首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Context

Routine movements of large herbivores, often considered as ecosystem engineers, impact key ecological processes. Functional landscape connectivity for such species influences the spatial distribution of associated ecological services and disservices.

Objectives

We studied how spatio-temporal variation in the risk-resource trade-off, generated by fluctuations in human activities and environmental conditions, influences the routine movements of roe deer across a heterogeneous landscape, generating shifts in functional connectivity at daily and seasonal time scales.

Methods

We used GPS locations of 172 adult roe deer and step selection functions to infer landscape connectivity. In particular, we assessed the influence of six habitat features on fine scale movements across four biological seasons and three daily periods, based on variations in the risk-resource trade-off.

Results

The influence of habitat features on roe deer movements was strongly dependent on proximity to refuge habitat, i.e. woodlands. Roe deer confined their movements to safe habitats during daytime and during the hunting season, when human activity is high. However, they exploited exposed open habitats more freely during night-time. Consequently, we observed marked temporal shifts in landscape connectivity, which was highest at night in summer and lowest during daytime in autumn. In particular, the onset of the autumn hunting season induced an abrupt decrease in landscape connectivity.

Conclusions

Human disturbance had a strong impact on roe deer movements, generating pronounced spatio-temporal variation in landscape connectivity. However, high connectivity at night across all seasons implies that Europe’s most abundant and widespread large herbivore potentially plays a key role in transporting ticks, seeds and nutrients among habitats.
  相似文献   

2.

Context

Land use changes have modified the extent and structure of native vegetation, resulting in fragmentation of native species habitat. Connectivity is increasingly seen as a requirement for effective conservation in these landscapes, but the question remains: ‘connectivity for which species?’.

Objective

The aim of this study was to develop and then apply a rapid, expert-based, dispersal guild approach where species are grouped on similar fine-scale dispersal behaviour (such as between scattered trees) and habitat characteristics.

Methods

Dispersal guilds were identified using clustering techniques to compare dispersal and habitat parameters elicited from experts. We modelled least-cost paths and corridors between patches and individual movement probabilities within these corridors for each of the dispersal guilds using Circuitscape. We demonstrate our approach with a case study in the Tasmanian Northern Midlands, Australia.

Results

The dispersal guild approach grouped the 12 species into five dispersal guilds. The connectivity modelling of those five guilds found that broadly dispersing species in this landscape, such as medium-sized carnivorous mammals, were unaffected by fragmentation while from the perspective of the three dispersal guilds made up of smaller mammals, the landscape appeared highly fragmented.

Conclusions

Our approach yields biologically defensible outputs that are broadly applicable, particularly for conservation planning where data and resources are limited. It is a useful first step in multi-species conservation planning which aims to identify those species most in need of conservation efforts.
  相似文献   

3.

Context

The ability to detect ecological networks in landscapes is of utmost importance for managing biodiversity and planning corridors.

Objectives

The objective of this study was to evaluate the information provided by a synthetic aperture radar (SAR) image for landscape connectivity modeling compared to aerial photographs (APs).

Methods

We present a novel method that integrates habitat suitability derived from remote sensing imagery into a connectivity model to explain species abundance. More precisely, we compared how two resistance maps constructed using landscape and/or local metrics derived from AP or SAR imagery yield different connectivity values (based on graph theory), considering hedgerow networks and forest carabid beetle species as a model.

Results

We found that resistance maps using landscape and local metrics derived from SAR imagery improve landscape connectivity measures. The SAR model is the most informative, explaining 58% of the variance in forest carabid beetle abundance. This model calculates resistance values associated with homogeneous patches within hedgerows according to their suitability (canopy cover density and landscape grain) for the model species.

Conclusions

Our approach combines two important methods in landscape ecology: the construction of resistance maps and the use of buffers around sampling points to determine the importance of landscape factors. This study was carried out through an interdisciplinary approach involving remote sensing scientists and landscape ecologists. This study is a step forward in developing landscape metrics from satellites to monitor biodiversity.
  相似文献   

4.

Context

The umbrella approach applied to landscape connectivity is based on the principle that the conservation or restoration of the dispersal habitats for some species also can facilitate the movement of others. Species traits alone do not seem to be enough to identify good connectivity umbrella species, showing the need to investigate the influence of additional factors on this property.

Objectives

We test whether the potential of a species as a connectivity umbrella can be influenced by landscape composition and configuration.

Methods

We simulated movement routes for eight hypothetical species in artificial patchy landscapes with different levels of fragmentation, habitat amount and matrix permeability. We determined the effectiveness of the connectivity umbrella of the virtual species using pairwise intersections of important habitats for their movements in all landscapes.

Results

The connectivity umbrella performance of all species was affected by the interaction of fragmentation level and habitat amount. In general, species performance increased with decreasing fragmentation and increasing habitat amount. In most landscapes and considering the same dispersal threshold, species able to move more easily through the matrix showed higher umbrella performance than those for which the matrix offered greater resistance.

Conclusions

The connectivity umbrella is not a static feature that depends only on the species traits, but rather a dynamic property that also varies according to the landscape attributes. Therefore, we do not recommend spatial transferability of the connectivity umbrella species identified in a landscape to others that have divergent levels of fragmentation and habitat quantity.
  相似文献   

5.

Context

Understanding how landscape patterns affect species diversity is of great importance in the fields of biogeography, landscape ecology and conservation planning, but despite the rapid advance in biodiversity analysis, investigations of spatial effects on biodiversity are still largely focused on species richness.

Objectives

We wanted to know if and how species richness and species composition are differentially driven by the spatial measures dominating studies in landscape ecology and biogeography. As both measures require the same limited presence/absence information, it is important to choose an appropriate diversity measure, as differing results could have important consequences for interpreting ecological processes.

Methods

We recorded plant occurrences on 112 islands in the Baltic archipelago. Species richness and composition were calculated for each island, and the explanatory power of island area and habitat heterogeneity, distance to mainland and structural connectivity at three different landscape sizes were examined.

Results

A total of 354 different plant species were recorded. The influence of landscape variables differed depending on which diversity measure was used. Island area and structural connectivity determined plant species richness, while species composition revealed a more complex pattern, being influenced by island area, habitat heterogeneity and structural connectivity.

Conclusions

Although both measures require the same basic input data, species composition can reveal more about the ecological processes affecting plant communities in fragmented landscapes than species richness alone. Therefore, we recommend that species community composition should be used as an additional standard measure of diversity for biogeography, landscape ecology and conservation planning.
  相似文献   

6.

Context

Alaskan landscapes are changing due to climate change impacts. Maintaining or restoring landscape connectivity is a widely suggested climate change adaptation strategy because species are shifting their distributions to align with emerging conditions. Natural resource managers in Alaska have an opportunity to proactively design connected landscapes as infrastructure networks and economic development continue to increase in the state.

Objectives

We provide an example of strategic, multijurisdictional planning to maintain landscape connectivity at a large spatial scale.

Methods

We use geodiversity to model climate-resilient landscape linkages between conservation lands within and adjacent to a 59-million-acre planning area.

Results

The resulting landscape linkage design consists of as little as 1% of the planning area, but can connect over 64 million acres of conservation land allowing the Bureau of Land Management to leverage the current land designations to maximize the conservation value of the entire landscape.

Conclusions

Maintaining landscape connectivity is above and beyond the mandates and responsibilities of a single organization or land owner. Bridging institutions and partnerships, such as the Northwest Boreal Landscape Conservation Cooperative, can facilitate the coordination needed for this type of multi-jurisdictional planning effort. The opportunity to manage proactively, rather than waiting for system degradation and then responding reactively, should not be undervalued. The implementation of this work will serve as a model for other relatively intact systems and moreover showcases the potential of twenty-first century models of conservation and sustainability.
  相似文献   

7.

Context

Landscapes and animal behavior can exhibit temporal variability and connectivity estimates should consider this phenomenon. In many species, timing of activities such as nesting, mate searching, and hibernation occurs during distinct periods in which movement events may differ, along with physical characteristics of the surrounding landscape.

Objectives

We estimate movement, landscape conductance, and patch importance for a turtle species across two seasonal activity periods (spring, late summer) in a fragmented agricultural region. Three connectivity approaches are compared to identify their advantages and disadvantages.

Methods

A least-cost distance model, circuit-based approach, and patch-based index were used to collectively describe the potential functional connectivity of Blanding’s turtle (Emydoidea blandingii) across a multi-temporal scale in an agricultural region of south western Ontario.

Results

Connectivity decreased further into the active season exhibited through lower conductance of the landscape and fewer pathways, while the importance of habitat nodes shifted due to temporal variability in the number and distribution of nodes. Models provided different yet complimentary information, with least-cost models overestimating discrete pathways yet providing a secondary measure of landscape barriers. The circuit-based model estimated corridors of least resistance providing an overall characterization of the landscape, while patch-based indices provided key information on the importance of individual habitat patches.

Conclusion

Findings highlight the importance of including a temporal aspect in connectivity modelling as results demonstrate a change in functional connectivity over time. We also recommend employing multiple connectivity metrics to capture variation in movement behavior.
  相似文献   

8.

Context

The relative importance of habitat area and connectivity for species richness is often unknown. Connectivity effects may be confounded with area effects or they may be of minor importance as posited by the habitat-amount hypothesis.

Objectives

We studied effects of habitat area and connectivity of linear landscape elements for plant species richness at plot level. We hypothesized that connectivity of linear landscape elements, assessed by resistance distance, has a positive effect on species richness beyond the effect of area and, further, that the relative importance of connectivity varies among groups of species with different habitat preferences and dispersal syndromes.

Methods

We surveyed plant species richness in 50 plots (25 m2) located on open linear landscape elements (field margins, ditches) in eight study areas of 1 km2 in agricultural landscapes of Northwest Germany. We calculated the area of linear landscape elements and assessed their connectivity using resistance distance within circular buffers (500 m) around the plots. Effects of area and connectivity on species richness were modelled with generalised linear mixed models.

Results

Species richness did not increase with area. Resistance distance had significant negative effects on total richness and on the richness of typical species of grasslands and wetlands. Regarding dispersal syndromes, resistance distance had negative effects on the richness of species with short-distance, long-distance and aquatic dispersal. The significant effects of resistance distance indicated that species richness increased with connectivity of the network of linear landscape elements.

Conclusions

Connectivity is more important for plant species richness in linear landscape elements than area. In particular, the richness of plant species that are dispersal limited and confined to semi-natural habitats benefits from connective networks of linear landscape elements in agricultural landscapes.
  相似文献   

9.

Context

Ecological networks are often designed based on the degree of suitability and permeability of land cover classes, as obtained by estimating the statistical relationships between occurrence data and classes coverage using habitat suitability models (HSMs). Considering only the classes coverage, but not their spatial arrangement, frequently prevents HSMs from correctly identifying nodes and connectivity elements.

Objectives

We propose a new approach in the design of ecological networks starting from the relationship between occurrence data and both land cover classes coverage and spatial arrangement, as calculated for different simulated species perceptions of the landscape (SSPLs, corresponding to different combinations of classes alternatively assuming the role of nodes, connectivity elements, or matrix).

Methods

The approach consists of comparing the ability to explain the observed species occurrence of both the nodes coverage and the connectivity degree provided by both nodes and connectivity elements, calculated for each SSPL. The better performing SSPL will provide information about the land cover classes that should be considered in designing an ecological network for the species, as well as their role in the network.

Results

When applied to the Hazel Dormouse in an agricultural landscape in northern Italy, the method proved effective and allowed us to identify woodlands and hedgerows as nodes, and poplar cultivations, biomasses and reforestations as connectivity elements.

Conclusions

The proposed method can be adopted to identify nodes and connectivity elements for virtually every species sensitive to fragmentation, and has important practical implications when integrated in landscape management plans developed to guarantee ecological connectivity.
  相似文献   

10.

Context

Complex structural connectivity patterns can influence the distribution of animals in coastal landscapes, particularly those with relatively large home ranges, such as birds. To understand the nuanced nature of coastal forest avifauna, where there may be considerable overlap in assemblages of adjacent forest types, the concerted influence of regional landscape context and vegetative structural connectivity at multiple spatial scales warrants investigation.

Objectives

This study determined whether species compositions of coastal forest bird assemblages differ with regional landscape context or with forest type, and if this is influenced by structural connectivity patterns measured at multiple spatial scales.

Methods

Three replicate bird surveys were conducted in four coastal forest types at ten survey locations across two regional landscape contexts in northeast Australia. Structural connectivity patterns of 11 vegetation types were quantified at 3, 6, and 12 km spatial scales surrounding each survey location, and differences in bird species composition were evaluated using multivariate ordination analysis.

Results

Bird assemblages differed between regional landscape contexts and most coastal forest types, although Melaleuca woodland bird assemblages were similar to those of eucalypt woodlands and rainforests. Structural connectivity was primarily correlated with differences in bird species composition between regional landscape contexts, and correlation depended on vegetation type and spatial scale.

Conclusions

Spatial scale, landscape context, and structural connectivity have a combined influence on bird species composition. This suggests that effective management of coastal landscapes requires a holistic strategy that considers the size, shape, and configuration of all vegetative components at multiple spatial scales.
  相似文献   

11.

Context

Hoverflies are often used as bio-indicators for ecosystem conservation, but only few studies have actually investigated the key factors explaining their richness in woodlands.

Objectives

In a fragmented landscape in southwest France, we investigated the joint effects of woodland area, structural heterogeneity, connectivity and history on the species richness of forest-specialist hoverflies, and whether there was a time lag in the response of hoverflies to habitat changes, and tested the effect of spatiotemporal changes.

Methods

Current species richness was sampled in 48 woodlands using 99 Malaise traps. Structural variables were derived from a rapid habitat assessment protocol. Old maps and aerial photographs were used to extract past and present spatial patterns of the woodlands since 1850. Relationships between species richness and explanatory variables were explored using generalized linear models.

Results

We show that current habitat area, connectivity, historical continuity and the average density of tree-microhabitats explained 35 % of variation in species richness. Species richness was affected differently by changes in patch area between 1979 and 2010, depending on woodland connectivity. In isolated woodlands, extinction debt and colonization credit were revealed, showing that even several decades are not sufficient for hoverflies to adapt to landscape-scale habitat conditions.

Conclusions

These findings emphasise the importance of maintaining connectedness between woodlands, which facilitates the dispersion in a changing landscape. Our results also highlight the benefits of using a change-oriented approach to explain the current distribution patterns of species, especially when several spatial processes act jointly.
  相似文献   

12.

Context

A challenge devising revegetation strategies in fragmented landscapes is conserving for the widest spectrum of biodiversity. Habitat network reconstruction should improve landscape capacity to maintain species populations. However, the location of revegetation often fails to account for species occurrence and dispersal processes operating across spatial scales.

Objectives

Our objective was to integrate metapopulation theory with estimates of landscape capacity and dispersal pathways to highlight connectivity gaps. Maintenance of populations could thereby be facilitated through reconnecting habitat networks across regional and broader scales, with assumed benefit for the dispersal needs of less sensitive species.

Methods

Predicted occupancy and metapopulation capacity were calculated for a generic focal species derived from fragmentation-sensitive woodland birds, mammals and reptiles. A metapopulation connectivity analysis predicted regional dispersal links to identify likely routes through which individuals may move to contribute to the viability of the population. We used the revegetation programmes of the Brigalow–Nandewar Biolinks project, eastern New South Wales, Australia, to demonstrate our approach.

Results

Landscape capacity of the current landscape varied across the region. Low-value links between populations provided greatest opportunities for revegetation and improved landscape capacity. Where regional connectivity did not indicate a pathway between populations, broader scale connectivity provided guidance for revegetation.

Conclusions

The metapopulation-based model, coupled with a habitat dispersal network analysis, provided a platform to inform revegetation locations and better support biodiversity. Our approach has application for directing on-ground action to support viable populations, assess the impact of revegetation schemes or monitor the progress of staged implementations.
  相似文献   

13.

Context

Butterflies have been continuously declining for several decades in Europe due to many factors, such as farming intensification. Rural landscapes have undergone dramatic changes leading to homogenized landscapes.

Objectives

In this study, we investigated how landscape composition, structure and connectivity impact butterfly communities according to their ecological and biological traits.

Methods

We made use of 5669 Lepidoptera surveys performed at 4525 distinct locations in lowland Central France. We considered 19 ecological groups based on habitat specialization, mobility, diet, voltinism or overwintering strategy. Generalized linear mixed-effect models were used to relate the species richness of these groups to landscape variables defined in circular zones with radius from 250 m to 5 km.

Results

Richness of most species groups co-varied with landscape variables, with the exception of mobile, imago-overwintering, monophagous and polyphagous species. Habitat proportion explained more variation in butterfly diversity than habitat connectivity or habitat diversity. Moreover, the best proportion models were generally found for the 250-m circular zones. Thirteen species groups were disfavored by cropland amount. Except for forest specialists and high mobility group, no other group was more diverse in landscapes dominated by a single land cover type. Rather, for total diversity and 14 groups, species richness peaked for forest proportions varying between 40 and 80%, and for total diversity and nine groups for grassland proportions ranging from 30 to 60%.

Conclusions

These results indicate that landscape homogenization is contributing to the ongoing decline in butterflies, and support preserving and (re)creating mosaics of grasslands and forests.
  相似文献   

14.

Context

Landscape heterogeneity (the composition and configuration of matrix habitats) plays a major role in shaping species communities in wooded-agricultural landscapes. However, few studies consider the influence of different types of semi-natural and linear habitats in the matrix, despite their known ecological value for biodiversity.

Objective

To investigate the importance of the composition and configuration of matrix habitats for woodland carabid communities and identify whether specific landscape features can help to maintain long-term populations in wooded-agricultural environments.

Methods

Carabids were sampled from woodlands in 36 tetrads of 4 km2 across southern Britain. Landscape heterogeneity including an innovative representation of linear habitats was quantified for each tetrad. Carabid community response was analysed using ordination methods combined with variation partitioning and additional response trait analyses.

Results

Woodland carabid community response was trait-specific and better explained by simultaneously considering the composition and configuration of matrix habitats. Semi-natural and linear features provided significant refuge habitat and functional connectivity. Mature hedgerows were essential for slow-dispersing carabids in fragmented landscapes. Species commonly associated with heathland were correlated with inland water and woodland patches despite widespread heathland conversion to agricultural land, suggesting that species may persist for some decades when elements representative of the original habitat are retained following landscape modification.

Conclusions

Semi-natural and linear habitats have high biodiversity value. Landowners should identify features that can provide additional resources or functional connectivity for species relative to other habitat types in the landscape matrix. Agri-environment options should consider landscape heterogeneity to identify the most efficacious changes for biodiversity.
  相似文献   

15.

Context

Identifying the drivers shaping biological assemblages in fragmented tropical landscapes is critical for designing effective conservation strategies. It is still unclear, however, whether tropical biodiversity is more strongly affected by forest loss, by its spatial configuration or by matrix composition across different spatial scales.

Objectives

Assessing the relative influence of forest patch and landscape attributes on dung beetle assemblages in the fragmented Lacandona rainforest, Mexico.

Methods

Using a multimodel inference approach we tested the relative impact of forest patch size and landscape forest cover (measures of forest amount at the patch and landscape scales, respectively), patch shape and isolation (forest configuration indices at the patch scale), forest fragmentation (forest configuration index at the landscape scale), and matrix composition on the diversity, abundance and biomass of dung beetles.

Results

Patch size, landscape forest cover and matrix composition were the best predictors of dung beetle assemblages. Species richness, beetle abundance, and biomass decreased in smaller patches surrounded by a lower percentage of forest cover, and in landscapes dominated by open-area matrices. Community evenness also increased under these conditions due to the loss of rare species.

Conclusions

Forest loss at the patch and landscape levels and matrix composition show a larger impact on dung beetles than forest spatial configuration. To preserve dung beetle assemblages, and their key functional roles in the ecosystem, conservation initiatives should prioritize a reduction in deforestation and an increase in the heterogeneity of the matrix surrounding forest remnants.
  相似文献   

16.

Context

Understanding connectivity patterns in relation to habitat fragmentation is essential to landscape management. However, connectivity is often judged from expert opinion or species occurrence patterns, with very few studies considering the actual movements of individuals. Path selection functions provide a promising tool to infer functional connectivity from animal movement data, but its practical application remains scanty.

Objectives

We aimed to describe functional connectivity patterns in a forest carnivore using path-level analysis, and to explore how connectivity is affected by land cover patterns and road networks.

Methods

We radiotracked 22 common genets in a mixed forest-agricultural landscape of southern Portugal. We developed path selection functions discriminating between observed and random paths in relation to landscape variables. These functions were used together with land cover information to map conductance surfaces.

Results

Genets moved preferentially within forest patches and close to riparian habitats. Functional connectivity declined with increasing road density, but increased with the proximity of culverts, viaducts and bridges. Functional connectivity was favoured by large forest patches, and by the presence of riparian areas providing corridors within open agricultural land. Roads reduced connectivity by dissecting forest patches, but had less effect on riparian corridors due to the presence of crossing structures.

Conclusions

Genet movements were jointly affected by the spatial distribution of suitable habitats, and the presence of a road network dissecting such habitats and creating obstacles in areas otherwise permeable to animal movement. Overall, the study showed the value of path-level analysis to assess functional connectivity patterns in human-modified landscapes.
  相似文献   

17.

Context

Context Bats are considered as an ecological indicator of habitat quality due to their sensitivity to human-induced ecosystem changes. Hence, we will focus the study on two indicator species of bats as a proxy to evaluate structure and composition of the landscape to analyze anthropic pressures driving changes in patterns.

Objectives

This study develops a spatially-explicit model to highlight key habitat nodes and corridors which are integral for maintaining functional landscape connectivity for bat movement. We focus on a complex mountain landscape and two bat species: greater (Rhinolophus ferrumequinum) and lesser (Rhinolophus hipposideros) horseshoe bats which are known to be sensitive to landscape composition and configuration.

Methods

Species distribution models are used to delineate high-quality foraging habitat for each species using opportunistic ultrasonic bat data. We then performed connectivity analysis combining (modelled) suitable foraging habitat and (known) roost sites. We use graph-theory and the deviation in the probability of connectivity to quantify resilience of the landscape connectivity to perturbations.

Results

Both species were confined to lowlands (<1000 m elevation) and avoided areas with high road densities. Greater horseshoe bats were more generalist than lesser horseshoe bats which tended to be associated with broadleaved and mixed forests.

Conclusions

The spatially-explicit models obtained were proven crucial for prioritizing foraging habitats, roost sites and key corridors for conservation. Hence, our results are being used by key stakeholders to help integrate conservation measures into forest management and conservation planning at the regional level. The approach used can be integrated into conservation initiatives elsewhere.
  相似文献   

18.

Context

Just as the timing of the vegetative growing season affects a host of ecological processes, the seasonality of floral availability impacts ecological processes from nectar availability and allergen production to competition for pollinator attention. However, no existing methodology is capable of evaluating multi-species bloom phenology in a standardized fashion across multiple ecosystems or compositionally distinct local flora. Thus, the manner in which the onset of the bloom season (during which the majority of species flower) differs along climate gradients and among distinct local flora remains largely unknown.

Objectives

This study evaluates differences in the timing of the bloom season throughout the western United States, and the relationship of the bloom season to the vegetative growing season and to local climate conditions.

Methods

This study estimated the season during which all but the earliest and latest 5 % of local species flower (the bloom season) using digital herbarium records. Bloom season timing was compared to land surface phenology, SI-x phenoclimate metrics, and PRISM climate normals.

Results

Local differences in mean temperature of the coldest month explained 76 % of observed variation in bloom season onset. Variation in land surface phenology explained 50 % of observed variation, while SI-x Bloom estimates explained 64 % of observed variation in bloom season onset.

Conclusions

These results confirm that bloom season phenology is distinct from the vegetative growing season, and that local temperature is a good predictor of bloom season onset. This work represents a new modality for studying multi-taxa flowering phenology at landscape and regional scales.
  相似文献   

19.

Context

Landscape fragmentation significantly affects species distributions by decreasing the number and connectivity of suitable patches. While researchers have hypothesized that species functional traits could help in predicting species distribution in a landscape, predictions should depend on the type of patches available and on the ability of species to disperse and grow there.

Objectives

To explore whether different traits can explain the frequency of grassland species (number of occupied patches) and/or their occupancy (ratio of occupied to suitable patches) across a variety of patch types within a fragmented landscape.

Methods

We sampled species distributions over 1300 grassland patches in a fragmented landscape of 385 km2 in the Czech Republic. Relationships between functional traits and species frequency and occupancy were tested across all patches in the landscape, as well as within patches that shared similar management, wetness, and isolation.

Results

Although some traits predicting species frequency also predicted occupancy, others were markedly different, with competition- and dispersal-related traits becoming more important for occupancy. Which traits were important differed for frequency and occupancy and also differed depending on patch management, wetness, and isolation.

Conclusions

Plant traits can provide insight into plant distribution in fragmented landscapes and can reveal specific abiotic, biotic, and dispersal processes affecting species occurrence in a patch type. However, the importance of individual traits depends on the type of suitable patches available within the landscape.
  相似文献   

20.

Context

Linear transportation infrastructures traverse and separate wildlife populations, potentially leading to their short- and long-term decline at local and regional scales. To attenuate such effects, we need wildlife crossings suitable for a wide range of species.

Objectives

We propose a method for identifying the best locations for wildlife crossings along linear infrastructures so as to improve the connectivity of species with varying degrees of mobility and living in different habitats. We evaluate highway impacts on mammal species.

Methods

The study area is the Grésivaudan Valley, France. We used allometric relationships to create eight virtual species and model their connectivity networks, developing a nested method defining populations by daily travel distances and connecting them by dispersal. We tested the gain in connectivity for each species produced by 100 and 600 crossing locations respectively in crossable, i.e. with crossing infrastructures, and uncrossable highway scenarios. We identified the crossings that optimize the connectivity of the maximum number of species combining the results in multivariate analyses.

Results

Highly mobile species needing a large habitat area were the most sensitive to highways. The importance of locomotive performance in structuring the graphs decreased with highway impermeability. Depending on the species, the best locations improved connectivity by 0–10 and 2–75 % respectively in the crossable and uncrossable scenarios. Compromise locations were found for seven of the eight species in both scenarios.

Conclusions

This method could guide planners in identifying crossing locations to increase the connectivity of different species at regional scales over the long term.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号