首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
干旱、半干旱地区天然草原灌木及其肥岛效应研究进展   总被引:3,自引:0,他引:3  
灌丛可以改变局部的生态小环境,使其周围植物生物量、植物组成、植物化学成分、土壤中大量营养元素和微量营养元素产生变异,将养分集中于灌木灌丛下,改变其周围的局部小环境,影响灌丛下的植被和土壤养分,称作灌丛肥岛效应。灌丛因截留水分、养分及遮阴等作用使其周围局部土壤和植被环境发生变化,导致其树冠下养分和水分聚集,土壤养分相对周围空地更肥沃。探讨干旱和半干旱地区天然草原的灌丛化过程及其生态学效应,了解其对荒漠草地恢复过程的作用,减缓土壤侵蚀和草地生产力下降,对植被的演替和恢复重建等都有重要的生态学意义,并为防治干旱半干旱荒漠生态地区土地退化提供理论依据。  相似文献   

2.
Shrub encroachment in arid and semiarid rangelands, a worldwide phenomenon, results in a heterogeneous landscape characterized by a mosaic of nutrient-depleted barren soil bordered by nutrient-enriched shrubby areas known as “fertile islands.” Even though shrub encroachment is considered as a major contributor to rangeland degradation, little is known about mechanisms favoring the reversibility of the early stages of this process. Here we synthesize the interactions between fires and soil erosion processes, and the implications of these interactions for management of rangelands. The burning of shrub vegetation develops relatively high levels of soil hydrophobicity. This fire-induced water repellency was shown to enhance the soil erodibility in and around burned shrub patches. The fire-induced enhancement of local-scale soil erosion results from changes in the interparticle bonding forces between the soil grains, thus altering the way moisture is retained in the soil. It has been shown—with a number of wind-tunnel studies, field-scale manipulative experiments, microtopographic measurements, and isotopic tracer studies—how the fire-erosion interactions affect the dynamics of fertility islands. Further we propose a new conceptual model of resource “island” dynamics that explains some of the findings previously reported in the literature on the interactions between aeolian processes and arid-land vegetation. In particular, we highlight the ability of fires to enhance the erodibility of nutrient-rich soils accumulated under the shrubs favoring the redistribution of soil resources, thereby contributing to the reversibility of the early stages of shrub encroachment.  相似文献   

3.
Efficacy of fire in reducing shrub density is low in plant communities where most woody plants resprout from stem bases and crowns following fire. Our objective was to determine the relationship of shrub mortality and recovery from summer fire to prefire shrub structural characteristics. A randomized, complete block design with two treatments (burned and control) and three blocks was used in the experiment. Within each block and treatment combination, we randomly selected 40 individuals each of brasil (Condalia hookeri M. C. Johnst.), huisache (Acacia farnesiana [L.] Willd.), and spiny hackberry (Celtis ehrenbergiana [Klotzsch] Liebm.). We estimated height, canopy diameter, number of stems, stem diameter, and distance to the nearest shrubs before ignition of fires. Fires were ignited during July and August 2001. Survival, sprout number, height, and total plant height were estimated 47–52 wk postburn. Mortality of brasil was 26 times greater on burned sites than on control sites, but mortality of huisache and spiny hackberry was negligible. Mortality of brasil varied from 0% to 68% among blocks. Postburn height and number of sprouts increased with preburn shrub height and number of stems, indicating that longer intervals of time between fires that allow shrub growth facilitate more rapid postfire recovery. Factors other than the preburn shrub structural characteristics we measured appear to influence postfire shrub survival most strongly, although these characteristics are useful in predicting postfire sprout production and shrub height.  相似文献   

4.
Semiarid grasslands accumulate soil beneath plant “islands” that are raised above bare interspaces. This fine-scale variation in microtopographic relief is plant-induced and is increased with shrub establishment. Research found that fire-induced water repellency enhanced local-scale soil erosion that reduced variation in microtopographic relief, suggesting that fire may counteract vegetation-driven, fine-scale spatial soil heterogeneity. This article analyzes longer-term measurements (up to 9 yr) of soil microtopography to evaluate the hypothesis that fire in semiarid grasslands results in more homogenous soil microtopographic relief. Changes in soil microtopographic relief were measured prior to and following a total of five fires at three semiarid grasslands within central New Mexico, United States. The fires included three cool-season prescribed fires, a warm-season prescribed fire, and a warm-season wildfire. Four of the five fires resulted in significantly lower soil microtopographic variation that persisted for up to 4 yr. The duration and magnitude of the soil leveling effect was lowest in the grassland with clay-rich soils, indicating a possible soil texture interaction. Although two grasslands had net soil loss following fires, no net erosion occurred at the third grassland, indicating that redistribution of soils can occur without net erosion. These results show that management with prescribed fire reduces biotic-driven variation in soil microtopographic relief in semiarid grasslands that may help limit the transition to shrubland ecosystems in this region.  相似文献   

5.
In 1998, fires burned more than 11 330 ha of rangeland on Dugway Proving Ground in Utah's west desert. Postfire revegetation was implemented in 2 affected salt desert shrub communities (greasewood; Sarcobatus vermiculatus Hook. and black sagebrush/shadscale; Artemisia nova A. Nels; Atriplex confertifolia Torr. & Frem.) to deter cheatgrass (Bromus tectorum L.) encroachment. We monitored cheatgrass densities for 3 years after the fire in burned drill seeded, burned not-seeded, and unburned plots to assess the rate of invasion and determine the impact on cheatgrass of drill seeding perennial species. Cheatgrass invaded quickly in both shrub sites following the fires. In the greasewood site, drill seeded species germinated but did not establish. This was likely due to a combination of soil salinity and extremely dry weather conditions during the second year of the study. Drill seeded species in the black sagebrush site germinated and established well, resulting in the establishment of 16.5 perennial grasses · m-2 and 1 356 shrubs · ha-1. Cheatgrass densities were consistently lower in drill seeded versus not-seeded plots, although these were not always statistically different when Bonferroni comparisons were considered. The initial decrease in cheatgrass densities in drill seeded plots may have resulted from soil disturbance coupled with extremely low precipitation rather than competitive effects. Nevertheless, as seeded species mature and increase their competitive ability, we predict long-term suppression of cheatgrass in the absence of further disturbance.  相似文献   

6.
郭志霞  刘任涛  赵文智 《草业学报》2022,31(10):206-216
在荒漠生态系统中,以人工灌丛进行植被恢复与重建是土地荒漠化防治最有效、最经济、最持久、最稳定的措施之一。土壤动物是荒漠生态系统土壤生物的重要组分,在物质循环、养分流动和信息传递中扮演着重要角色。荒漠灌丛和土壤动物互相作用能够促进灌丛“肥岛”演变,有利于灌丛生态功能发展和退化生态系统有效恢复。降水变化条件下,基于“荒漠灌丛和土壤动物关系”这一核心问题,在总结荒漠灌丛分布特征、荒漠灌丛和土壤动物分布关系的基础上,分析了荒漠灌丛土壤动物分布对降水变化的响应规律及内在机制。在未来全球变化条件下,从荒漠灌丛土壤动物对地上的反馈效应、研究方法与先进技术应用及荒漠灌丛土壤动物多样性与生态系统服务功能方面,探索了荒漠生态系统中荒漠灌丛土壤动物研究中应重点关注的几个科学问题,为荒漠生态系统生物多样性保护、植被建设及响应气候变化管理提供了科学依据。  相似文献   

7.
Settlement by Anglo-Americans in the desert shrublands of North America resulted in the introduction and subsequent invasion of multiple nonnative grass species. These invasions have altered presettlement fire regimes, resulted in conversion of native perennial shrublands to nonnative annual grasslands, and placed many native desert species at risk. Effective management of these ecosystems requires an understanding of their ecological resistance to invasion and resilience to fire. Resistance and resilience differ among the cold and hot desert shrublands of the Great Basin, Mojave, Sonoran, and Chihuahuan deserts in North America. These differences are largely determined by spatial and temporal patterns of productivity but also are affected by ecological memory, severity and frequency of disturbance, and feedbacks among invasive species and disturbance regimes. Strategies for preventing or managing invasive plant/fire regimes cycles in desert shrublands include: 1) conducting periodic resource assessments to evaluate the probability of establishment of an altered fire regime; 2) developing an understanding of ecological thresholds associate within invasion resistance and fire resilience that characterize transitions from desirable to undesirable fire regimes; and 3) prioritizing management activities based on resistance of areas to invasion and resilience to fire.  相似文献   

8.
This study evaluated the efficacy of prescribed fire applied within landscape-scale rotational grazing treatments to reduce mesquite (Prosopis glandulosa Torr.) encroachment and restore herbaceous productivity and cover. One-herd, multiple-paddock rotational grazing was used to accumulate herbaceous fine fuel for fires via prefire deferment and to provide periodic postfire deferment for grass recovery. Treatments were an unburned continuous-grazed control, a four-paddock-1 herd system with fire (4:1F), and an eight-paddock-1 herd system with fire (8:1F), with two replicates per treatment (1 294–2 130 ha per replicate). The management plan was to burn 25% of each system (one paddock in the 4:1F; two paddocks in the 8:1F treatments) and defer grazing during all or portions of the 9 mo (May to January) prior to burning. Deferral was “internalized” by grazing on the remaining 75% of each treatment without reducing stocking rate determined for the entire system. Mesquite cover increased on clay-loam soils from 22% to 40% in unburned paddocks over 7 yr (1995–2001). This increase, coupled with extended drought, reduced fine fuel amounts for fire and limited the number and intensity of fires that were applied. It was possible to burn one paddock in the 8:1F treatment (12.5% of total area), but not in the 4:1F treatment (25% of total area) during drought. Fires reduced mesquite and cactus (Opuntia spp.) cover by 25–79% and 24–56%, respectively, but cover of these species increased to prefire levels within 6 yr. All fires reduced (P ≤ 0.05) total herbaceous biomass for 1 yr postfire. The 8:1F treatment increased (P ≤ 0.05) grass biomass on loamy-bottom soils and reduced (P ≤ 0.05) bare ground on clay-loam and loamy-bottom soils in unburned paddocks compared to the unburned continuously grazed control. The 8:1F treatment, through internalized grazing deferment, facilitated the application of fire to reduce woody cover during extended drought without degrading the herbaceous understory.  相似文献   

9.
The enrichment functions of stem flow and root-induced preferential flow of bushwood are of great importance in the formation and growth and evolution of the fertile island of nebkha. It enhances the vegetation adaption to dry and infertile environment and the stability of ecosystem, thereby plays important eco-hydrological roles in plant reconstruction in desert regions. Making clear the temporal and spatial responses of shrubs to the changes of soil water content during the process of the nebkhas evolution, the maintaining mechanism of biodiversity, and the ecological adaption countermeasure of vegetation to soil water is the keys to further study the formation and evolution of nebkha. In this paper, the formation mechanism of nebkha was reviewed,soil hydrologic process and vegetation response during the nebkha evolution process and the influences of stem flow and root-induced preferential flow of shrubs on the soil fertile island were demonstrated, and the study methods of stem flow and root-induced preferential flow of shrubs were summarized as well. For better evaluating the function of stem flow to the stability of shrub communities and the development of ecosystems in desert regions, more attentions should be paid on the root distribution of shrubs and the movement and redistribution of water and nutrition along with preferential flow path caused by shrub roots in the future research. © 2019 China Agricultural University. All rights reserved.  相似文献   

10.
There has been increasing interest in the use of summer fires to limit woody plant encroachment on grasslands, but information regarding effects of such fires on perennial grass recovery and annual forb production is also needed. Our objective was to examine effects of fire seasonality and intensity on the woody legume honey mesquite (Prosopis glandulosa Torr.), the C4 midgrass tobosagrass (Pleuraphis mutica Buckl.), and the annual forb common broomweed (Amphiachyris dracunculoides [DC.] Nutt.). Treatments included summer fires, high-intensity winter fires, low-intensity winter fires, and no burn in replicated plots. None of the fire treatments caused whole-plant mortality (root kill) in mesquite. Mesquite aboveground mortality (top kill) was much greater after summer and high-intensity winter fires than low-intensity winter fires. Tobosagrass total yield (live + dead) was lower following summer fires and was not enhanced by any of the fire treatments for two growing seasons postfire when compared to the no-burn condition. However, tobosagrass live yield was 40% greater in the high-intensity winter fire treatment than the no-burn condition the first summer postfire and recovered in the other fire treatments by the end of the first growing season postfire. Tobosagrass percentage of live tissue was greatest in the summer fire treatment at the end of each of the two growing seasons postfire. Common broomweed cover increased in the summer fire treatment and decreased in both winter fire treatments relative to the no-burn condition by the end of the first growing season postfire. Summer fire offered no clear advantage over high-intensity winter fire with respect to mesquite suppression. However, the increase in late-season tobosagrass percentage live tissue caused by summer fire may be advantageous for forage quality. In addition, patch burning summer fires to increase broomweed cover in selected areas may be useful for wildlife habitat.  相似文献   

11.
Seeding rangeland following wildfire is a central tool managers use to stabilize soils and inhibit the spread of invasive plants. Rates of successful seeding on arid rangeland, however, are low. The objective of this study was to determine the degree to which water availability, invasive plant abundance, and seeding technology influence postfire seedling establishment. Across four fire complexes, whole plots were either seeded using a rangeland drill, seeded by hand where seeds could be placed at an exact depth, or left as unseeded controls. Irrigation and weeding treatments were applied to subplots within whole plots in an incomplete factorial design. In three of the four fires, seeding method was the single factor limiting establishment with seedling density over sevenfold higher in the hand-seeded compared to the drill-seeded treatments. In contrast to our hypotheses, water and weeding had no positive effect on seedling establishment in any of the four fires; however, background weed density was relatively low. The native community recovered at all sites with minimal bunchgrass mortality. These results strongly suggest a need for a decision framework that evaluates postfire seeding needs relative to natural recovery. Based on these initial results, it appears modest improvements in seeding technology may yield substantial increases in seeding success.  相似文献   

12.
Fuel consumption predictions are necessary to accurately estimate or model fire effects, including pollutant emissions during wildland fires. Fuel and environmental measurements on a series of operational prescribed fires were used to develop empirical models for predicting fuel consumption in big sagebrush (Artemisia tridentata Nutt.) ecosystems. Models are proposed for predicting fuel consumption during prescribed fires in the fall and the spring. Total prefire fuel loading ranged from 5.3–23.6 Mg · ha?1; between 32% and 92% of the total loading was composed of live and dead big sagebrush. Fuel consumption ranged from 0.8–22.3 Mg · ha?1, which equates to 11–99% of prefire loading (mean = 59%). Model predictors include prefire shrub loading, proportion of area burned, and season of burn for shrub fuels (R2 = 0.91). Models for predicting proportion of area burned for spring and fall fires were also developed (R2 = 0.64 and 0.77 for spring and fall fire models, respectively). Proportion of area burned, an indicator of the patchiness of the fire, was best predicted from the coverage of the herbaceous vegetation layer, wind speed, and slope; for spring fires, day-of-burn 10-h woody fuel moisture content was also an important predictor variable. Models predicted independent shrub consumption measurements within 8.1% (fall) and 12.6% (spring) for sagebrush fires.  相似文献   

13.
Plant-soil variation related to perennial-plant resource islands (coppices) interspersed with relatively bare interspaces is a major source of heterogeneity in desert rangelands. Our objective was to determine how native and exotic grasses vary on coppice mounds and interspaces (microsites) in unburned and burned sites and underlying factors that contribute to the variation in sagebrush-steppe rangelands of the Idaho National Lab, where interspaces typically have abiotic crusts. We asked how the exotic cheatgrass (Bromus tectorum L.) and native bluebunch wheatgrass (Pseudoroegneria spicata [Pursh] A. Löve) were distributed among the microsites and measured their abundances in three replicate wildfires and nearby unburned areas. We conducted a common-garden study in which soil cores from each burned microsite type were planted with seed of either species to determine microsite effects on establishment and growth of native and exotic grasses. We assessed soil physical properties in the common-garden study to determine the intrinsic properties of each microsite surface and the retention of microsite soil differences following transfer of soils to the garden, to plant growth, and to wetting/drying cycles. In the field study, only bluebunch wheatgrass density was greater on coppice mounds than interspaces, in both unburned and burned areas. In the common-garden experiment, there were microsite differences in soil physical properties, particularly in crust hardness and its relationship to moisture, but soil properties were unaffected by plant growth. Also in the experiment, both species had equal densities yet greater dry mass production on coppice-mound soils compared to interspace soils, suggesting microsite differences in growth but not establishment (likely related to crust weakening resulting from watering). Coppice-interspace patterning and specifically native-herb recovery on coppices is likely important for postfire resistance of this rangeland to cheatgrass.  相似文献   

14.
As wildland fire frequency increases around the globe, a better understanding of the patterns of plant community recovery in burned landscapes is needed to improve rehabilitation efforts. We measured establishment of seeded species, colonization of Bromus tectorum and other nonnative annual plants, and recovery of nonseeded native species in topographically distinct areas within five fires that burned Great Basin shrub-steppe communities in Elko County, Nevada. Plant density, frequency, and cover data were collected annually for 4 yr postfire. Vegetation composition varied among flat areas and north- and south-facing aspects, and changed over the course of the sampling period; recovery varied among sites. In general, B. tectorum densities were higher on south aspects, particularly 3 and 4 yr after fire, when densities increased dramatically relative to prefire conditions. Nonseeded native perennial grasses, forbs, and shrubs were abundant in three of the five fire sites, and were more likely to be present on north aspects and flat areas. Over time, nonseeded perennial grass densities remained relatively constant, and nonseeded forbs and shrubs increased. Seeded species were most likely to establish in flat areas, and the density of seeded perennial grasses, forbs, and shrubs decreased over time. Frequency and density measurements were highly correlated, especially for perennial species. Our results emphasize the value of considering site aspect and the potential for native regrowth when planning and monitoring restorations. For example, effective rehabilitation of south aspects may require the development of new restoration methods, whereas north aspects and flat areas in sites with a strong native component were not improved by the addition of seeded species, and may require weed control treatments, rather than reseeding, to improve recovery. Tailoring revegetation objectives, seed mixes, seeding rates, and monitoring efforts to conditions that vary within sites may lead to more cost effective and successful restoration.  相似文献   

15.
土壤作为高寒带植被的立地条件,是高寒灌丛生态系统发挥其生态功能的重要基础之一。本研究选取祁连山东段头花杜鹃、山生柳和金露梅3种典型灌丛斑块土壤作为研究对象,系统分析围封前后其理化性质分布特征。结果表明:土壤含水量、有机碳、全磷、全钾、速效氮5个理化指标在灌下、灌外差异显著;土壤含水量、容重、有机碳、全磷、速效氮、速效磷6个理化指标在围栏内外差异显著。主成分分析进一步表明,围栏内速效氮与孔隙度的贡献率较高,表明围封后速效氮与孔隙度是影响祁连山东段3种灌丛斑块土壤理化性质的重要环境因子;围栏外速效氮与全磷的贡献率较高,表明有放牧干扰时速效氮与全磷是影响祁连山东段3种灌丛斑块土壤理化性质的重要环境因子。头花杜鹃灌丛斑块不论是否受到放牧干扰,均能保持其良好的土壤理化性质,表明头花杜鹃灌丛斑块抗外界干扰能力较强。短期围封能够显著增加灌丛斑块土壤含水量和速效养分含量,从而改善立地条件,也进一步证明围封更加有利于退化灌丛草地的恢复与重建。  相似文献   

16.
The savanna areas of South Africa can be divided into the moist and arid savanna types according to the availability of soil moisture. Bush encroachment is a serious veld management problem in all the savanna areas and veld burning is a potential eradication technique in situations with an adequate grass cover to support an intense fire. In the moist savannas fire per se can be used to control bush encroachment but in the arid savannas it has the role of maintaining trees and shrubs at an available height and in acceptable state for browsing animals. Intense head fires applied at the end of the dormant season are used for bush eradication. The frequency of burning is relatively high in the moist savannas but is very low in the arid savannas, being usually limited to years with above average rainfall when adequate grass fuel loads can be accumulated. Veld burning provides an attractive economic and energy saving technique of solving the problem of bush encroachment in the savanna areas of South Africa.  相似文献   

17.
草原灌丛化已成为全球干旱和半干旱地区的普遍现象,关于灌木扩张对草地土壤固氮微生物群落的影响及其机制尚不清楚。小叶锦鸡儿是广泛生长于内蒙古草原的豆科灌木,研究其对土壤固氮微生物群落的影响具有重要意义。本研究采用传统培养法结合分子生物学技术,比较了荒漠草原(干旱地区)和典型草原(半干旱地区)小叶锦鸡儿灌丛内外不同土壤深度固氮微生物群落的差异,并从灌丛对群落物种的选择性、灌丛沃岛效应、灌丛效应和干旱效应的相互关系等方面探讨引起这些差异的机制。结果表明:小叶锦鸡儿灌丛不仅增加了固氮微生物群落的物种丰富度和多度,而且改变了群落组成。群落组成的改变表现在37.50%~58.33%种属的多度发生显著变化、优势属及其优势地位改变、灌丛内外Jaccard相异性指数较大(0.40~0.76)和灌丛内外NMDS(非度量多维度尺度分析)群落组成排序图的分异;ANOSIM检验表明灌丛内外群落组成差异显著。灌丛对固氮微生物群落的效应随着土层深度增加而衰减,随着干旱增加而加强。灌丛对固氮微生物群落的影响大于气候干旱对其的影响。灌木小叶锦鸡儿对固氮微生物群落影响机理是:1)灌丛对固氮微生物物种具有选择性;2)灌丛通过...  相似文献   

18.
本研究利用Li-8100开路式土壤通量测量系统对新疆准噶尔盆地古尔班通古特沙漠南缘荒漠灌丛草地生长季土壤呼吸速率进行了观测,分析了该地土壤呼吸特征及其与土壤温、湿度的关系。研究表明各层土壤温、湿度随着季节表现出明显的周期性变化特征,不同深度土壤温、湿度垂直梯度明显。荒漠灌丛草地土壤呼吸白天呈"双峰型"曲线;生长季土壤呼吸速率白天高于夜晚,草地土壤呼吸速率约为裸地的4倍;裸地夜间土壤表现为碳吸收过程。白天土壤呼吸速率与土壤温、湿度呈负相关关系,夜间为正相关关系;生长季白天土壤水分条件对土壤呼吸速率的影响更大,而夜间土壤温、湿度对土壤呼吸过程的影响均小于白天。该研究为明确干旱区碳收支过程提供一定的理论依据。  相似文献   

19.
Much interest lies in long-term recovery rates of sagebrush communities after fire in the western United States, as sagebrush communities comprise millions of hectares of rangelands and are an important wildlife habitat. Little is known about postfire changes in sagebrush canopy cover over time, especially at a landscape scale. We studied postfire recovery of shrub canopy cover in sagebrush-steppe communities with the use of spectral mixture analysis. Our study included 16 different fires that burned between 1937 and 2005 and one unburned site at the US Sheep Experiment Station in eastern Idaho. Spectral mixture analysis was used with September 2006 Systeme Pour l’Observation de la Terre-5 (SPOT-5) satellite imagery to estimate percent shrub canopy cover within pixels. Very large-scale aerial (VLSA) imagery with 24-mm resolution was used for training and validation. SPOT-5 image classification was successful and the spectral mixture analysis estimates of percent shrub canopy cover were highly correlated with the shrub canopy cover estimates in the VLSA imagery (R2 = 0.82; P < 0.0001). Additional accuracy assessment of shrub classification produced 85% overall accuracy, 98% user’s accuracy, and 78% producer’s accuracy. This successful application of spectral mixture analysis has important implications for the monitoring and assessment of sagebrush-steppe communities. With the use of the percent shrub canopy cover estimates from the classified SPOT-5 imagery, we examined shrub canopy recovery rates since different burn years. With the use of linear-plateau regression, it was determined that shrub cover in mountain big sagebrush (Artemisia tridentata Nutt. subsp. vaseyana [Rydb.] Beetle) communities recovered approximately 27 yr after fire, with an average shrub cover of 38%. These results are consistent with other field-based studies in mountain big sagebrush communities.  相似文献   

20.
Plant demographic responses to an experimental summer fire were monitored for 12 yr on the Sevilleta National Wildlife Refuge, New Mexico, to determine recovery rates of burned plants and evaluate fire effectiveness in preventing shrub invasion of desert grasslands. Fourteen common species of grasses, shrubs, yucca, and cacti were measured for mortality, resprouting, regrowth, herbivory, and reproduction. After the first postfire growing season, black grama (Bouteloua eriopoda [Torr.] Torr.) declined 80% in size, whereas blue grama (Bouteloua gracilis [Willd. ex Kunth] Lag. ex Griffiths) exhibited no decline. Linear regression indicated that B. eriopoda needed 11 yr to recover. Spike dropseed (Sporobolus contractus A.S. Hitchc.) and purple three-awn (Aristida purpurea Nutt.) showed postfire declines in plant sizes, requiring 4- and > 5-yr recovery times, respectively. Sand muhly (Muhlenbergia arenicola Buckl.) exhibited no fire impact. Snakeweed (Gutierrezia sarothrae [Pursh] Britt. & Rusby) sustained 61% fire mortality and reduction in regrowth canopy size. Creosotebush (Larrea tridentata [Sesse & Moc. ex DC.] Coville) had 12% mortality, but survivors recovered over 12 yr. Fourwing saltbush (Atriplex canescens [Pursh] Nutt.) sustained 62% mortality, but recovered plant size in 5–6 yr. Winterfat (Krascheninnikovia lanata [Pursh] A. D. J. Meeuse & Smit) suffered 7% mortality, but required 9+ yr to recover. Pale desert-thorn (Lycium pallidum Miers) survived fire, recovering prefire canopy size in 3 yr. Torrey joint-fir (Ephedra torreyana Watson) exhibited < 1% mortality, and recovered in 2–3 yr. Soapweed yucca (Yucca glauca Nutt.) had < 2% mortality, recovered plant sizes in 2 yr, and increased numbers of rosettes 17%. Chollas (Opuntia imbricata [Haw.] DC. and Opuntia clavata Engelm.) suffered high mortality rates and required > 12 yr recovery times. Results demonstrated that summer fire may counter some shrub and cacti invasion in central New Mexico, but once shrubs mature, fire is less effective in removing woody plants to restore southwestern grasslands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号