首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Context

Species are expected to shift their distributions in response to global environmental changes and additional protected areas are needed to encompass the corresponding changes in the distributions of their habitats. Conservation policies are likely to become obsolete unless they integrate the potential impacts of climate and land-use change on biodiversity.

Objectives

We identify conservation priority areas for current and future projected distributions of Iberian bird species. We then investigate the extent to which global change informed priority areas are: (i) covered by existing protected area networks (national protected areas and Natura 2000); (ii) threatened by agricultural or urban land-use changes.

Methods

We use outputs of species distributions models fitted with climatic data as inputs in spatial prioritization tools to identify conservation priority areas for 168 bird species. We use projections of land-use change to then discriminate between threatened and non-threatened priority areas.

Results

19% of the priority areas for birds are covered by national protected areas and 23% are covered by Natura 2000 sites. The spatial mismatch between protected area networks and priority areas for birds is projected to increase with climate change. But there are opportunities to improve the protection of birds under climate change, as half of the priority areas are currently neither protected nor in conflict with urban or agricultural land-uses.

Conclusions

We identify critical areas for bird conservation both under current and climate change conditions, and propose that they could guide the establishment of new conservation areas across the Iberian Peninsula complementing existing protected areas.
  相似文献   

2.

Context

Urban environments create a wide range of habitats that harbour a great diversity of plant species, many of which are of alien origin. For future urban planning and management of the green areas within the city, understanding of the spatial distribution of invasive alien species is of great importance.

Objectives

Our main aim was to assess how availability of different ecosystem types within a city area, as well as several parameters describing urban structure interact in determining the cover and identity of invasive alien species.

Methods

We studied the distribution of chosen invasive plant species in a mid-sized city in the Czech Republic, central Europe, on a gradient of equal sized cells from the city centre to its outskirts.

Results

A great amount of variation was explained by spatial predictors but not shared with any measured variables. The species cover of invasive species decreased with increasing proportion of urban greenery and distance from the city centre, but increased with habitat richness; road margins, ruderal sites, and railway sites were richest in invasive species. In contrast, the total number of invasive species in cells significantly decreased with increasing distance from the city centre, but increased with habitat richness.

Conclusions

Our results suggest that different invasive species prefer habitats in the vicinity of the city centre and at its periphery and the spatial structure and habitat quality of the urban landscape needs to be taken into account, in efforts to manage alien plant species invasions in urban environments.
  相似文献   

3.

Context

Urban green space (UGS) is widely espoused in sustainable urban design. Notwithstanding its ecosystem services, UGS is commonly perceived as inadvertent habitats for urban mosquitoes. Moreover, the lack of ecological understanding of mosquitoes and their urban habitats renders vector control in green spaces without reliance on chemical and bio-pesticides especially challenging.

Objectives

This study envisages the application of a comparative analytical method for the evaluation and optimization of vector management in different urban spaces. The research examines the extent of male habitat preference as measured by population characteristics of urban adult mosquitoes on green roof and control sites.

Methods

Adult mosquito traps were deployed on green roofs (GR), bare roofs (negative control, NC), and low-elevation gardens (positive control, PC). Distribution of male and female members of vector species were analyzed

Results

Urban adult male mosquitoes exhibited highly-selective habitat use of the studied urban spaces, in that they were clustered chiefly in PC. Their spatial distributions are consistently explained by site group even under the stringent measure of presence/absence. The sex ratios of GR and NC were highly skewed toward females, which lends further to the interpretation of strong male habitat preference for the studied PC gardens.

Conclusions

Urban mosquitoes do not display similar degrees of affinity for different types of green infrastructure. The methodology used can help prioritize urban sites and optimize control strategies. The uses of amenable environmental features salient to mosquito survival in landscape design should be explored as a sustainable and environmentally-friendly vector management approach.
  相似文献   

4.

Context

The assessment of land-use impacts on biodiversity is one of the central themes of landscape ecology and conservation biology. However, due to the complexity of biodiversity, it is impossible to obtain complete information about the diversity of all species even for small areas, necessitating the selection of individual species or assemblages thereof as species surrogate. In parts of the world where taxonomic expertise is lacking, species identification has hindered progress in biodiversity conservation, and the only practical, relatively-accurate option, is the use of taxonomic minimalism.

Objective

We carried out a rapid biodiversity assessment based on three surrogates—land-use (driver-surrogate), terrestrial arthropods (species-surrogate) and morphospecies (taxonomic-surrogate)—to determine the impacts of land-use on biodiversity of the Western Region (Ghana), an area covering ~4 % of the West African biodiversity hotspot.

Method

We used diversity profiles to visualize the distribution of a total of 8848 arthropod individuals over seven land-use types which define the complete heterogeneity of the landscape.

Results

Here, we present both sample and asymptotic diversity profiles of arthropod morphospecies for each land-use type and the potential of each land-use type for conserving arthropods.

Conclusions

We conclude that (1) the morphospecies approach is useful for detecting differences in species diversity of land-use types; (2) the concept of asymptotic diversity may not be necessary for land-use based biodiversity comparison; and (3) maximum diversity profiles are useful for determining the land-use conservation values in cases where pristine areas are not available.
  相似文献   

5.

Purpose

Urbanisation is a leading cause of biotic homogenisation in urban ecosystems. However, there has been little research examining the effect of urbanisation and biotic homogenisation on aquatic communities, and few studies have compared findings across different urban landscapes. We assessed the processes that structure aquatic macroinvertebrate diversity within five UK cities and characterise the heterogeneity of pond macroinvertebrate communities within and among urban areas.

Methods

A total of 132 ponds were sampled for invertebrates to characterise biological communities of ponds across five UK cities. Variation among sites within cities, and variation among urban settlements, was partitioned into components of beta diversity relating to turnover and nestedness.

Results

We recorded 337 macroinvertebrate taxa, and species turnover almost entirely accounted for the high beta-diversity recorded within each urban area and when all ponds were considered. A total of 40% of all macroinvertebrates recorded were unique to a particular urban settlement. In contrast to the homogenisation of terrestrial and lotic communities in urban landscapes reported in the literature, ponds support highly heterogeneous communities within and among urban settlements.

Conclusions

The high species turnover (species replacement) recorded in this study demonstrates that urban pond biodiversity conservation would be most efficient at a landscape-scale, rather than at the individual ponds scale. Pond conservation practices need to consider the spatial organization of ecological communities (landscape-scale) to ensure that the maximum possible biodiversity can be protected.
  相似文献   

6.

Context

Complex landscapes with high resource availability can support more diverse natural enemy communities and better natural pest control by providing resources and facilitating organism dispersal. Moreover, in agricultural landscapes, local agroecosystem management can support biodiversity maintenance and pest control by adding resources in less complex landscapes with fewer resources. However, we lack an understanding of how local and landscape factors interact to affect natural enemy communities and their site fidelity to agroecosystems in urban landscapes (i.e., cityscapes).

Objective

To better understand how local and landscape factors influence natural enemies in urban agroecosystems, we used urban community gardens as a model system to test if and how local resource manipulation and differences in cityscape quality affect natural enemy (ladybird beetles, parasitoid wasps) communities and their fidelity to urban habitats.

Methods

We performed two manipulations. First, we added local floral resources in 6 of 12 gardens situated in different cityscapes to measure differences in natural enemy biodiversity. Second, in those 12 gardens, with and without resource additions, we manipulated populations of a common natural enemy, Hippodamia convergens, to assess fidelity to the gardens.

Results

Floral resource additions increased parasitoid abundance and changed community composition, but had little effect on ladybeetle abundance, richness or site fidelity. Rather, ladybeetle fidelity to gardens was lower in gardens in low quality cityscapes with high impervious cover.

Conclusions

Cityscape quality influences natural enemies in and fidelity to gardens. Landscape-moderated biodiversity patterns observed in rural landscapes likely differ from urban contexts with implications for pest control.
  相似文献   

7.

Context

To understand, even improve, the land of shrinking nature and spreading urbanization, a science applicable from remote natural areas to cities is needed.

Objective

Today’s scientific principles of urban ecology are articulated and compared with ecology based primarily on natural ecosystems; we either robustly merge the trajectories or watch them diverge.

Methods

A literature review emphasizes that the field of ecology emerged from late 19th century and early 20th century research mostly in semi-natural environments, whereas urban ecology mainly developed from studying plants, habitat types, and ecosystem nutrient flows in late 20th century city environments.

Results

Ninety urban ecology principles are identified and succinctly stated. Underlying the principles, 18 distinctive types of urban attributes are recognized in four major groups: land uses; built objects; permeating anthropogenic flows; human decisions/activities. The attributes or objects studied in “natural area” ecology and urban ecology differ sharply, as do the primary objects present in late 19th century and late 20th century cities. None of the 90 basic principles would have emerged from research on natural areas, and all are readily usable for improving urban and urbanizing areas.

Conclusion

Incorporating urban ecology science into ecology’s body of principles and theory now should catapult the field of ecology to the next level, and noticeably increase its usefulness for society.
  相似文献   

8.

Context

Connectivity is fundamental to understanding how landscape form influences ecological function. However, uncertainties persist due to the difficulty and expense of gathering empirical data to drive or to validate connectivity models, especially in urban areas, where relationships are multifaceted and the habitat matrix cannot be considered to be binary.

Objectives

This research used circuit theory to model urban bird flows (i.e. ‘current’), and compared results to observed abundance. The aims were to explore the ability of this approach to predict wildlife flows and to test relationships between modelled connectivity and variation in abundance.

Methods

Circuitscape was used to model functional connectivity in Bedford, Luton/Dunstable, and Milton Keynes, UK, for great tits (Parus major) and blue tits (Cyanistes caeruleus), drawing parameters from published studies of woodland bird flows in urban environments. Model performance was then tested against observed abundance data.

Results

Modelled current showed a weak yet positive agreement with combined abundance for P. major and C. caeruleus. Weaker correlations were found for other woodland species, suggesting the approach may be expandable if re-parameterised.

Conclusions

Trees provide suitable habitat for urban woodland bird species, but their location in large, contiguous patches and corridors along barriers also facilitates connectivity networks throughout the urban matrix. Urban connectivity studies are well-served by the advantages of circuit theory approaches, and benefit from the empirical study of wildlife flows in these landscapes to parameterise this type of modelling more explicitly. Such results can prove informative and beneficial in designing urban green space and new developments.
  相似文献   

9.

Context

Ecological research, from organismal to global scales and spanning terrestrial, hydrologic, and atmospheric domains, can contribute more to reducing health vulnerabilities. At the same, ecological research directed to health vulnerabilities provides a problem-based unifying framework for urban ecologists.

Objective

Provide a framework for expanding ecological research to address human health vulnerabilities in cities.

Methods

I pose an urban ecology of human health framework that considers how the ecological contributions to health risks and benefits are driven by interacting influences of the environment, active management, and historical legacies in the context of ecological self-organization. The ecology of health framework is explored for contrasting examples including heat, vector borne diseases, pollution, and accessible greenspace both individually and in a multifunctional landscape perspective.

Results

Urban ecological processes affect human health vulnerability through contributions to multiple hazard and well-being pathways. The resulting multifunctional landscape of health vulnerability features prominent hotspots and regional injustices. A path forward to increase knowledge of the ecological contributions to health vulnerabilities includes increased participation in in interdisciplinary teams and applications of high resolution environmental sensing and modeling.

Conclusions

Research and management from a systems and landscape perspective of ecological processes is poised to help reduce urban health vulnerability and provide a better understanding of ecological dynamics in the Anthropocene.
  相似文献   

10.

Context

Natural regenerating forests are rapidly expanding in the tropics. Forest transitions have the potential to restore biodiversity. Spatial targeting of land use policies could improve the biodiversity benefits of reforesting landscapes.

Objective

We explored the relative importance of landscape attributes in influencing the potential of tree cover increase to restore native woody plant biodiversity at the landscape scale.

Methods

We developed land use scenarios that differed in spatial patterns of reforestation, using the Pangor watershed in the Ecuadorian Andes as a case study. We distinguished between reforestation through natural regeneration of woody vegetation in abandoned fallows and planted forests through managed plantations of exotic species on previously cultivated land. We simulated the restoration of woody plant biodiversity for each scenario using LANDIS-II, a process-based model of forest dynamics. A pair-case comparison of simulated woody plant biodiversity for each scenario was conducted against a random scenario.

Results

Species richness in natural regenerating fallows was considerably higher when occurring in: (i) close proximity to remnant forests; (ii) areas with a high percentage of surrounding forest cover; and (iii) compositional heterogeneous landscapes. Reforestation at intermediate altitudes also positively affected restoration of woody plant species. Planted exotic pine forests negatively affected species restoration.

Conclusions

Our research contributes to a better understanding of the recolonization processes of regenerating forests. We provide guidelines for reforestation policies that aim to conserve and restore woody plant biodiversity by accounting for landscape attributes.
  相似文献   

11.

Context

Changes in land use have disruptive effects on community structure, causing many species to disappear, though a few thrive and become pests.

Objectives

To gain understanding on how anthropogenic activity changes spatial patterns of native species diversity while favoring pests, we conducted rapid biodiversity assessments of dacine fruit flies across eight regions in Southeast Asia.

Methods

Male lure traps were maintained for 2 days along transects at 233 sites, in forest, agricultural and urban environments.

Results

A total of 8393 individuals were collected, belonging to 57 described and 4 new or unidentified species. The majority (78 %) of individuals belonged to 14 pest species, dominated by Bactrocera dorsalis (Hendel). The 57 species represent 38 % of those recorded from the region, indicating effective sampling. Individual flies were collected in highest numbers in urban and agricultural sites, but species diversity was low. Forest samples yielded fewer specimens but highest species diversity, suggesting a shift in community structure after disturbance, benefiting a few pest species at the expense of the broader community, even in the same genus and ecological guild.

Conclusions

Dacine fruit flies may be useful in assessing habitat quality and bait systems permit the execution of rapid biodiversity and multi-species conservation assessments. Our results apply to broader patterns concerning biodiversity loss and the emergence of pest species under increasingly intensive land use gradients, and demonstrate the remarkable loss of biodiversity over very narrow distances as forest is converted into agricultural use, hence the importance in maintaining a mosaic of native habitats.
  相似文献   

12.
13.

Context

Although biodiversity in cities is essential to ensure the healthy functioning of ecosystems and biosecurity over time, biodiversity loss resulting from human interventions in land cover patterns is widespread in urban landscapes. In the Southern Hemisphere, climate change is likely to accelerate the process of landscape upheavals, and consequently biodiversity loss.

Objectives & Methods

The aim of this research is to test the potentials of landscape pattern composition and configuration in safeguarding indigenous avifauna against the local impacts of climate change in urban landscapes, with reference to New Zealand. To build up a platform for landscape pattern interpretation, the literature was reviewed and semi-structured interviews with six subject-matter experts were conducted to provide information about the most important avifauna in the study area, key information on their ecological traits and niches, possible impacts of climate change on their primary habitats, and spatial requirements for ongoing species survival as the climate continues to change. A spatial analysis of land cover patterns was undertaken in Wellington, New Zealand using GIS and FRAGSTATS.

Results

Although there are still opportunities for biodiversity conservation in the study area, the current land cover patterns are unlikely to safeguard the selected species against climate change impacts.

Conclusions

Eight implications for avifauna persistence under climate change are discussed for the first time in relation to a New Zealand context. These implications can give rise to a higher level of informed decision-making on a wide range of practices for biodiversity conservation related to uncertainties associated with climate change.
  相似文献   

14.

Context

The history of the landscape directly affects biotic assemblages, resulting in time lags in species response to disturbances. In highly fragmented environments, this phenomenon often causes extinction debts. However, few studies have been carried out in urban settings.

Objectives

To determine if there are time lags in the response of temperate natural grasslands to urbanization. Does it differ for indigenous species and for species indicative of disturbance and between woody and open grasslands? Do these time lags change over time? What are the potential landscape factors driving these changes? What are the corresponding vegetation changes?

Methods

In 1995 and 2012 vegetation sampling was carried out in 43 urban grassland sites. We calculated six urbanization and landscape measures in a 500 m buffer area surrounding each site for 1938, 1961, 1970, 1994, 1999, 2006, and 2010. We used generalized linear models and model selection to determine which time period best predicted the contemporary species richness patterns.

Results

Woody grasslands showed time lags of 20–40 years. Contemporary open grassland communities were, generally, associated with more contemporary landscapes. Altitude and road network density of natural areas were the most frequent predictors of species richness. The importance of the predictors changed between the different models. Species richness, specifically, indigenous herbaceous species, declined from 1995 to 2012.

Conclusions

The history of urbanization affects contemporary urban vegetation assemblages. This indicates potential extinction debts, which have important consequences for biodiversity conservation planning and sustainable future scenarios.
  相似文献   

15.

Context

Conflict over land use is endemic to natural resource management given the limited availability of resources and multiple stakeholders’ interests, but there has been limited research to examine conflict from an integrative social-ecological perspective.

Objectives

We sought to determine how the potential for land use conflict—a social construct—was related (or not) to ecological systems of landscapes.

Methods

Using participatory mapping data from a regional case study in Australia, we identified the potential for land use conflict using a model that combines spatially-explicit place values with preferences for specific land uses related to development and conservation. Multiple proxies of biodiversity were used to evaluate the landscape’s ecological systems at ecosystems and species levels. Range maps were used to identify areas of high species diversity value using the conservation planning software Zonation.

Results

We spatially intersected conflict areas with landscape attributes and found the potential for conflict over conservation to be higher in coastal areas than inland areas, more likely to be located in areas with moderate vegetation cover, more concentrated in ecosystems classified as ‘No Concern’ with moderate to high native vegetation. Potential conflict over conservation was disproportionately higher in areas with higher species diversity derived from conservation modelling.

Conclusions

The social-ecological associations in conflict analysis can inform impact assessment of land use plans on biodiversity, assist development of effective approaches to reconcile conservation and other land uses, support conservation planning by identifying priorities for conflict negotiation and understanding underlying factors for conflict.
  相似文献   

16.

Context

The role of agricultural landscapes in biodiversity conservation is an emerging topic in a world experiencing a worrying decrease of species richness. Farm systems may either decrease or increase biological diversity, depending on land-use intensities and management.

Objectives

We present an intermediate disturbance-complexity model (IDC) of cultural landscapes aimed at assessing how different levels of anthropogenic disturbance on ecosystems affect the capacity to host biodiversity depending on the land matrix heterogeneity. It is applied to the Mallorca Island, amidst the Mediterranean biodiversity hotspot.

Methods

The model uses the disturbance exerted when farmers alter the Net Primary Production through land-use change as well as when they remove a share of it (HANPP), together with Shannon–Wiener index (H′) of land-cover diversity. The model is tested with a twofold-scalar experimental design (1:50,000 and 1:5000) of a set of landscape units along three time points (1956, 1989, 2011). Species richness of breeding and wintering birds, taken as a biodiversity proxy, is used in an exploratory factor analysis.

Results

The results clearly show that when intermediate levels of HANPP are performed within intermediate levels of complexity (H′) in landscape patterns, like agro-forest mosaics, great bird species richness and high socio-ecological resilience can be maintained. Yet, these complex-heterogeneous landscapes are currently vanishing due to industrial farm intensification, rural abandonment and urban sprawl.

Conclusions

The results make apparent the usefulness of transferring the concept of intermediate disturbance-complexity interplay to cultural landscapes. Our spatial-explicit IDC model can be used as a tool for strategic environmental assessment of land-use planning.
  相似文献   

17.

Context

‘Conserving Nature’s stage’ has been advanced as an important conservation principle because of known links between biodiversity and abiotic environmental diversity, especially in sensitive high-latitude environments and at the landscape scale. However these links have not been examined across gradients of human impact on the landscape.

Objectives

To (1) analyze the relationships between land-use intensity and both landscape-scale biodiversity and geodiversity, and (2) assess the contributions of geodiversity, climate and spatial variables to explaining vascular plant species richness in landscapes of low, moderate and high human impact.

Methods

We used generalized additive models (GAMs) to analyze relationships between land-use intensity and both geodiversity (geological, geomorphological and hydrological richness) and plant species richness in 6191 1-km2 grid squares across Finland. We used linear regression-based variation partitioning (VP) to assess contributions of climate, geodiversity and spatial variable groups to accounting for spatial variation in species richness.

Results

In GAMs, geodiversity correlated negatively, and plant species richness positively, with land-use intensity. Both relationships were non-linear. In VP, geodiversity best accounted for species richness in areas of moderate to high human impact. These overall contributions were mainly due to variation explained jointly with climate, which dominated the models. Independent geodiversity contributions were highest in pristine environments, but low throughout.

Conclusions

Human action increases biodiversity but may reduce geodiversity, at landscape scale in high-latitude environments. Better understanding of the connections between biodiversity and abiotic environment along changing land-use gradients is essential in developing sustainable measures to conserve biodiversity under global change.
  相似文献   

18.

Context

Protected areas are a cornerstone of the global strategy for conserving biodiversity, and yet their efficacy in comparison to unprotected areas is rarely tested. In the highly fragmented forests of temperate regions, landscape context and forest history may be more important than protection status for plant species diversity.

Objectives

To determine whether there are differences in plant diversity between protected areas and private lands while controlling for landscape context, forest age, and other important factors.

Methods

We used a database of 156 one-hectare forest plots distributed over 120,000 km2 in the fragmented forests of southern Ontario to test whether protected areas and private forests differed in native species richness, relative abundance of exotic species, and the probability of finding species of conservation concern.

Results

Plots with more forest on the surrounding landscape had higher native species richness, lower abundance of exotic species, and greater probability of supporting at least one species of conservation concern. Young forests tended to have higher abundance of exotics, and were less likely to support species of conservation concern. Surprisingly, privately owned forests had greater native species richness and were more likely to support species of conservation concern once these other factors were accounted for. In addition, there were significant interactions between ownership type, forest history, and landscape context.

Conclusions

Our results highlight the importance of privately owned forests in this region, and the need to consider forest history and landscape context when comparing the efficacy of protected areas versus private land for sustaining biodiversity.
  相似文献   

19.

Context

We address the issue of adapting landscapes for improved insect biodiversity conservation in a changing climate by assessing the importance of additive (main) and synergistic (interaction) effects of land cover and land use with climate.

Objectives

We test the hypotheses that ant richness (species and genus), abundance and diversity would vary according to land cover and land use intensity but that these effects would vary according to climate.

Methods

We used a 1000 m elevation gradient in eastern Australia (as a proxy for a climate gradient) and sampled ant biodiversity along this gradient from sites with variable land cover and land use.

Results

Main effects revealed: higher ant richness (species and genus) and diversity with greater native woody plant canopy cover; and lower species richness with higher cultivation and grazing intensity, bare ground and exotic plant groundcover. Interaction effects revealed: both the positive effects of native plant canopy cover on ant species richness and abundance, and the negative effects of exotic plant groundcover on species richness were greatest at sites with warmer and drier climates.

Conclusions

Impacts of climate change on insect biodiversity may be mitigated to some degree through landscape adaptation by increasing woody native vegetation cover and by reducing land use intensity, the cover of exotic vegetation and of bare ground. Evidence of synergistic effects suggests that landscape adaptation may be most effective in areas which are currently warmer and drier, or are projected to become so as a result of climate change.
  相似文献   

20.

Context

The variation in spatial distribution between ecosystem services can be high. Hence, there is a need to spatially identify important sites for conservation planning. The term ‘ecosystem service hotspot’ has often been used for this purpose, but definitions of this term are ambiguous.

Objectives

We review and classify methods to spatially delineate hotspots. We test how spatial configuration of hotspots for a set of ecosystem services differs depending on the applied method. We compare the outcomes to a heuristic site prioritisation approach (Marxan).

Methods

The four tested hotspot methods are top richest cells, spatial clustering, intensity, and richness. In a conservation scenario we set a target of conserving 10 % of the quantity of five regulating and cultural services for the forest area of Telemark county, Norway.

Results

Spatial configuration of selected areas as retrieved by the four hotspots and Marxan differed considerably. Pairwise comparisons were at the lower end of the scale of the Kappa statistic (0.11–0.27). The outcomes also differed considerably in mean target achievement, cost-effectiveness in terms of land-area needed per unit target achievement and compactness in terms of edge-to-area ratio.

Conclusions

An ecosystem service hotspot can refer to either areas containing high values of one service or areas with multiple services. Differences in spatial configuration among hotspot methods can lead to uncertainties for decision-making. This also has consequences for analysing the spatial co-occurrence of hotspots of multiple services and of services and biodiversity.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号