首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Context

Allometric scaling laws are foundational to structuring processes from cellular to ecosystem levels. The idea that allometric relationships underlie species characteristic selection scales, the spatial scales at which species respond to landscape features, has recently been investigated, however, supporting empirical evidence is scarce.

Objectives

Lack of pattern can be explained by inaccurate estimation, low power, confounding factors, or absence of a relationship. In this paper, we evaluate the relationship between body size and species characteristic selection scales after overcoming limitations of previous study designs.

Methods

We conducted 1328 avian point counts across the state of Nebraska using the robust sampling design to account for imperfect detection. We used Bayesian latent indicator scale selection with N-mixture models to estimate species’ characteristic selection scales of six habitat features for 86 species. We propagated the uncertainty associated with assigning characteristic scales to a model of the relationship between body size and characteristic spatial scales.

Results

Species characteristic scales varied across habitat predictors, and varied in the uncertainty associated with selecting single characteristic scales. After propagating uncertainty our results do not support a relationship between species’ body size and the spatial scales at which they respond to landscape features.

Conclusions

As species abundance integrates birth, death, immigration, and emigration processes, each of which are influenced by ecological processes manifesting at various scales, we question whether a general allometric relationship should be expected. Our results suggest that selection may act on responses to specific environmental features, rather than responses to spatial scale per se.
  相似文献   

2.

Context

Scale dependence of bat habitat selection is poorly known with few studies evaluating relationships among landscape metrics such as class versus landscape, or metrics that measure composition or configuration. This knowledge can inform conservation approaches to mitigate habitat loss and fragmentation.

Objectives

We evaluated scale dependence of habitat associations and scaling patterns of landscape metrics in relation to bat occurrence or capture rate in forests of southwestern Nicaragua.

Methods

We captured 1537 bats at 35 locations and measured landscape and class metrics across 10 spatial scales (100–1000 m) surrounding capture locations. We conducted univariate scaling across the 10 scales and identified scales and variables most related to bat occurrence or capture rate.

Results

Edge and patch density, at both landscape and class levels, were the most important variables across species. Feeding guilds varied in their response to metrics. Certain landscape and configuration metrics were most influential at fine (100 m) and/or broad (1000 m) spatial scales while most class and composition metrics were influential at intermediate scales.

Conclusions

These results provide insight into the scale dependence of habitat associations of bat species and the influence of fine and broad scales on habitat associations. The effects of scale, examined in our study and others from fine (100 m) to broad (5 km) indicate habitat relationships for bats may be more informative at larger scales. Our results suggest there could be general differences in scale relationships for different groups of landscape metrics, which deserves further evaluation in other taxonomic groups.
  相似文献   

3.

Context

Scale is the lens that focuses ecological relationships. Organisms select habitat at multiple hierarchical levels and at different spatial and/or temporal scales within each level. Failure to properly address scale dependence can result in incorrect inferences in multi-scale habitat selection modeling studies.

Objectives

Our goals in this review are to describe the conceptual origins of multi-scale habitat selection modeling, evaluate the current state-of-the-science, and suggest ways forward to improve analysis of scale-dependent habitat selection.

Methods

We reviewed more than 800 papers on habitat selection from 23 major ecological journals published between 2009 and 2014 and recorded a number of characteristics, such as whether they addressed habitat selection at multiple scales, what attributes of scale were evaluated, and what analytical methods were utilized.

Results

Our results show that despite widespread recognition of the importance of multi-scale analyses of habitat relationships, a large majority of published habitat ecology papers do not address multiple spatial or temporal scales. We also found that scale optimization, which is critical to assess scale dependence, is done in less than 5 % of all habitat selection modeling papers and less than 25 % of papers that address “multi-scale” habitat analysis broadly defined.

Conclusions

Our review confirms the existence of a powerful conceptual foundation for multi-scale habitat selection modeling, but that the majority of studies on wildlife habitat are still not adopting multi-scale frameworks. Most importantly, our review points to the need for wider adoption of a formal scale optimization of organism response to environmental variables.
  相似文献   

4.

Context

Although multi-scale approaches are commonly used to assess wildlife-habitat relationships, few studies have examined selection at multiple spatial scales within different hierarchical levels/orders of selection [sensu Johnson’s (1980) orders of selection]. Failure to account for multi-scale relationships within a single level of selection may lead to misleading inferences and predictions.

Objectives

We examined habitat selection of the federally threatened eastern indigo snake (Drymarchon couperi) in peninsular Florida at the level of the home range (Level II selection) and individual telemetry location (Level III selection) to identify influential habitat covariates and predict relative probability of selection.

Methods

Within each level, we identified the characteristic scale for each habitat covariate to create multi-scale resource selection functions. We used home range selection functions to model Level II selection and paired logistic regression to model Level III selection.

Results

At both levels, EIS selected undeveloped upland land covers and habitat edges while avoiding urban land covers. Selection was generally strongest at the finest scales with the exception of Level II urban edge which was avoided at a broad scale indicating avoidance of urbanized land covers rather than urban edge per se.

Conclusions

Our study illustrates how characteristic scales may vary within a single level of selection and demonstrates the utility of multi-level, scale-optimized habitat selection analyses. We emphasize the importance of maintaining large mosaics of natural habitats for eastern indigo snake conservation.
  相似文献   

5.

Context

Conservation research often focuses on individual threats at a single spatial scale, but population declines can result from multiple stressors occurring at different spatial scales. Analyses incorporating alternative hypotheses across spatial scales allow more robust evaluation of the ecological processes underlying population declines.

Objectives

Populations of many aerially insectivorous birds are declining, yet conservation efforts remain focused on habitat due to an absence of data on changes in prey availability. We evaluate the potential for prey and habitat availability at multiple spatial scales to influence a population of eastern whip-poor-wills (Antrostomus vociferous).

Methods

We assess relationships between landcover (topographical map and satellite imagery) and insect abundance (moths and beetles from blacklight traps), and whip-poor-will distribution and abundance within eastern Canada using Ontario breeding bird atlas data (1980s and 2000s), acoustic recordings (regional), and point counts (local).

Results

Whip-poor-will occurrence in both atlas time periods was positively associated with forest area and fragmentation, but only a delayed effect of urban area explained reductions in detection. Contemporary regional whip-poor-will presence was positively related to moth abundance, and local whip-poor-will abundance was best predicted by area of open-canopy forest, anthropogenic linear disturbance density, and beetle abundance. Our finding that bird presence and abundance were associated with human activity and insect abundance across spatial scales suggests factors beyond habitat structure are likely driving population declines in whip-poor-wills and other aerial insectivores.

Conclusions

This study demonstrates the importance of examining multiple hypotheses, including seasonally and locally variable food availability, across a range of spatial scales to direct conservation efforts.
  相似文献   

6.

Context

Multispecies and multiscale habitat suitability models (HSM) are important to identify the environmental variables and scales influencing habitat selection and facilitate the comparison of closely related species with different ecological requirements.

Objectives

This study explores the multiscale relationships of habitat suitability for the pine (Martes martes) and stone marten (M. foina) in northern Spain to evaluate differences in habitat selection and scaling, and to determine if there is habitat niche displacement when both species coexist.

Methods

We combined bivariate scaling and maximum entropy modeling to compare the multiscale habitat selection of the two martens. To optimize the HSM, the performance of three sampling bias correction methods at four spatial scales was explored. HSMs were compared to explore niche differentiation between species through a niche identity test.

Results

The comparison among HSMs resulted in the detection of a significant niche divergence between species. The pine marten was positively associated with cooler mountainous areas, low levels of human disturbance, high proportion of natural forests and well-connected forestry plantations, and medium-extent agroforestry mosaics. The stone marten was positively related to the density of urban areas, the proportion and extensiveness of croplands, the existence of some scrub cover and semi-continuous grasslands.

Conclusions

This study outlines the influence of the spatial scale and the importance of the sampling bias corrections in HSM, and to our knowledge, it is the first comparing multiscale habitat selection and niche divergence of two related marten species. This study provides a useful methodological framework for multispecies and multiscale comparatives.
  相似文献   

7.

Context

Multi-scale approaches to habitat modeling have been shown to provide more accurate understanding and predictions of species-habitat associations. It remains however unexplored how spatial and temporal variations in habitat use may affect multi-scale habitat modeling.

Objectives

We aimed at assessing how seasonal and temporal differences in species habitat use and distribution impact operational scales, variable influence, habitat suitability spatial patterns, and performance of multi-scale models.

Methods

We evaluated the environmental factors driving brown bear habitat relationships in the Cantabrian Range (Spain) based on species presence records (ground observations) for the period 2000–2010, LiDAR data on forest structure, and seasonal estimates of foraging resources. We separately developed multi-scale habitat models for (i) each season (spring, summer, fall and winter) (ii) two sub-periods with different population status: 2000–2004 (with brown bear distribution restricted to the main population nuclei) and 2005–2010 (with expanding bear population and range); and (iii) the entire 2000–2010 period.

Results

Scales of effect remained considerably stable across seasonal and temporal variations, but not the influence of certain environmental variables. The predictive ability of multi-scale models was lower in the seasons or periods in which populations used larger areas and a broader variety of environmental conditions. Seasonal estimates of foraging resources, together with LiDAR data, appeared to improve the performance of multi-scale habitat models.

Conclusions

We highlight that the understanding of multi-scale behavioral responses of species to spatial patterns that continually shift over time may be essential to unravel habitat relationships and produce reliable estimates of species distributions.
  相似文献   

8.

Context

Organisms commonly respond to their environment across a range of scales, however many habitat selection studies still conduct selection analyses using a single-scale framework. The adoption of multi-scale modeling frameworks in habitat selection studies can improve the effectiveness of these studies and provide greater insights into scale-dependent relationships between species and specific habitat components.

Objectives

Our study assessed multi-scale nest/roost habitat selection of the federally “Threatened” Mexican spotted owl (Strix occidentalis lucida) in northern Arizona, USA in an effort to provide improved conservation and management strategies for this subspecies.

Methods

We conducted multi-scale habitat modeling to assess habitat selection by Mexican spotted owls using survey data collected by the USFS. Each selected covariate was included in multi-scale models at their “characteristic scale” and we used an all-subsets approach and model selection framework to assess habitat selection.

Results

The “characteristic scale” identified for each covariate varied considerably among covariates and results from multi-scale models indicated that percent canopy cover and slope were the most important covariates with respect to habitat selection by Mexican spotted owls. Multi-scale models consistently outperformed their analogous single-scale counterparts with respect to the proportion of deviance explained and model predictive performance.

Conclusions

Efficacy of future habitat selection studies will benefit by taking a multi-scale approach. In addition to potentially providing increased explanatory power and predictive capacity, multi-scale habitat models enhance our understanding of the scales at which species respond to their environment, which is critical knowledge required to implement effective conservation and management strategies.
  相似文献   

9.

Context

How do young birds achieve spatial knowledge about the environment during the initial stages of their life? They may follow adults, so gaining social information and learning; alternatively, young birds may acquire knowledge of the environment themselves by experiencing habitat and landscape features. If learning is at least partially independent of adults then young birds should respond to landscape composition at finer spatial scale than adults, who possess knowledge over a larger area.

Objectives

We studied the responses of juvenile, immature and adult Caspian Gull Larus cachinnans to the same habitat and landscape variables, but at several spatial scales (ranging from 2.5 to 15 km), during post-breeding period.

Methods

We surveyed 61 fish ponds (foraging patches) in southern Poland and counted Caspian gulls.

Results

Juvenile birds responded at finer spatial scales to the factors than did adults. Immature birds showed complicated, intermediate responses to spatial scale. The abundance of juvenile birds was mostly correlated with the landscape composition (positively with the cover of corridors and negatively with barriers). Adult abundance was positively related to foraging patch quality (fish stock), which clearly required previous spatial experience of the environment. The abundance of all age classes were moderately correlated with each other indicating that social behaviour may also contribute to the learning of the environment.

Conclusions

This study shows that as birds mature, they respond differently to components of their environment at different spatial scales. This has considerable ecological consequences for their distribution across environments.
  相似文献   

10.

Context

The problem of how ecological mechanisms create and interact with patterns across different scales is fundamental not only for understanding ecological processes, but also for interpretations of ecological dynamics and the strategies that organisms adopt to cope with variability and cross-scale influences.

Objectives

Our objective was to determine the consistency of the role of individual habitat patches in pattern-process relationships (focusing on the potential for dispersal within a network of patches in a fragmented landscape) across a range of scales.

Methods

Network analysis was used to assess and compare the potential connectivity and spatial distribution of highland fynbos habitat in and between protected areas of the Western Cape of South Africa. Connectivity of fynbos patches was measured using ten maximum threshold distances, ranging from five to 50 km, based on the known average dispersal distances of fynbos endemic bird species.

Results

Network connectivity increased predictably with scale. More interestingly, however, the relative contributions of individual protected areas to network connectivity showed strong scale dependence.

Conclusions

Conservation approaches that rely on single-scale analyses of connectivity and context (e.g., based on data for a single species with a given dispersal distance) are inadequate to identify key land parcels. Landscape planning, and specifically the assessment of the value of individual areas for dispersal, must therefore be undertaken with a multi-scale approach. Developing a better understanding of scaling dependencies in fragmenting landscapes is of high importance for both ecological theory and conservation planning.
  相似文献   

11.

Context

The spatial distribution of non-substitutable resources implies diverging predictions for animal movement patterns. At broad scales, animals should respond to landscape complementation by selecting areas where resource patches are close-by to minimize movement costs. Yet at fine scales, central place effects lead to the depletion of patches that are close to one another and that should ultimately be avoided by consumers.

Objectives

We developed a multi-scale resource selection framework to test whether animal movement is driven by landscape complementation or resource depletion and identify at which spatial scale these processes are relevant from an animal’s perspective.

Methods

During the dry season, surface water and forage are non-substitutable resources for African elephants. Eight family herds were tracked using GPS loggers in Hwange National Park, Zimbabwe. We explained habitat selection during foraging trips by mapping surface water at two scales with gaussian kernels of varying widths placed over each waterhole.

Results

Unexpectedly, elephants select areas with low waterhole density at both fine scales (< 1 km) and broad scales (5–7 km). Selection is stronger when elephants forage far away from water, even more so as the dry season progresses.

Conclusions

Elephant selection of low waterhole density areas suggests that resource depletion around multiple central places is the main driver of their habitat selection. By identifying the scale at which animals respond to waterhole distribution we provide a template for water management in arid and semi-arid landscapes that can be tailored to match the requirements and mobility of free ranging wild or domestic species.
  相似文献   

12.

Context

Interactions between landscape-scale processes and fine-grained habitat heterogeneity are usually invoked to explain species occupancy in fragmented landscapes. In variegated landscapes, however, organisms face continuous variation in micro-habitat features, which makes necessary to consider ecologically meaningful estimates of habitat quality at different spatial scales.

Objectives

We evaluated the spatial scales at which forest cover and tree quality make the greatest contribution to the occupancy of the long-horned beetle Microplophorus magellanicus (Coleoptera: Cerambycidae) in a variegated forest landscape.

Methods

We used averaged data of tree quality (as derived from remote sensing estimates of the decay stage of single trees) and spatially independent pheromone-baited traps to model the occurrence probability as a function of multiple cross-scale combinations between forest cover and tree quality (with scales ranging between 50 and 400 m).

Results

Model support and performance increased monotonically with the increasing scale at which tree quality was measured. Forest cover was not significant, and did not exhibit scale-specific effects on the occurrence probability of M. magellanicus. The interactive effect between tree quality and forest cover was stronger than the independent (additive) effects of tree quality and particularly forest cover. Significant interactions included tree quality measured at spatial scales ≥200 m, but cross-scale interactions occurred only in four of the seven best-supported models.

Conclusions

M. magellanicus respond to the high-quality trees available in the landscape rather than to the amount of forest per se. Conservation of viable metapopulations of M. magellanicus should consider the quality of trees at spatial scales >200 m.
  相似文献   

13.

Context

Detailed information on habitat needs is integral to identify conservation measures for declining species. However, field data on habitat structure is typically limited in extent. Remote sensing has the potential to overcome these limitations of field-based studies.

Objective

We aimed to assess abiotic and biotic characteristics of territories used by the declining wood warbler (Phylloscopus sibilatrix), a forest-interior migratory passerine, at two spatial scales by evaluating a priori expectations of habitat selection patterns.

Methods

First, territories established by males before pairing, referred to as pre-breeding territories, were compared to pseudo-absence control areas located in the wider forested landscape (first spatial scale, Nterritories = 66, Ncontrols = 66). Second, breeding territories of paired wood warblers were compared to true-absence control areas located immediately close-by in the forest (second spatial scale, Nterritories = 78, Ncontrols = 78). Habitat variables predominantly described forest structure and were mainly based on first and last pulse lidar (light detection and ranging) data.

Results

Occurrence of pre-breeding territories was related to vegetation height, vertical diversity and stratification, canopy cover, inclination and solar radiation. Occurrence of breeding territories was associated to vegetation height, vertical diversity and inclination.

Conclusions

Territory selection at the two spatial scales addressed was governed by similar factors. With respect to conservation, habitat suitability for wood warblers could be retained by maintaining a shifting mosaic of stand ages and structures at large spatial scales. Moreover, leaf-off lidar variables have the potential to contribute to understanding the ecological niche of species in predominantly deciduous forests.
  相似文献   

14.

Context

Understanding the factors contributing to maintaining biodiversity is crucial to mitigate the impact of anthropogenic disturbances. Representing large proportions of green area in highly modified landscapes, residential gardens are often seen as local habitats that can contribute to larger networks of suitable environments at the landscape scale.

Objectives

We investigated the impact of the landscape context on butterfly communities observed in residential gardens, taking into account garden characteristics, land-use types and presence of linear features in the surrounding landscape. We examined how species traits affected butterflies’ response to landscape context and habitat quality.

Methods

We performed a cross-scale study, based on citizen science data documenting butterfly species composition and abundance in 920 gardens across France. We examined the effect of garden quality, the area of different land-use types and the length of linear elements measured at three scales within the surrounding landscape. Species were grouped according to their habitat preference and mobility.

Results

Urbanization negatively affected total species richness and the abundance of butterfly in each group. This was related to declining habitat quality and reduced area of suitable habitat in the surrounding landscape. The magnitude of this effect, however, was negatively correlated with mobility, a trait related to habitat preference. The spatial scale at which landscape context best explained variation in butterfly abundance changed with species’ habitat preference.

Conclusions

This study highlights the importance of preserving high quality habitats in altered landscapes and considering species’ mobility and habitat preference when assessing the impact of landscapes on butterfly communities.
  相似文献   

15.

Context

Spatial variation in abundance is influenced by local- and landscape-level environmental variables, but modeling landscape effects is challenging because the spatial scales of the relationships are unknown. Current approaches involve buffering survey locations with polygons of various sizes and using model selection to identify the best scale. The buffering approach does not acknowledge that the influence of surrounding landscape features should diminish with distance, and it does not yield an estimate of the unknown scale parameters.

Objectives

The purpose of this paper is to present an approach that allows for statistical inference about the scales at which landscape variables affect abundance.

Methods

Our method uses smoothing kernels to average landscape variables around focal sites and uses maximum likelihood to estimate the scale parameters of the kernels and the effects of the smoothed variables on abundance. We assessed model performance using a simulation study and an avian point count dataset.

Results

The simulation study demonstrated that estimators are unbiased and produce correct confidence interval coverage except in the rare case in which there is little spatial autocorrelation in the landscape variable. Canada warbler abundance was more highly correlated with site-level measures of NDVI than landscape-level NDVI, but the reverse was true for elevation. Canada warbler abundance was highest when elevation in the surrounding landscape, defined by an estimated Gaussian kernel, was between 1300 and 1400 m.

Conclusions

Our method provides a rigorous way of formally estimating the scales at which landscape variables affect abundance, and it can be embedded within most classes of statistical models.
  相似文献   

16.

Context

Understanding habitat selection can be challenging for species surviving in small populations, but is needed for landscape-scale conservation planning.

Objectives

We assessed how European bison (Bison bonasus) habitat selection, and particularly forest use, varies across subpopulations and spatial scales.

Methods

We gathered the most comprehensive European bison occurrence dataset to date, from five free-ranging herds in Poland. We compared these data to a high-resolution forest map and modelled the influence of environmental and human-pressure variables on habitat selection.

Results

Around 65% of European bison occurrences were in forests, with cows showing a slightly higher forest association than bulls. Forest association did not change markedly across spatial scales, yet differed strongly among herds. Modelling European bison habitat suitability confirmed forest preference, but also showed strong differences in habitat selection among herds. Some herds used open areas heavily and actively selected for them. Similarly, human-pressure variables were important in all herds, but some herds avoided human-dominated areas more than others.

Conclusions

Assessing European bison habitat across multiple herds revealed a more generalist habitat use pattern than when studying individual herds only. Our results highlight that conflicts with land use and people could be substantial if bison are released in human-dominated landscapes. Future restoration efforts should target areas with low road and human population density, regardless of the degree of forest cover. More broadly, our study highlights the importance of considering multiple subpopulations and spatial scales in conservation planning.
  相似文献   

17.

Context

A recent hypothesis, the habitat amount hypothesis, predicts that the total amount of habitat in the landscape can replace habitat patch size and isolation in studies of species richness in fragmented landscapes.

Objectives

To test the habitat amount hypothesis by first evaluating at which spatial scale the relationship between species richness in equal-sized sample quadrats and habitat amount was the strongest, and then test the importance of spatial configuration of habitat—measured as local patch size and isolation—when habitat amount was taken into account.

Methods

A quasi-experimental setup with 20 habitat patches of dry calcareous grasslands varying in patch size, patch isolation and habitat amount at the landscape scale was established in the inner Oslo fjord, Southern Norway. We recorded species richness of habitat specialists of vascular plants in equal-sized sample quadrats and analysed the relationship between species richness, habitat amount in the landscape and patch size and isolation.

Results

Although the total amount of habitat in a 3 km-radius around the local patch was positively related to species richness in the sample quadrats, local patch size had an additional positive effect, and the effect of patch size was higher when the amount of habitat within the 3 km-radius was high than when it was low.

Conclusions

In our study system of specialist vascular plants in dry calcareous grasslands, we do not find support for the habitat amount hypothesis.
  相似文献   

18.

Context

Spatial scale is an important consideration for understanding how animals select habitat, and multi-scalar designs in resource selection studies have become increasingly common. Despite this, examination of functional responses in habitat selection at multiple scales is rare. The perceptual range of an animal changes as a function of vegetation association, suggesting that use, selection and functional responses may all be habitat- and scale-dependent.

Objectives

Our objective was to determine how varying grain size affects our interpretation of functional response in habitat selection and to elucidate scalar and landscape effects on habitat selection.

Methods

We quantified the functional response of GPS-collared, female white-tailed deer (Odocoileus virginianus, n = 18) in Riding Mountain National Park, Canada, to different habitat types. Functional responses were quantified at multiple spatial scales by regressing proportion of habitat used against proportion of habitat available at different buffer radii (ranging from 75–1000 m radius) surrounding used (telemetry) locations and available points within the individual’s seasonal home range. We examined how functional responses changed as a function of grain by plotting grain size against the slope of the functional response.

Results

We detected functional responses in most habitat types. As expected, functional responses tended to converge towards 1 (use proportional to availability) at large buffer sizes; however, the relationship between scale and functional response was typically non-linear and depended on habitat type.

Conclusions

We conclude that a multi-scalar approach to modelling animal functional responses in habitat selection is important for understanding patterns in animal behaviour and resource use.
  相似文献   

19.

Context

The conversion of natural environments into agricultural land has profound effects on the composition of the landscape, often resulting in a mosaic of human-altered and natural habitats. The response to these changes may however vary among organisms. Bats are highly vagile, and their requirements often imply the use of distinct habitats, which they select responding to both landscape and local features.

Objectives

We aimed to identify which features influence bat richness and activity within Baixo Vouga Lagunar, a heterogeneous landscape located on the Central-North Portuguese coast, and to investigate if that influence varies across a gradient of focal scales.

Methods

We sampled bats acoustically, while simultaneously sampling insects with light traps. We assessed the relationships between species richness, bat activity, and activity of eco-morphological guilds with landscape and local features, across four scales.

Results

Our results revealed both scale- and guild-dependent responses of bats to landscape and local features. At broader scales we found positive associations between open-space foraging bats and habitat heterogeneity and between edge-space foraging bats and greater edge lengths. Woodland cover and water availability at an intermediate scale and weather conditions and insect abundance at a local scale were the factors that mostly influenced the response variables.

Conclusions

Globally, our results suggest that bats are sensitive to local resource availability and distribution, while simultaneously reacting to landscape features acting at coarser scales. Finally, our results suggest that the responses given by bats are guild-dependent, and some habitats act as keystone structures for bats within this mosaic.
  相似文献   

20.

Context

GPS telemetry collars and their ability to acquire accurate and consistently frequent locations have increased the use of step selection functions (SSFs) and path selection functions (PathSFs) for studying animal movement and estimating resistance. However, previously published SSFs and PathSFs often do not accommodate multiple scales or multi-scale modeling.

Objectives

We present a method that allows multiple scales to be analyzed with SSF and PathSF models. We also explore the sensitivity of model results and resistance surfaces to whether SSFs or PathSFs are used, scale, prediction framework, and GPS collar sampling interval.

Methods

We use 5-min GPS collar data from pumas (Puma concolor) in southern California to model SSFs and PathSFs at multiple scales, to predict resistance using two prediction frameworks (paired and unpaired), and to explore potential bias from GPS collar sampling intervals.

Results

Regression coefficients were extremely sensitive to scale and pumas exhibited multiple scales of selection during movement. We found PathSFs produced stronger regression coefficients, larger resistance values, and superior model performance than SSFs. We observed more heterogeneous surfaces when resistance was predicted in a paired framework compared with an unpaired framework. Lastly, we observed bias in habitat use and resistance results when using a GPS collar sampling interval longer than 5 min.

Conclusions

The methods presented provide a novel way to model multi-scale habitat selection and resistance from movement data. Due to the sensitivity of resistance surfaces to method, scale, and GPS schedule, care should be used when modeling corridors for conservation purposes using these methods.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号