首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Landscape Ecology - There is an ongoing debate whether local biodiversity is declining and what might drive this change. Changes in land use and land cover (LULC) are suspected to impact local...  相似文献   

2.
Computer models are increasingly being used by forest ecologists and managers to simulate long-term forest landscape change. We review models of forest landscape change from an ecological rather than methodological perspective. We developed a classification based on the representation of three ecological criteria: spatial interactions, tree species community dynamics, and ecosystem processes. Spatial interactions are processes that spread across a landscape and depend upon spatial context and landscape configuration. Communities of tree species may change over time or can be defined a priori. Ecosystem process representation may range from no representation to a highly mechanistic, detailed representation. Our classification highlights the implicit assumptions of each model group and helps define the problem set for which each model group is most appropriate. We also provide a brief history of forest landscape simulation models, summarize the current trends in methods, and consider how forest landscape models may evolve and continue to contribute to forest ecology and management. Our classification and review can provide novice modelers with the ecological context for understanding or choosing an appropriate model for their specific hypotheses. In addition, our review clarifies the challenges and opportunities that confront practicing model users and model developers.  相似文献   

3.
Landscape change is an ongoing process for even the most established landscapes, especially in context to urban intensification and growth. As urbanization increases over the next century, supporting bird species’ populations within urbanizing areas remains an important conservation challenge. Fundamental elements of the biophysical structure of urban environments in which bird species likely respond include tree cover and human infrastructure. We broadly examine how tree cover and urban development structure bird species distributions along the urban-rural gradient across multiple spatial scales. We established a regional sampling design within the Oak Openings Region of northwestern, Ohio, USA, to survey bird species distributions across an extensive urbanization gradient. Through occupancy modeling, we obtained standardized effects of bird species response to local and landscape-scale predictors and found that landscape tree cover influenced the most species, followed by landscape impervious surface, local building density, and local tree cover. We found that responses varied according to habitat affiliation and migratory distance of individual bird species. Distributions of short-distance, edge habitat species located towards the rural end of the gradient were explained primarily by low levels of urbanization and potential vegetative and supplemental resources associated with these areas, while forest species distributions were primarily related to increasing landscape tree cover. Our findings accentuate the importance of scale relative to urbanization and help target where potential actions may arise to benefit bird diversity. Management will likely need to be implemented by municipal governments and agencies to promote tree cover at landscape scale, followed by residential land management education for private landowners. These approaches will be vital in sustaining biodiversity in urbanizing landscapes as urban growth expands over the next century.  相似文献   

4.
This study develops a quantitative approach to evaluate the application of design concepts that link landscape ecology theory to landscape planning. Landscape ecology principles were used to develop spatial concepts for creating an armature of open space in areas subject to rapid urbanization. It focuses on the predicted urban expansion of Damascus, Oregon, as a case study. An alternative futures study was used to test three open space spatial concepts for patches, corridors and networks contrasted with compact and dispersed urban development patterns. Eight scenarios of land use and land cover, over 50 years, were defined based on different spatial design concepts to evaluate their effects on habitat quantity and quality and analyze the tradeoffs between urban development and conservation of three focal wildlife species: red-legged frog, western meadowlark, and Douglas squirrel. Open space spatial concepts highly influenced habitat quantity and quality differences among scenarios. Development patterns showed lower influence on those variables. Scenarios with no landscape ecological spatial concept provided the most land for urban development but reduced habitat quantity and quality. Greenway scenarios presented increases of habitats, but failed to provide sufficient habitats for western meadowlark. Park system scenarios also presented an increase on the amount of habitats, but high-quality habitats for western meadowlark and red-legged frog decreased. Network scenarios presented the best overall amount of habitats and increase of high-quality habitats for the three species, but constrained urban development options.  相似文献   

5.
Frazier  Amy E. 《Landscape Ecology》2019,34(9):2073-2082
Landscape Ecology - Landscape ecology is an interdisciplinary field, drawing on theories and methods from across the physical, natural, and social sciences. Spatial pattern analysis was built on...  相似文献   

6.
A fundamental but unsolved dilemma is that observation and prediction scales are often mismatched. Reconciling this mismatch largely depends on how to design samples on a heterogeneous landscape. In this study, we used a coupled modeling approach to investigate the effects of plot number and location on predicting tree species distribution at the landscape scale. We used an ecosystem process model (LINKAGES) to generate tree species response to the environment (a land type) at the plot scale. To explore realistic parameterization scenarios we used results from LINKAGES simulations on species establishment probabilities under the current and warming climate. This allowed us to design a series of plot number and location scenarios at the landscape scale. Species establishment probabilities for different land types were then used as input for the forest landscape model (LANDIS) that simulated tree species distribution at the landscape scale. To investigate the effects of plot number and location on forest landscape predictions, LANDIS considered effects of climate warming only for the land types in which experimental plots were placed; otherwise inputs for the current climate were used. We then statistically examined the relationships of response variables (species percent area) among these scenarios and the reference scenario in which plots were placed on all land types of the study area. Our results showed that for species highly or moderately sensitive to environmental heterogeneity, increasing plot numbers to cover as many land types as possible is the strategy to accurately predict species distribution at the landscape scale. In contrast, for species insensitive to environmental heterogeneity, plot location was more important than plot number. In this case, placing plots in land types with large area of species distribution is warranted. For some moderately sensitive species that experienced intense disturbance, results were different in different simulation periods. Results from this study may provide insights into sample design for forest landscape predictions.  相似文献   

7.
We used an integrated modeling approach to simulate future land cover and predict the effects of future urban development and land cover on avian diversity in the Central Puget Sound region of Washington State, USA. We parameterized and applied a land cover change model (LCCM) that used output from a microsimulation model of urban development, UrbanSim, and biophysical site and landscape characteristics to simulate land cover 28 years into the future. We used 1991, 1995, and 1999 Landsat TM-derived land cover data and three different spatial partitions of our study area to develop six different estimations of the LCCM. We validated model simulations with 2002 land cover. We combined UrbanSim land use outputs and LCCM simulations to predict changes in avian species richness. Results indicate that landscape composition and configuration were important in explaining land cover change as well as avian species response to landscape change. Over the next 28 years, urban land cover was predicted to increase at the expense of agriculture and deciduous and mixed lowland forests. Land cover changes were predicted to reduce the total number of avian species, with losses primarily in native forest specialists and gains in common synanthropic species such as the American Crow (Corvus brachyrhynchos). The integrated modeling framework we present has potential applications in urban and natural resource planning and management and in assessing of the effects of policies on land development, land cover, and avian biodiversity.  相似文献   

8.
The conversion of forests and farmlands to human settlements has negative impacts on many native species, but also provides resources that some species are able to exploit. American Crows (Corvus brachyrhynchos), one such exploiter, create concern due to their impact as nest predators, disease hosts, and cultural harbingers of evil. We used various measures of crow abundance and resource use to determine crows’ response to features of anthropogenic landscapes in the Puget Sound region of the United States. We examined land cover and land use composition at three spatial scales: study sites (up to 208 ha), crow home ranges within sites (18.1 ha), and local land cover (400 m2). At the study site and within-site scales crow abundance was strongly correlated with land cover providing anthropogenic resources. In particular, crows were associated with the amount of ‘maintained forest’ cover, and were more likely to use grass and shrub cover than forest or bare soil cover. Although crows did not show a generalized response to an edge variable, they exhibited greater use of patchy habitat created by human settlements than of native forests. Radio-tagged territorial adults used resources within their home ranges relatively evenly, suggesting resource selection had occurred at a larger spatial scale. The land conversion pattern of new suburban and exurban settlements creates the mix of impervious surfaces and maintained vegetation that crows use, and in our study area crow populations are expected to continue to increase. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
While landscape trajectories are increasingly used for tracking change in processes such as agricultural intensification and urbanization, analyses that combine environmental and human disturbances remain scarce. The aim of this study was to investigate the relationship between Shannon evenness, a measure of landscape composition, and spatial contagion, a measure of landscape configuration, within sixteen Canadian regions covering a gradient of land-uses and human disturbances: natural, semi-natural, urban, and agricultural. The agricultural regions showed generally lower variation in contagion and evenness and overall lower contagion values (smaller patches), leading to steeper contagion-evenness slopes than in the other region categories. In addition, the sampled agricultural regions were much more similar to each other than were the sampled regions within each of the other three region categories. These results indicate that the process of agricultural development (at least in western Canada) leads to a reduction in pattern variation and an alteration of the expected relationships among pattern metrics in agricultural regions. This possibility is supported by a neutral model of patch dynamics, suggesting that the characteristic scale of disturbances is a generic structuring process of landscape trajectories.  相似文献   

10.

Context

Sustaining hydrologic ecosystem services is critical for human wellbeing but challenged by land use for agriculture and urban development. Water policy and management strive to safeguard hydrologic services, yet implementation is often fragmented. Understanding the spatial fit between water polices and hydrologic services is needed to assess the spatial targeting of policy portfolios at landscape scales.

Objectives

We investigated spatial fit between 30 different public water policies and four hydrologic services (surface and groundwater quality, freshwater supply, and flood regulation) in the Yahara Watershed (Wisconsin, USA)—a Midwestern landscape that typifies tensions between agriculture, urban development, and freshwater resources.

Methods

Spatial extent of water policy implementation was mapped, and indicators of hydrologic services were quantified for subwatersheds using empirical estimates and validated spatial models.

Results

We found a spatial misfit between the overall spatial implementation of water policy and regions of water quality concern, indicating a need for better targeting. Water quality policies can also be leveraged to protect other hydrologic services such as freshwater supply and flood regulation. Individual policy application areas varied substantially in their spatial congruence with each hydrologic service, indicating that not all services are protected by a single policy and highlighting the need for a broad spectrum of policies to sustain hydrologic services in diverse landscapes. We also identified where future policies could be targeted for improving hydrologic services.

Conclusions

Joint spatial analysis of policies and ecosystem services is effective for assessing spatial aspects of institutional fit, and provides a foundation for guiding future policy efforts.
  相似文献   

11.
Promoting and preserving biodiversity in the urban forest   总被引:1,自引:0,他引:1  
Efforts at mitigating global biodiversity loss have often focused on preserving large, intact natural habitats. However, preserving biodiversity should also be an important goal in the urban environment, especially in highly urbanized areas where little natural habitat remains. Increasingly, research at the city/county scale as well as at the landscape scale reveals that urban areas can contain relatively high levels of biodiversity. Important percentages of species found in the surrounding natural habitat, including endangered species, have been found in the urban forest.

This contribution concisely highlights some examples of urban biodiversity research from various areas of the world. Key issues involved in understanding the patterns and processes that affect urban biodiversity, such as the urban–rural gradient and biotic homogenization, are addressed. The potential for urban areas to harbor considerable amounts of biodiversity needs to be recognized by city planners and urban foresters so that management practices that preserve and promote that diversity can be pursued. Management options should focus on increasing biodiversity in all aspects of the urban forest, from street trees to urban parks and woodlots.  相似文献   


12.

Context

Forest landscape models (FLMs) are important tools for simulating forest changes over broad spatial and temporal scales. The ability of FLMs to accurately predict forest changes may be significantly influenced by the formulations of site-scale processes including seedling establishment, tree growth, competition, and mortality.

Objective

The objectives of this study were to investigate the effects of site-scale processes and interaction effects of site-scale processes and harvest on landscape-scale forest change predictions.

Methods

We compared the differences in species’ distribution (quantified by species’ percent area), total aboveground biomass, and species’ biomass derived from two FLMs: (1) a model that explicitly incorporates stand density and size for each species age cohort (LANDIS PRO), and (2) a model that explicitly tracks biomass for each species age cohort (LANDIS-II with biomass succession extension), which are variants from the LANDIS FLM family with different formulations of site-scale processes.

Results

For early successional species, the differences in simulated distribution and biomass were small (mostly less than 5 %). For mid- to late-successional species, the differences in simulated distribution and biomass were relatively large (10–30 %). The differences in species’ biomass predictions were generally larger than those for species’ distribution predictions. Harvest mediated the differences on landscape-scale predictions.

Conclusions

The effects of site-scale processes on landscape-scale forest change predictions are dependent on species’ ecological traits such as shade tolerance, seed dispersal, and growth rates.
  相似文献   

13.
We implemented a replicated before-after-control-impact (BACI) experiment to quantify vertebrate response in native forest patches to a major change in the surrounding exotic Radiata Pine (Pinus radiata) plantation. We contrasted vertebrate occupancy of patches of native eucalypt forest where the surrounding stands of exotic Radiata Pine (Pinus radiata) were clearfelled (termed “treatment patches”) with matched “control patches” where surrounding pine stands remained unlogged. Different species of arboreal marsupials varied in their response to our experimental treatments. The Common Ringtail Possum was unaffected by cutting of the surrounding pine stands, whereas all sightings of the Mountain Brushtail Possum were in control patches. For birds, species richness was significantly reduced by 4–9 species in treatment patches. Birds with cup and dome nests were those negatively affected by the cutting of the surrounding pine stands. They may be susceptible to altered microclimatic conditions or increasing levels of nest predation when the surrounding pine matrix is clearfelled. Our study emphasized how the biota inhabiting retained patches of native forest within plantation landscapes can be changed when stands of surrounding Radiata Pine are clearfelled. In the case of birds, more species will be maintained within eucalypt patches if logging is scheduled so that not all the surrounding pine plantation is clearfelled at once.  相似文献   

14.
In coastal southern California, natural riparian corridors occur in a landscape mosaic comprised of human land uses (mainly urban and suburban development) interspersed among undeveloped areas, primarily native shrublands. We asked, does the composition of the landscape surrounding a riparian survey point influence plant species distribution, community composition, or habitat structure? We expected, for example, that invasive non-native species might be more abundant as the amount of surrounding urbanization increased. We surveyed 137 points in riparian vegetation in Orange County, California, along an urbanization gradient. Using logistic regression we analyzed 79 individual plant species’ distributions, finding 20 negatively associated and 12 positively associated with the amount of development within a 1-km radius around the survey points, even after accounting for the effects of elevation. However, after summarizing plant community composition with Detrended Correspondence Analysis we observed that, overall, community composition was not statistically correlated with the amount of development surrounding a survey point once the association between development and elevation was taken into account. Non-native species were not particularly associated with increasing development, but instead were distributed throughout vegetation and urbanization gradients. However, the extent of the tree and herb layers (structural attributes) was associated with development, with the tree layer increasing and the herb layer decreasing as urbanization increased. Thus, although the degree of surrounding urbanization appears to influence the distribution of a number of individual plant species, overall composition of the community in our study system seemed relatively unaffected. Instead, we suggest that community composition reflected larger-scale environmental conditions, such as stream order and other variables associated with elevation, and/or regional-scale disturbances, such as historic grazing or enhanced atmospheric deposition of nitrogen.  相似文献   

15.
Management may influence abiotic environments differently across time and spatial scale, greatly influencing perceptions of fragmentation of the landscape. It is vital to consider a priori the spatial scales that are most relevant to an investigation, and to reflect on the influence that scale may have on conclusions. While the importance of scale in understanding ecological patterns and processes has been widely recognized, few researchers have investigated how the relationships between pattern and process change across spatial and temporal scales. We used wavelet analysis to examine the multiscale structure of surface and soil temperature, measured every 5 m across a 3820 m transect within a national forest in northern Wisconsin. Temperature functioned as an indicator – or end product – of processes associated with energy budget dynamics, such as radiative inputs, evapotranspiration and convective losses across the landscape. We hoped to determine whether functional relationships between landscape structure and temperature could be generalized, by examining patterns and relationships at multiple spatial scales and time periods during the day. The pattern of temperature varied between surface and soil temperature and among daily time periods. Wavelet variances indicated that no single scale dominated the pattern in temperature at any time, though values were highest at finest scales and at midday. Using general linear models, we explained 38% to 60% of the variation in temperature along the transect. Broad categorical variables describing the vegetation patch in which a point was located and the closest vegetation patch of a different type (landscape context) were important in models of both surface and soil temperature across time periods. Variables associated with slope and microtopography were more commonly incorporated into models explaining variation in soil temperature, whereas variables associated with vegetation or ground cover explained more variation in surface temperature. We examined correlations between wavelet transforms of temperature and vegetation (i.e., structural) pattern to determine whether these associations occurred at predictable scales or were consistent across time. Correlations between transforms characteristically had two peaks; one at finer scales of 100 to 150 m and one at broader scales of >300 m. These scales differed among times of day and between surface and soil temperatures. Our results indicate that temperature structure is distinct from vegetation structure and is spatially and temporally dynamic. There did not appear to be any single scale at which it was more relevant to study temperature or this pattern-process relationship, although the strongest relationships between vegetation structure and temperature occurred within a predictable range of scales. Forest managers and conservation biologists must recognize the dynamic relationship between temperature and structure across landscapes and incorporate the landscape elements created by temperature-structure interactions into management decisions.  相似文献   

16.
The effects of landscape composition on species and populations have become increasingly important due to large and rapid habitat changes worldwide. In particular, concern is raised for several forest-dwelling species such as capercaillie and black grouse, because their habitats are continuously changing and deteriorating from human development. Conservation of these species is linked to sustainable forest management that seeks to benefit multiple species, which demands knowledge about demographic rates in relation to forest composition and structure. We related the spatial variation in adult density and chick production of capercaillie and black grouse to landscape characteristics from 13 areas within the boreal forest of Norway. Linear mixed effects models showed that black grouse and capercaillie had similar associations to landscape characteristics. Adult density of both species was positively related to the proportion of old forest (>80 years), but only if the area had large proportions of mid to high productive forests. Chick production was negatively related to the proportion of old forest, but positively to habitat diversity and more so for black grouse compared to capercaillie. However, the result for chick production suggest that other forest types also are important, and that forest grouse needs a variety of habitats during their life history stages. Management that seeks to simultaneously conserve populations of black grouse and capercaillie needs to ensure a matrix of various forest types. A special focus must be on the critical life history of local populations to successfully preserve viable populations, for black grouse and capercaillie this implies protection of old and mid to high productive forest while keeping a heterogeneous landscape.  相似文献   

17.
Spatially explicit dynamic forest landscape models have been important tools to study large-scale forest landscape response under global climatic change. However, the quantification of relative importance of different transition pathways among different forest types to forest landscape dynamics stands as a significant challenge. In this study, we propose a novel approach of elasticity and loop analyses to identify important transition pathways contributing to forest landscape dynamics. The elasticity analysis calculates the elasticity to measure the importance of one-directional transitions (transition from one forest type directly to another forest type); while the loop analysis is employed to measure the importance of different circular transition pathways (transition from one forest type through other forest types back to itself). We apply the proposed approach to a spatially explicit dynamic model, LANDIS-II, in a study of forest landscape response to climatic change in the Boundary Waters Canoe Area (BWCA) incorporating the uncertainties in climatic change predictions. Our results not only corroborate the findings of the previous studies on the most likely future forest compositions under simulated climatic variability, but also, through the novel application of the elasticity and loop analyses concepts, provide a quantitative assessment of the specific mechanisms leading to particular forest compositions, some of which might remain undetected with conventional model evaluation methods. By quantifying the importance of specific processes (transitions among forest types) to forest composition dynamics, the proposed approach can be a valuable tool for a more quantitative understanding of the relationship between processes and landscape composition/patterns.  相似文献   

18.
Impact of agricultural subsidies on biodiversity at the landscape level   总被引:1,自引:0,他引:1  
Agricultural management is a major factor driving the change of faunal richness in anthropogenic landscapes. Thus, there is an urgent need to develop tools that allow decision-makers to understand better intended and unintended effects of agricultural policy measures on biodiversity. Here we demonstrate the potential of such a tool by combining a socio-economic model with the biodiversity model GEPARD to forecast the response of bird and carabid species richness to two scenarios of agricultural subsidies: (1) subsidies based on production levels and prices and (2) direct income support that is independent of production levels. We focussed on farmland of the Lahn-Dill area, Germany, as an example of European regions with low intensity farming. GEPARD predicts faunal richness and is based on multi-scaled resource-selection functions. Under both scenarios the area of predicted losses in species richness of birds and carabids was larger than the area of predicted gains in species richness. However, the area with predicted losses of avian richness was smaller under the direct income support scenario than under the production-based subsidy scenario, whereas the area with predicted losses of carabid species richness was smaller under the production-based subsidy scenario than under the direct income support. Yet locally, richness gains of up to four species were predicted for carabids under both scenarios. We conclude that the sometimes contrasting and heterogeneous responses of birds and carabids at different localities suggest the need for spatially targeted subsidy schemes. With the help of the GIS-based approach presented in this study, prediction maps on potential changes in local and regional species richness can be easily generated.  相似文献   

19.

Context

Hill stations are known for their favorable cool climate and natural environments which generate valuable ecosystem services that benefit the local population, tourists and visitors. However, rapid urbanization threatens the sustainability of these highly valued fragile landscapes.

Objectives

We aim to characterize and quantify the changes in the landscape patterns and ecosystem service values (ESVs) of Baguio (Philippines), Bogor (Indonesia), Dalat (Vietnam), and Pyin Oo Lwin (Myanmar), and discuss their implications to landscape sustainability.

Methods

We used remote sensing imagery to map land-use/cover (2001 and 2014), and spatial metrics and gradient analysis to characterize the changes in landscape pattern. We employed a benefit transfer method to estimate the changes in ESV and human-to-ESV ratio. A land-change model was used to simulate different scenarios of future built-up expansions (2014–2030).

Results

The landscapes of Dalat and Pyin Oo Lwin are becoming more fragmented, while those of Baguio and Bogor are getting more aggregated. Dalat had the highest decrease (absolute change) in ESV and H-ESV ratio, while Bogor had the highest percentage decrease (2001–2014).

Conclusions

Rapid urbanization has been a major factor in the landscape transformation of Baguio, Bogor, Dalat and Pyin Oo Lwin. If the current built-up expansion rate will speed up, the decline in future ESV and H-ESV ratio (2014–2030) will be higher than if the rate will continue or slow down. Unless the concept of landscape sustainability is taken seriously in landscape and urban planning, the respective ‘values’ of these precious hill stations will become less and less.
  相似文献   

20.
Tradable biodiversity credit systems provide flexible means to resolve conflicts between development and conservation land-use options for habitats occupied by threatened or endangered species. We describe an approach to incorporate the influence of habitat fragmentation into the conservation value of tradable credits. Habitat fragmentation decreases gene flow, increases rates of genetic drift and inbreeding, and increases probabilities of patch extinction. Importantly, tradable credit systems will change the level of fragmentation over time for small and/or declining populations. We apply landscape equivalency analysis (LEA), a generalizable, landscape-scale accounting system that assigns conservation value to habitat patches based on patch contributions to abundance and genetic variance at landscape scales. By evaluating habitat trades using two models that vary the relationship between dispersal behaviors and landscape patterns, we show that LEA provides a novel method for limiting access to habitat at the landscape-scale, recognizing that the appropriate amount of migration needed to supplement patch recruitment and to offset drift and inbreeding will vary as landscape pattern changes over time. We also found that decisions based on probabilities of persistence alone would ignore changes in migration, genetic drift, and patch extinction that result from habitat trades. The general principle of LEA is that habitat patches traded should make at least equivalent contributions to rates of recruitment and migration estimated at a landscape scale. Traditional approaches for assessing the “take” and “jeopardy” standards under the Endangered Species Act based on changes in abundance and probability of persistence may be inadequate to prevent trades that increase fragmentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号