential cheatgrass germination, followed by annual weather, and site variables (elevation and location); the effects of disturbance were minimal. Potential germination was predicted for most sites and years in spring, a majority of sites and years in fall, and few sites or years in winter. Even though disturbance has limited effects on potential germination, it can increase cheatgrass invasion and dominance by reducing perennial herbaceous species resource use and allowing increased cheatgrass growth and reproduction.  相似文献   

20.
Restoration of non-sprouting shrubs after wildfire is increasingly becoming a management priority. In the western U.S., Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle & Young) restoration is a high priority, but sagebrush establishment from seed is sporadic. In contrast, planting seedlings often successfully restores sagebrush, but is expensive and time consuming. After planting, hence, there is a need to protect the investment from disturbances such as fire that will erase gains in sagebrush recovery. Grazing is likely the only tool that can be applied feasibly across the landscape to decrease wildfire probability, but there are concerns that grazing and associated activities (e.g. trampling) may negatively impact sagebrush seedlings. We investigated effects of grazing by cattle, applied as a fine fuel management strategy, on planted sagebrush seedlings at five blocks for five years. Grazing substantial reduced exotic annual grasses, large perennial bunchgrasses, and total herbaceous cover, thus achieving fuel management goals. Sagebrush cover and reproductive efforts were almost 2-fold greater in grazed compared to non-grazed areas in the final year of the study. This suggests that grazing favored sagebrush, a generally unpalatable shrub, recovery, likely by reducing competition from highly palatable herbaceous vegetation. Density of sagebrush, however, was similar between grazed and non-grazed areas. This research demonstrates that grazing can be strategically applied to reduce the probability of wildfire in areas with planted sagebrush seedlings; thereby, protecting the investment in sagebrush recovery. With more refinement, it also appears that grazing can be utilized to accelerate the recovery of sagebrush and potentially other woody vegetation habitat by modifying the competitive relationship between herbaceous and woody vegetation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号