首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The short‐term effects of stocking rate (AUE ha?1) and cattle‐to‐sheep ratio on the extent and severity of patch grazing and on patch size were evaluated. The extent of patch grazing was proportional to stocking rate, and livestock species had a small but significant effect. Patch size was also a function of stocking rate. Cattle and sheep had similar effects on patch size distribution when stocked at the same number of AUE ha?1. The severity of grazing within a patch was influenced by both stocking rate and cattle‐to‐sheep ratio. Recommendations that cattle should be grazed together with sheep and that cattle should be in greater proportion (in terms of AUE ha?1) than sheep, which are aimed at limiting the severity of grazing by sheep, are supported. However, severe grazing within patches is an inevitable consequence of sheep grazing irrespective of the stocking rate or cattle‐to‐sheep ratio applied.  相似文献   

2.
Kikuyu pastures at the Ukulinga research farm near Pietermaritzburg were fertilized with 150 and 300 kg nitrogen (N) ha?1 in the summer periods of 1985–86 and 1986–87, and were continuously grazed with steers at stocking rates of 5.4, 8.0 and 10.7 steers ha?1. In the second season the high N level pasture was also grazed under 12‐paddock rotational grazing at stocking rates of 5.4, 8.0 and 13.4 steers ha?1. In the first season the high N level provided higher (P≤0.05) animal weight gains, but there was no difference between N levels in animal weight gain during the second season. Rotational grazing provided higher weight gains than continuous grazing in the second season. The increased weight gains obtained from high N fertilization and rotational grazing were probably caused by higher forage availability rather than higher forage quality.  相似文献   

3.
Selective grazing can modify the productive capacity of rangelands by reducing competitiveness of productive, palatable species and increasing the composition of more grazing-resistant species. A grazing system (season-long and short-duration rotational grazing) × stocking rate (light: 16 steers · 80 ha-1, moderate: 4 steers · 12 ha-1, and heavy: 4 steers · 9 ha-1) study was initiated in 1982 on northern mixed-grass prairie. Here, we report on the final 16 years of this study (1991–2006). Spring (April + May + June) precipitation explained at least 54% of the variation in peak standing crop. The percentage of variation explained by spring precipitation was similar between stocking rates with short-duration grazing but decreased with increasing stocking rate for season-long grazing. April precipitation explained the greatest percentage of the variation in peak standing crop for the light stocking rate (45%), May precipitation for the moderate stocking rate (49%), and June precipitation for the heavy stocking rate (34%). Peak standing crop was 23%–29% greater with light (1 495 ± 66 kg · ha-1, mean ± 1 SE) compared to moderate (1 218 ± 64 kg · ha-1) and heavy (1 156 ± 56 kg · ha-1) stocking rates, which did not differ. Differences in peak standing crop among stocking rates occurred during average and wet but not dry springs. Neither the interaction of grazing system and stocking rate nor grazing system alone affected standing crop across all years or dry, average, or wet springs. Grazing-induced modification of productive capacity in this northern mixed-grass prairie is attributed to changes in species composition with increasing stocking rate as the less productive, warm-season shortgrass blue grama (Bouteloua gracilis [H.B.K.] Lag. ex Griffiths) increases at the expense of more productive, cool-season midheight grasses. Land managers may need to substantially modify management to offset these losses in productive capacity.  相似文献   

4.
This research measured steer gains, aboveground biomass remaining at the end of the growing season, and economic returns of tallgrass prairie grazed under season-long stocking (SLS-C) and a grazing system that included a 2-yr rotation of SLS-rotated (SLS-R) and intensive early stocking (IES; 2× normal stocking rate) + late-season grazing at the normal stocking rate (IES + LSG-R). We hypothesized that even though the stocking rate on the IES + LSG-R pasture was above the recommended rate, the greater regrowth availability in the late season would result in steers gaining as well as or better than those stocked SLS at the normal rate. By rotating the IES + LSG treatment with SLS over 2 yr, we anticipated that the aboveground biomass productive capacity of the IES + LSG pasture would be restored in one growing season. Further, we hypothesized that the increased stocking rate with IES + LSG would increase net profit. Comparing traditional season-long stocking to the system, which was a combination of SLS and IES + LSG rotated sequentially over a 2-yr period, the system increased steer gains by 7 kg · hd?1 and by 30 kg · ha?1, had a consistent reduction of 429 kg · ha?1 biomass productivity, and increased net profit by $55.19 per steer and $34.28 per hectare.  相似文献   

5.
A study was conducted on upland range in the Nebraska Sandhills to determine differences in plant species frequency of occurrence and standing crop at various topographic positions on pastures grazed with short-duration grazing (SDG) and deferred-rotation grazing (DRG). Pastures within each grazing treatment were grazed at comparable stocking rates (SDG = 1.84 animal unit months (AUM) · ha?1; DRG = 1.94 AUM · ha?1) by cow–calf pairs from 1999 to 2005 and cow–calf pairs and spayed heifers from 2006 to 2008. Plant frequency of occurrence data were collected from permanently marked transects prior to, midway through, and at the conclusion of the study (1998, 2003, and 2008, respectively) and standing crop data were collected annually from 2001 to 2008 at four topographic positions (dune top, interdune, north slope, and south slope). Livestock performance data were collected during the last 3 yr of the study (2006 to 2008). Positive change in frequency of occurrence of prairie sandreed (Calamovilfa longifolia [Hook.] Scribn.) was 42% greater on DRG pastures than SDG after 10 yr. Total live standing crop did not differ between DRG and SDG except in 2001 when standing crop was 23% greater on DRG pastures. Standing crop of forbs and sedge was variable between grazing methods on interdune topographic positions depending on year. Average daily gain of spayed heifers (0.84 ±  kg · d?1 SE) did not differ between SDG and DRG. Overall, SDG was not superior to a less intensively managed grazing method (i.e., DRG) in terms of vegetation characteristics and livestock performance.  相似文献   

6.
Shrub encroachment can be explained by the abandonment of extensive livestock farming and changes to land use, and it is a common problem in the Mediterranean mountain pastures of Europe, with direct effects on biodiversity and landscape quality. In this paper, the effects of livestock exclusion vs. grazing on the dynamics of shrub and herbaceous vegetation were analyzed in a Spanish natural park located in a dry Mediterranean mountain area over a 5-yr period. Twelve 10 × 10 m exclosures were set up in six representative pasture areas of the park (with two replicates per location). Each year, the shrub number, volume, and biomass were measured in April, and the herbage height, biomass, and quality were measured in April and December (which represent the start and end of the vegetative growth season). A sustained increase of the shrub population and individual biomass was observed throughout the study, which was reflected in total shrub biomass per ha. Growth was greater in nongrazed exclosures (2 563 kg dry matter [DM] · ha?1 · yr?1), but it also happened in the grazed control areas (1 173 kg DM · ha?1 · yr?1), with different patterns depending on the location and shrub species. Herbage biomass did not change when grazing was maintained, but it did increase in places where grazing was excluded (291 kg DM · ha?1 · yr?1), mostly as a consequence of the accumulation of dead material, with a concomitant reduction in herbage quality. It was concluded that at the current stocking rates and management regimes, grazing alone is not enough to prevent the intense dynamics of shrub encroachment, and further reductions in grazing pressure should be avoided.  相似文献   

7.
Soil properties that influence the capacity for infiltration and moisture retention are important determinants of rangeland productivity. Monitoring effects of grazing on dynamic soil properties can assist managers with stocking rate decisions, particularly if monitoring takes into account environmental variability associated with inherent soil morphological properties. On a Pacific Northwest Bunchgrass Prairie in northeast Oregon, we applied three cattle stocking rates (0.52, 1.04, and 1.56 animal unit months · ha?1) and an ungrazed control in a randomized complete block design for two 42-d grazing seasons and measured the change in four dynamic soil properties: soil penetration resistance, soil aggregate stability, bare ground, and herbaceous litter cover. To address apparent environmental heterogeneity within experimental units, we also utilized a categorical soil factor (termed Edaphic Habitat Types or EHT), determined by characterizing soil depth, texture, and rock fragment content at sample sites. Stocking rate did not affect extent of bare ground or soil aggregate stability. Stocking rate had a significant effect on penetration resistance, which was greatest at the high stocking rate (1.6 J · cm?1 ± 0.1 SE) and lowest in the control (1.1 J · cm?1 ± 0.1 SE). For litter cover, the effects of stocking rate and EHT interacted. In two rocky EHTs, litter cover was highest in the controls (60% ± 6 SE; 50% ± 3 SE) and ranged from 27% ± 3 SE to 33% ± 6 SE in the stocking rate treatments. Measures of penetration resistance, aggregate stability, and bare ground were different across EHTs regardless of stocking rate, but did not interact with stocking rate. Our study demonstrates that response of dynamic soil properties to stocking rates should be considered as a useful and accessible approach for monitoring effects of livestock management decisions on rangeland conditions.  相似文献   

8.
Biological soil crusts (BSCs) are important in many arid and semiarid ecosystems for their abilities to fix atmospheric nitrogen (N) and stabilize surface soil. Grazing disturbance has a profound influence on abundance, species composition, and ecological functioning of BSCs. To elucidate the effects of grazing on BSCs in Inner Mongolia grasslands, an investigation was conducted in a typical steppe that had previously been subjected to long-term grazing with six grazing densities (control: 0 sheep · ha?1, very light: 4 sheep ·ha?1, light: 8 sheep · ha?1, medium: 12 sheep · ha?1, heavy: 16 sheep · ha?1, and very heavy: 20 sheep · ha?1). Cover, species composition, potential N-fixing activity, and potential N input of BSC indicate that long-term grazing significantly reduced the importance of BSC in N input and soil stabilization. Such reductions were highly related to grazing density. Very light grazing had no significant effect on the role of BSC in soil stabilization, but resulted in a 13.3% reduction in BSC N input potential. Heavy and very heavy grazing led to a decrease of potential N input by one order of magnitude, and a decline of BSC function via a shift from high coverage of an attached group–dominated BSC community to a low coverage of a vagrant group–dominated community. Constraining grazing level to a very light density—and to a lesser extent, a light grazing density—is likely a preferred practice for conserving BSC and the ecological services it provides in N fixation and soil stabilization.  相似文献   

9.
Grazing plays a key role in many ecosystems worldwide and can affect the structure and composition of terrestrial plant communities. Nonetheless, how grazing management, especially grazing regime (yearlong continuous and seasonal grazing), affects the relationship between grazing and vegetation on alpine grasslands has not been extensively studied. Here, we performed a grazing experiment in Gangcha county of Qinghai province of the Qinghai-Tibetan Plateau to test the effects of different stocking rates and grazing regimes on grassland biomass and plant structure and composition. Six stocking rates (ranging from 0 to 5.62 sheep ha? 1) were used for continuous grazing, and three grazing intensities (1.72, 2.87, and 5.62 sheep ha? 1) were used for seasonal grazing (grazed only in the growing season, from June to October) at the study sites. Plant biomass and grass functional community composition were characterized in two different yr (2011 and 2012). Additionally, species richness and plant diversity indexes were estimated to quantify the impacts of grazing on plant community composition. Our results indicated that grazing intensity best explained the plant biomass decrease in low-productivity environments, and different grazing regimes also influenced these results. The shifts in plant community structure and composition in response to increased grazing intensity differed considerably between continuous grazing and seasonal grazing. Seasonal grazing maintained greater amounts of palatable plant species, and fewer undesirable species in plant communities when compared with the composition after continuous grazing. Our results emphasize the importance of grazing regime in regulating the effects of grazing on plant communities and the importance of seasonal grazing for ecosystem maintenance, especially in the Qinghai-Tibetan Plateau. This suggests that periodic resting of grasslands could be a good management strategy to keep palatable species, thereby minimizing undesirable species in the overall species composition.  相似文献   

10.
Understanding the long-term effect of summer grazing date and fall stocking rate on herbage production is critical to extending the grazing season in the Nebraska Sandhills. A study was conducted from 1997 to 2002 at the Gudmundsen Sandhills Laboratory located near Whitman, Nebraska, to determine the herbage production response to summer grazing date and October stocking rate on two different sites. Site 1 was dominated by warm-season grasses and site 2 was dominated by cool-season graminoids. At each site, three 0.37-ha pastures were constructed in each of four blocks before application of summer grazing treatments. Pastures in each block were grazed at 0.5 animal-unit months (AUM) · ha?1 in June or July, or were deferred from summer grazing. Following summer grazing treatments, October stocking rate treatments (no grazing or 1.0, 2.0, or 3.0 AUM · ha?1) were applied to subunits of each summer grazing date pasture during mid-October. Vegetation was sampled in each pasture in mid-June and mid-August and sorted by functional group to determine the effect of 5 yr of grazing treatments on herbage production and residual herbage. Herbage production was not affected by summer or October grazing treatments on the warm-season grass–dominated site. Increasing October stocking rate, however, reduced cool-season graminoid production and subsequent herbage production 25% by year 5 of the study. Residual herbage at both sites at the end of the October grazing periods explained as much as 16% to 34% of subsequent year’s herbage production. Grazing managers in the Nebraska Sandhills can extend the grazing season by lightly stocking pastures in the summer to facilitate additional fall grazing. Heavy stocking in October over several years on cool-season–, but not warm-season–, dominated sites will reduce production of cool-season graminoids on these sites.  相似文献   

11.
Conventional wisdom among rangeland professionals has been that for long-term sustainability of grazing livestock operations, rangeland should be kept in high good to low excellent range condition. Our objective was to analyze production parameters, costs, returns, and profit using data generated over a 34-yr period (1969–2002) from grazing a Clayey range site in the mixed-grass prairie of western South Dakota with variable stocking rates to maintain pastures in low–fair, good, and excellent range condition classes. Cattle weights were measured at turnout and at the end of the grazing season. Gross income · ha?1 was the product of gain · ha?1 and price. Prices were based on historical National Agricultural Statistics Services feeder cattle prices. Annual variable costs were estimated using a yearling cattle budget developed by South Dakota State University agricultural economists. All economic values were adjusted to a constant dollar using the Bureau of Labor Statistics' Consumer Price Index. Stocking rate, average daily gain, total gain, net profit, gross revenue, and annual costs · ha?1 varied among range condition classes. Net income for low–fair range condition ($27.61 · ha?1) and good range condition ($29.43 · ha?1) were not different, but both were greater than excellent range condition ($23.01 · ha?1). Over the life of the study, real profit (adjusted for inflation) steadily increased for the low–fair and good treatments, whereas it remained level for the excellent treatment. Neither drought nor wet springs impacted profit differently for the three treatments. These results support generally observed rancher behavior regarding range condition: to maintain their rangeland in lower range condition than would be recommended by rangeland professionals. Ecosystem goods and services of increasing interest to society and associated with high range condition, such as floristic diversity, hydrologic function, and some species of wildlife, come at an opportunity cost to the rancher.  相似文献   

12.
Abstract

The production of an irrigated grass/clover pasture was evaluated under continuous grazing at a range of stocking rates (20.6 to 35.9 Merino ewe units ha‐1 and two nitrogen fertiliser treatments (0 and 300 kg N ha‐1 a‐1) over a period of four years. The clover content of the pastures declined, while the grass component increased with increased pasture age on both nitrogen treatments, leading to grass domination by the end of the trial period. The clover content (%) of the green dry matter (DM) was higher and the grass content (%) lower on the zero‐nitrogen than the nitrogen‐fertilised pastures, with the average daily gain of the sheep and wool production per ewe unit highest at low stocking rates on the zero‐nitrogen treatment. However, the total amount of green DM was higher on the nitrogen‐fertilised than on the unfertilized treatment, resulting in higher stocking rates for maximum wool and meat production per hectare. A higher profit margin was realised at lower stocking rates on the zero‐nitrogen treatment when compared with the fertilised treatment. The low weaning mass of the lambs at high stocking rates on the fertilised pastures questions the profitability of using nitrogen fertiliser on irrigated grass/clover pastures.  相似文献   

13.
An experiment was conducted to evaluate the influence of forest fuels reduction on diet quality, botanical composition, relative preference, and foraging efficiency of beef cattle grazing at different stocking rates. A split plot factorial design was used, with whole plots (3 ha) being fuel reduced or no treatment (control), and split plots (1 ha) within whole plots were grazed to three levels of forage utilization; (low) 3 heifers · ha?1, (moderate) 6 heifers · ha?1, (high) 9 heifers · ha?1, with a 48-h grazing duration. Grazing treatments were applied in August of 2005 and 2006. Cattle diet composition and masticate samples were collected during 20-min grazing bouts using six ruminally cannulated cows in each experimental unit. Relative preference indices indicated a strong preference for grass regardless of treatment and stocking rate. Grass consumption was lower in control pastures (P < 0.05) and tended (P < 0.095) to decrease with increased stocking rates. Shrub use was higher in control pastures displaying a quadratic effect (P < 0.05) due to stocking, whereas shrub use increased with stocking rate across all treatments. Cattle grazing control pastures consumed diets higher in crude protein compared to cattle grazing treated pastures (P < 0.05). In vitro dry matter digestibility values were lower (P < 0.05) in control sites and tended (P = 0.10) to decrease with increased stocking rates. In both control and treated pastures, bites per minute and grams consumed per minute declined (P = 0.003) with increased stocking, indicating foraging efficiency of cattle decreases with increased stocking rates. Our data indicated cattle grazing late season grand fir habitat types have a strong preference for grasses regardless of treatment or stocking rate. However, as stocking rate increased in both control and treated pastures, grass consumption decreased, shrub consumption increased, and foraging efficiency decreased.  相似文献   

14.
The presence of grazing cattle near open waterways has created environmental concerns related to the potential for water contamination. In Florida the removal of cattle from grazing landscapes or decreasing stocking density is being investigated as one option to improve the quality of surface water runoff draining into Lake Okeechobee, Florida. The objective of this study was to determine the effects of stocking rate on cow-calf performance, forage availability and quality, and ranch economic performance. Experimental pastures were established on a southern Florida cow-calf operation with stocking rates of 0.58, 1.01, and 1.35 ha·cow-1 on summer pastures and 0.93, 1.62, and 2.16 ha·cow-1 on winter pastures, corresponding to high, medium, and low rates, respectively. The study was conducted over 4 consecutive production years. Cow body condition scores (BCS), pregnancy rate, and calf average daily gain were used as measures of animal performance. Forage utilization was estimated by measuring the difference between forage yield inside and outside grazing exclusion cages and forage quality by crude protein and in vitro organic matter digestibility. Forage yield, utilization, and quality were not significantly affected by stocking rate. Although statistically not significant (P = 0.17), cattle in the high stocking rate experienced a numerically greater loss of BCS following the winter grazing period, but stocking rate did not affect pregnancy rate or calf gains. Production (kg weaned calves·ha-1) was increased (P < 0.01) for a high stocking rate compared with medium and low stocking rates. Overall ranch profitability will decrease as stocking rates decline. Ranch revenues decrease one-for-one as stocking rates decrease. At the same time, unit cow costs increase at an increasing rate as fewer brood cows are left to support the ranch's fixed cost structure.  相似文献   

15.
Complete rest or grazing deferment is a general recommendation to encourage vegetative recovery following fire in the western United States. However, effects of grazing deferments on animal performance have not been determined. Prescribed fires were individually applied to nine separate, 1.5-ha pastures each year (2006 and 2007) for a total of 18 pastures. Grazing was deferred until spring (16 May), early summer (19 June), or late summer (1 August) the growing season after fire. At the end of each deferment, a 70-d (2007) or 41-d (2008) grazing period was initiated. Stocking rates were consistent between treatments within year, but were adjusted between years to achieve the targeted residual biomass of approximately 300 kg · ha?1. Diet quality was assessed approximately every 15 d throughout each grazing period (three pastures · period?1) via collection of rumen extrusa throughout the 2-yr study. Ewe body weight was measured on and off-test for each grazing period. Diet extrusa samples for in vitro organic matter disappearance was less (P = 0.03) for late summer than early summer grazing periods and equal to the spring period (62.9, 64.6, and 61.0 ± 0.90%, respectively for spring, early summer, and late summer grazing periods). In vitro neutral detergent fiber disappearance decreased (P = 0.01) by 10.6 percentage units from early grazing to late grazing period in 2007, whereas no differences were observed in 2008. Ewe average daily gain did not differ between spring and early summer grazing periods and were greater (P = 0.03) than the negligible body weight gains of the late summer grazing period. Total gain was 10.9 kg · ha?1 greater in 2008, and a quadratic response was measured for grazing period in 2007. Results indicate that deferment until early summer may be preferable so that stocking rates can be more accurately determined and animal performance is not diminished.  相似文献   

16.
Beef cattle production from rangelands in the Southern Great Plains has decreased in concert with herbaceous forage production declines in response to woody plant encroachment by honey mesquite (Prosopis glandulosa Torr.) over the past 120 yr. Combinations of livestock overstocking and fire suppression are considered to be primary drivers of these changes. This experiment evaluated cow–calf production responses over a 7-yr (1995–2001) period to ranch-scale (1 294–2 130 ha) integrated restoration strategies involving prescribed fire and grazing management. Restoration strategies tested in this year-round grazing ecosystem were 4-pasture, 1-herd rotation with fire (25% of pasture acreage burned each year; 4:1F); an 8-pasture, 1-herd rotation, with fire (8:1F); and a 4-pasture, 1-herd, with fire and aerial application of 0.28 kg · ha?1 clopyralid + 0.28 kg · ha?1 triclopyr herbicide (4:1F / H). Restoration strategies were compared to a continuous grazing strategy with no mesquite treatment. All cattle stocking rates were moderate (7.5–15 ha · animal unit?1 · year?1) and all fires were applied during late winter. Beef cattle (cow–calf) production variables measured included conception rate, weaned calf percentage, weaning weight, weight of calf per exposed cow, weight of calf per hectare, and supplement fed per cow. We observed significant differences in beef production among strategies primarily during the first 2 yr where the continuous grazing strategy exhibited better overall livestock production than the integrated restoration strategies. Differences in livestock production among strategies were minimal over the last 5 yr of the study. These livestock production results suggest livestock and management adapted to restoration strategies after the first 2 yr. Results point to the need to cautiously transition into integrated grazing and fire restoration strategies when cattle and management are changed and intensified from prior historical protocols.  相似文献   

17.
为了解不同放牧利用强度对荒漠草原土壤水分含量的影响,采用随机区组设计,研究轻度(LG)、中度(MG)、重度(HG)放牧对短花针茅荒漠草原土壤水分含量的影响。不同放牧强度的载畜率分别为O.93(LG)、1.82(MG)、2.71(HG)sheep/(hm^2half year),放牧羊只数分别为4、8、12只,放牧期为6个月/年。采用对应分析法比较不同放牧强度下近地表层0~10cm、10~20cm、20~30cm土壤的水分含量。结果表明,不同放牧梯度条件下,土壤含水量总体变化规律为LG〉CK〉MG〉HG.不同土层土壤含水量总体变化规律为0~10cm〉20-30cm〉10-20cm。各放牧强度对总特征值贡献率大小趋势为CK〉MG〉HG〉LG。随着放牧强度的增加,土壤含水量差异明显且呈梯度下降趋势。0-10cm土层土壤含水量受放牧强度的影响最大,其次为10~20cm和20~30cm土层.  相似文献   

18.
Questions have been raised about whether herbaceous productivity declines linearly with grazing or whether low levels of grazing can increase productivity. This paper reports the response of forage production to cattle grazing on prairie dominated by Kentucky bluegrass (Poa pratensis L.) in south-central North Dakota through the growing season at 5 grazing intensities: no grazing, light grazing (1.3 ±  animal unit months [AUM] · ha-1), moderate grazing (2.7 ±  AUM · ha-1), heavy grazing (4.4 ±  AUM · ha-1), and extreme grazing (6.9 ±  AUM · ha-1; mean ± SD). Annual herbage production data were collected on silty and overflow range sites from 1989 to 2005. Precipitation and sod temperature were used as covariates in the analysis. On silty range sites, the light treatment produced the most herbage (3 410 kg · ha-1), and production was reduced as the grazing intensity increased. Average total production for the season was 545 kg · ha-1 less on the ungrazed treatment and 909 kg · ha-1 less on the extreme treatment than on the light treatment. On overflow range sites, there were no significant differences between the light (4 131 kg · ha-1), moderate (4 360 kg · ha-1), and heavy treatments (4 362 kg · ha-1; P &spigt; 0.05). Total production on overflow range sites interacted with precipitation, and production on the grazed treatments was greater than on the ungrazed treatment when precipitation (from the end of the growing season in the previous year to the end of the grazing season in the current year) was greater than 267.0, 248.4, 262.4, or 531.5 mm on the light, moderate, heavy, and extreme treatments, respectively. However, production on the extreme treatment was less than on the ungrazed treatment if precipitation was less than 315.2 mm. We conclude that low to moderate levels of grazing can increase production over no grazing, but that the level of grazing that maximizes production depends upon the growing conditions of the current year.  相似文献   

19.
Understanding the drivers that account for plant production allows for a better understanding of plant communities and the transitions within ecological sites and can assist managers in making informed decisions about stocking rates and timing of grazing. We compared climatic drivers of herbage production for 3 plant communities of the Clayey ecological site in southwestern South Dakota: the midgrass community dominated by western wheatgrass (Pascopyrum smithii [Rybd.] A. Love); the mixed-grass community codominated by western wheatgrass, blue grama (Bouteloua gracilis [H.B.K.] Lag. Ex Griffiths), and buffalograss (Buchloe dactyloides [Nutt.] Engelm.); and the shortgrass community dominated by blue grama and buffalograss. We used herbage yield and weather data for the period 1945–1960 collected at the South Dakota State University Range and Livestock Research Station near Cottonwood, South Dakota, to develop stepwise regression models for each plant community. Midgrass herbage production was best predicted by current-year spring (April–June) precipitation, number of calendar days until the last spring day with minimum temperature ≤ -1°C, and previous-year spring precipitation (R2 = 0.81). Mixed-grass herbage production was best predicted by current-year spring precipitation and days until the last spring freeze (R2 = 0.69). Shortgrass herbage production was best predicted by current-year spring precipitation (R2 = 0.52). Midgrass plant communities were, overall, 650 kg·ha-1 (SE = 92 kg·ha-1) more productive (P < 0.01) than mixed- or shortgrass plant communities given the same climatic inputs. Our study enables managers to make timely informed decisions regarding stocking rates and timing of grazing on this ecological site in western South Dakota.  相似文献   

20.
Minimizing nonpoint source nutrient pollution is important to the sustainability of grazing lands. Increased nutrient loads have reduced water quality in Lake Okeechobee in south Florida, prompting establishment of a Total Maximum Daily Load (TMDL) that will require large reductions in phosphorus (P) runoff into the lake. A significant portion of this reduction must come from beef cattle ranches, the major land use in the region. A large-scale research project, consisting of a 420-ha array of 8 improved summer and 8 semi-improved winter pastures, was established from 1998–2003 to investigate the influence of beef cattle stocking rate on nutrient loads in surface runoff. Each pasture type had two replicates of four different cattle stocking rates including a control with no cattle and stocked pastures with low, medium, and high stocking rates (1.3, 1.0, 0.6 ha·AU-1 [animal unit] in summer pastures; 2.1, 1.6, and 0.9 ha·AU-1 in winter pastures). Cattle stocking rate did not affect nutrient concentrations or loads in surface runoff during the study period. Average annual P discharges were 1.71 kg·ha-1 from summer pastures and 0.25 kg·ha-1 from winter pastures. Average total P concentrations in runoff were 0.63 mg·L-1 for summer pastures and 0.15 mg·L-1 for winter pastures. Differences in runoff P were related to differences in soil P test results, a difference believed to be due to prior fertilization practices. Our findings show that reducing cattle stocking rates on beef cattle pastures is not an effective practice for reducing nutrient loads, and that accumulation of P in soil from historical fertilization has an overriding influence on P loads in surface runoff. Results indicate that reducing the overall volume of surface discharges would be a more effective strategy than altering cattle stocking practices to reduce nonpoint runoff of P from cattle pastures in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号