首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Landscape structure can influence demographics of spatially structured populations, particularly less vagile organisms such as amphibians. We examined the influence of agricultural landscape structure on community composition and relative abundance of the 4 most common amphibians in the Southern High Plains of central USA. Amphibian populations were monitored using pitfall traps and drift fence at 16 playa wetlands (8 playas/year) in 1999 and 2000. We quantified landscape structure surrounding each playa via estimating 13 spatial metrics that indexed playa isolation and inter-playa landscape complexity. Multivariate ordination and univariate correlations and regressions indicated that landscape structure was associated with community composition and relative abundance for 2 of the 4 amphibians. Spadefoots (Spea multiplicata, S. bombifrons) generally were positively associated with decreasing inter-playa distance and increasing inter-playa landscape complexity. Great Plains toads (Bufo cognatus) and barred tiger salamanders (Ambystoma tigrinum mavortium) usually were negatively associated with spadefoots but not influenced by landscape structure. Composition and relative abundance patterns were related to amphibian body size, which can influence species vagility and perception to landscape permeability. Spatial separation of these species in the multivariate ordination also may have been a consequence of differential competitive ability among species. These results suggest agricultural landscape structure may influence abundance and composition of spatially structured amphibian populations. This also is the first applied documentation that inter-patch landscape complexity can affect intra-patch community composition of amphibians as predicted by metapopulation theory. In the Southern High Plains, landscape complexity is positively associated with agricultural cultivation. Agricultural cultivation increases sedimentation, decreases hydroperiod, alters amphibian community dynamics, and negatively impacts postmetamorphic body size of amphibians in playa wetlands. Thus, conservation efforts should focus on preserving or restoring native landscape structure, hydroperiod, and connectivity among playas to maintain native amphibian populations and historic inter-playa movement.  相似文献   

2.
3.
The effects of time on the evolution of land use intensity and soil nutrients distribution were studied in a reclamation zone of the Yangtze Estuary. Land use types were grouped into five intensity levels according to the extent of human disturbance. We used the “space for time substitution” method to test the impact of time on changes in land use intensity after reclamation and found that land use levels increased quickly within the first 35 years, then slowed. Soil salinity was relatively higher in aquaculture ponds than that in areas with other types of land cover due to the use of saline water from underground and the sea. Soil organic matter, available phosphorous and nitrate nitrogen were relatively high in agricultural fields, while nitrate nitrogen was highly variable in agricultural fields. The variations of all four soil properties in the built-up zone were much higher than those in the other land use groups. The spatial distribution of different nutrients is the combined effect of time and land use post reclamation. The results will provide a sound basis for future land use planning of newly reclaimed land, and for further studies on ecological consequences of salt marsh reclamation.  相似文献   

4.
Many amphibian species rely on both aquatic and terrestrial habitats to complete their life cycles. Therefore, processes operating both within the aquatic breeding habitat, and in the surrounding uplands may influence species distributions and community composition. Moreover, changes in land use adjacent to breeding site may degrade aquatic habitats. To assess land use effects on pond-breeding amphibian assemblages, we investigated relationships between land use, breeding habitat conditions, and breeding amphibian use of constructed wetlands in urban environments of the Baltimore metropolitan area, USA. Forest and impervious surface associations with species richness and occurrence occurred at spatial scales ranging from 50 to 1,000 m, with strongest relationships at 500 m. Forest and impervious surface cover within 1,000 m of ponds were also related to water and sediment quality, which in turn were capable of explaining a proportion of the observed variation in species richness and occurrence. Taken together, our results suggest that forest and other land covers within relatively proximal distances to ponds (i.e., within 50–1,000 m) may be influencing species richness directly via the provisioning of upland habitat, and indirectly via influences on within pond habitat quality. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Knowledge of variation in vascular plant species richness and species composition in modern agricultural landscapes is important for appropriate biodiversity management. From species lists for 2201 land-type patches in 16 1-km2 plots five data sets differing in sampling-unit size from patch to plot were prepared. Variation in each data set was partitioned into seven sources: patch geometry, patch type, geographic location, plot affiliation, habitat diversity, ecological factors, and land-use intensity. Patch species richness was highly predictable (75% of variance explained) by patch area, within-patch heterogeneity and patch type. Plot species richness was, however, not predictable by any explanatory variable, most likely because all studied landscapes contained all main patch types – ploughed land, woodland, grassland and other open land – and hence had a large core of common species. Patch species composition was explained by variation along major environmental complex gradients but appeared nested to lower degrees in modern than in traditional agricultural landscapes because species-poor parts of the landscape do not contain well-defined subsets of the species pool of species-rich parts. Variation in species composition was scale dependent because the relative importance of specific complex gradients changed with increasing sampling-unit size, and because the amount of randomness in data sets decreased with increasing sampling-unit size. Our results indicate that broad landscape structural changes will have consequences for landscape-scale species richness that are hard or impossible to predict by simple surrogate variables.  相似文献   

6.
Perceived land use patterns and landscape values   总被引:3,自引:0,他引:3  
Land use patterns and land form are important sources of information that contribute to the formation of landscape perceptions and values. This paper discusses three concepts of human-landscape relationships: the human as an agent of biological and physical impacts on the landscape; the human as a static receiver and processor of information from the landscape; and the human as an active participant in the landscape —thinking, feeling and acting — a transactional concept. A model of the transactional concept and of human perception and response is presented along with a conjectural example of human-landscape transactions. Three empirical research projects are presented to illustrate varying relationships between and among humans and landscapes. Variations in human experiences, needs and desires, personal utility functions for the use of the landscape, and socio-cultural contexts are suggested as mediating variables on perceived values and human responses. The importance of landscape values information to planning and management activities is discussed.  相似文献   

7.
An individual-based, spatially explicit population model was used to predict the consequences of future land-use alternatives for populations of four amphibian species in two central Iowa (midwest USA) agricultural watersheds. The model included both breeding and upland habitat and incorporated effects of climatic variation and demographic stochasticity. Data requirements of the model include life history characteristics, dispersal behavior, habitat affinities, as well as land use and landcover in geographic information systems databases. Future scenarios were ranked according to change in breeder abundance, saturation, and distribution, compared to baseline conditions. Sensitivity of simulation results to changes in model parameters was also examined. Simulated results suggest that while all four species modeled are likely to persist under present and future scenario conditions, two may be more at risk from future landscape change. Although the study species are all widespread generalists regarded as having a low conservation priority, they depend on wetlands and ponds, increasingly endangered habitats in agricultural landscapes. Broader conservation strategies in the region would ensure that these currently common organisms do not become the endangered species of the future.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

8.
Fisher  Jason T.  Merriam  Gray 《Landscape Ecology》2000,15(4):333-338
Eastern grey squirrels (Sciurus carolinensis) and North American red squirrels (Tamiasciurus hudsonicus) were studied among wooded patches within an agricultural mosaic. Fifteen sites south of Ottawa, Canada, with differing landscape and local features were censused using tracking boards placed in a woods or wooded fencerow. Regression analyses of landscape compositional and physiognomic variables within a 1-km radius isolated the best predictors of grey and red squirrel abundance and activity. Grey squirrels were found in both small woods and fencerows in farm landscapes but were not found in large woods. A polynomial regression of wooded patch size explained 79% of the variance in grey squirrel abundance. Grey squirrel activity was correlated with the percent cover of soybeans in the landscape. Red squirrels were found in fencerows, small and large woods; activity was correlated with the percent cover of both woods and corn crop in the surrounding landscape. These results indicate that distributions of both species are influenced by multiple landscape elements, but that grey squirrels may rely on fragmented agricultural landscapes whereas red squirrels make more use of both native woodland and altered landscapes.  相似文献   

9.
In agricultural landscapes, most studies have investigated the influence of the spatial pattern of forest patches on other ecological phenomena and processes, such as animal movement and biodiversity. However, few have focused on explaining the spatial pattern of the forest patches themselves. Understanding how these patterns relate to the processes that generate them is fundamental in developing a sound theory of landscape ecology, and in devising rational management strategies. In this paper, the pattern of the overall forest patches, as well as the pattern of deciduous and coniferous patches in an agricultural landscape of Southern Quebec, Canada, were analyzed and related to landscape physical attributes and land use, using remote sensing, geographic information systems and statistical methods. Results show that the role of landscape physical attributes on forest patch pattern has been modified by land use. In the study area, coniferous or deciduous patches are not associated with a specific surface deposit. In addition, physical attributes explain only a small proportion of the abundance of conifers on past abandoned land compared with land-use factors. Physical attributes only indirectly influence the forest pattern because they strongly influence the land-use practices. Our results reveal a conifer recovery process with the abandonment of agricultural land. On past abandoned land, conifers expand with increasing stand age, mostly by invasion from neighboring coniferous patches. Spatially, coniferous patches are usually located on the margins of the overall forest patches, and they are connected to non-forest land-use types such as crop and pasture, the latter being the most important. By showing the importance of some coniferous forest types that did not exist in the precolonial forest, a new perspective emerges when landscape, especially, land-use dynamics are taken into account.  相似文献   

10.
Pollination contributes to both human food security and the reproduction of the majority of wild plant species, but pollinators are facing a rapid decline, a major cause of which is habitat conversion and degradation due to human activities. Urbanization is one of the major types of habitat conversion, but its influence on pollination has been surprisingly mixed, ranging from markedly negative to strongly positive effects. One hypothesis proposed to explain these discrepancies is that pollinator responses to urbanization are highly dependent on the non-urban control habitat, with negative effects when the controls are natural or semi-natural areas but positive when they are intensive agricultural areas. It was also proposed that the pollination response along an agricultural-to-urban gradient is non-linear, with maximum pollination observed at an intermediate level of urbanization due to increased environmental heterogeneity. To test these two hypotheses, we selected a group of 38 sites in a peri-urban area near Paris, France, using a semi-stratified sampling strategy that ensured that all three of the urban, agricultural and semi-natural gradients were maximized. We then estimated pollination using two approaches: we evaluated the pollination success of Lotus corniculatus, a strictly entomogamous self-sterile plant species pollinated mainly by bees, and we measured the species richness of entomogamous and non-entomogamous plants, the difference in their response being expected to relate to the pollination service provided by the overall pollinator community. We found that in our study area, pollination success of L. corniculatus responds positively to the agricultural to urban gradient but not to the semi-natural to urban gradient. The diversity of both entomogamous and non-entomogamous plants is highest at sites surrounded by intermediate proportions of urban and agricultural areas. In addition, high proportions of urban areas have a negative effect on the diversity of non-entomogamous but not entomogamous plant species, suggesting that pollinators are able to partially buffer entomogamous plant species against the negative effect of urban development. Our results show the importance of urban areas in pollination conservation plans and demonstrate that the interaction between different anthropogenic land-use is an important factor for understanding pollination.  相似文献   

11.
The spatial genetic structuring of the land snail Helix aspersa was investigated for 32 colonies within an intensive agricultural area, the polders of the Bay of Mont-Saint-Michel (France). Given the habitat patchiness and environmental instability, the setting of H. aspersa colonies meets the broader view of a metapopulation structure. The identification of extrinsic barriers to migration and their impact on the genetic distribution was addressed through the genotyping of 580 individuals using a combined set of enzyme and microsatellite loci. To evaluate the distance as well as the direction over which the spatial genetic arrangement occurs, two-dimensional spatial autocorrelation analyses, Mantel tests of association and multivariate Mantel correlograms were used. Different connectivity networks and geographical distances based on landscape features were constructed to evaluate the effect of environmental heterogeneity and to test the adequacy of an isolation by distance model on the distribution of the genetic variability. Genetic divergence was assessed using either classical IAM-based statistics, or SMM-based genetic distances specifically designed to accommodate the mutational processes thought to fit microsatellite evolution (IAM: Infinite Allele Model; SMM: Stepwise Mutation Model). Genetic distances based only on genetic drift yielded the most plausible biologically meaningful interpretation of the observed spatial structure. Applying a landscape-based geographical distance which postulates that migration arises along roadside verges, hedges or irrigation canal embankments gave a better fit to an isolation by distance model than did a simple Euclidean distance. The progressive decline of genetic similarity with physical distance appeared to be environmentally induced, leading to functional migration pathways.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

12.
The extent and connectivity of individual habitat types strongly affects the distribution and abundance of organisms. However, little is known of how the level of connectivity and the interactions between different habitat types influences the distribution of species. Here, we used the geographically restricted and endangered regent parrot Polytelis anthopeplus monarchoides as a case study to examine the importance of composition and connectivity between different elements in 39 complex landscape mosaics (each 10 km radius). We compiled a database of 674 regent parrot nesting records, regional vegetation maps and measures of multipath connectivity between core vegetation types under different scenarios of resistance to movement provided by landscape elements. The occurrence of regent parrot nests was strongly affected by landscape composition, being positively related to the extent Eucalyptus camaldulensis riverine forest, but negatively related to the extent of semi-arid woodlands dominated by Eucalyptus largiflorens. Connectivity between E. camaldulensis forest (principal nesting habitat) and mallee (preferred feeding habitat) was a strong predictor of nest locations. Our study shows that the suitability of fragmented agricultural landscapes for supporting species can be greatly affected by connectivity and interactions between preferred and non-preferred habitats. For species that require complementary habitats such as the regent parrot, conservation management activities may be ineffective if they simply focus on a single core habitat type or the impacts of human land uses without regard to the interrelationships among landscape elements. While increasing the amount of primary preferred habitat should remain a cornerstone goal, increasing the extent and improving connectivity with alternative landscape elements also should be priority management objectives.  相似文献   

13.
In long term studies the following climatological characteristics were measured or calculated: air and soil temperature, sunshine, wind speed, vapor pressure, saturation deficit, precipitation, humidity, incoming and reflected solar energy, energy emitted by active surfaces and primary production. Taking into account the relationships between climatological characteristics, the growth stages of vegetation, and relations between heat balance components, the fluxes of energy used for evapotranspiration, air, and soil heating were estimated in various ecosystems composing the agricultural landscape. The energy contained in biomass production of various crops was estimated also. Aggregate estimates of energy flow connected with evapotranspiration, and soil and air heating were calculated for eight model landscapes which differed by the plant cover structure. A higher variability of energy fluxes was observed for individual ecosystems than for agricultural land-scapes. It was shown that the structure of the plant cover has an important bearing on energy flow and water cycling both by direct and indirect influences. Shelterbelts are especially important in their influence on energy flow and water cycling.Studies carried out within the project CPBP.04.10.03.  相似文献   

14.
This paper develops and applies two concepts which are fundamental to landscape ecology. These concepts concern biocybernetics, which is the theory of regulation of biological and ecological systems, and thermodynamics, especially the flux of energy and the production of entropy. The landscape state factors, including site conditions and fluxes of energy, materials, and organisms, are shaped by the biocybernetic and thermodynamic processes. This theory provides us a way of understanding and discussing complex human interactions with landscape systems, expressing our concept of the whole landscape system (what I have termed the Total Human Ecosystem), and linking landscape ecology with several of the most powerfully creative ideas in modern science.  相似文献   

15.
Techniques for modeling spatial variability in the loss, gain, and storage of total nitrogen (N) in an agricultural landscape were developed utilizing a geographic information system (GIS) based on the Map Analysis Package (C.D. Tomlin, Yale University). The study area is a well-monitored portion (upper 114.9 km2) of the Little River Watershed, located near Tifton, Georgia, U.S.A. On the basis of measured N in the soil and vegetation, and the gains and losses of N by stream discharge, fertilizer, precipitation, N fixation, crop harvest, etc., it was possible to quantify and map source and sink regions of Total N, and to calculate a mass balance of N for an entire year. Results indicate massive flows of N, especially from anthropogenic sources. However, for the watershed as a whole, the N is virtually in balance with a small accretion occurring mostly in the riparian zones. Stream discharge of total N indicates that this landscape is well-buffered against excessive losses of N despite the large agricultural inputs.  相似文献   

16.
Landscape Ecology - Effective landscape control of invasive species is context-dependent due to the interplay between the landscape structure, local population dynamics, and metapopulation...  相似文献   

17.
Land cover and land use changes can have a wide variety of ecological effects, including significant impacts on soils and water quality. In rural areas, even subtle changes in farming practices can affect landscape features and functions, and consequently the environment. Fine-scale analyses have to be performed to better understand the land cover change processes. At the same time, models of land cover change have to be developed in order to anticipate where changes are more likely to occur next. Such predictive information is essential to propose and implement sustainable and efficient environmental policies. Future landscape studies can provide a framework to forecast how land use and land cover changes is likely to react differently to subtle changes. This paper proposes a four step framework to forecast landscape futures at fine scales by coupling scenarios and landscape modelling approaches. This methodology has been tested on two contrasting agricultural landscapes located in the United States and France, to identify possible landscape changes based on forecasting and backcasting agriculture intensification scenarios. Both examples demonstrate that relatively subtle land cover and land use changes can have a large impact on future landscapes. Results highlight how such subtle changes have to be considered in term of quantity, location, and frequency of land use and land cover to appropriately assess environmental impacts on water pollution (France) and soil erosion (US). The results highlight opportunities for improvements in landscape modelling.  相似文献   

18.
Landscape Ecology - Plant populations in agricultural landscapes are mostly fragmented and their functional connectivity often depends on seed and pollen dispersal by animals. However, little is...  相似文献   

19.
Zhang  Minghua  Geng  Shu  Ustin  Susan L. 《Landscape Ecology》1998,13(1):37-54
Quantitative agricultural landscape indices are useful to describe functional relationships among climatic conditions, groundwater dynamics, soil properties and agricultural land use for mathematical models. We applied methods of regression statistics, variance component estimation and a Geographical Information System (GIS) to construct indices describing crops and soils and to establish functional relationships among these variables. This paper describes the development of indices and the partitioning of the spatial and temporal variation in groundwater models using the data from Tulare County, California, which was selected as the study area. Indices of ground surface elevation, total crop water demand, soil water infiltration rate, and soil production index explain 91% of the variation in average spring groundwater level. After relating spatial patterns of groundwater use to indices of crop and soil properties, we found that mean groundwater use is positively related to total crop water demand and soil water infiltration rate while the variation in groundwater use was negatively correlated with the crop water demand and soil water infiltration rate and positively related to soil water holding capacity. The spatial variation in groundwater use was largely influenced by crops and soil types while the temporal variation was not. We also found that groundwater use increased exponentially with decreasing annual precipitation for most townships. Based on these associations, groundwater use in each township can be forecast from relative precipitation under current methods of agricultural production. Although groundwater table depth is strongly affected by topography, the statistically significant indices observed in the model clearly show that agricultural land use influences groundwater table depth. These simple relationships can be used by agronomists to make water management decisions and to design alternative cropping systems to sustain agricultural production during periods of surface water shortages.  相似文献   

20.
Wagner  Helene H.  Wildi  Otto  Ewald  Klaus C. 《Landscape Ecology》2000,15(3):219-227
In this paper, we quantify the effects of habitat variability and habitat heterogeneity based on the partitioning of landscape species diversity into additive components and link them to patch-specific diversity. The approach is illustrated with a case study from central Switzerland, where we recorded the presence of vascular plant species in a stratified random sample of 1'280 quadrats of 1 m2 within a total area of 0.23 km2. We derived components of within- and between-community diversity at four scale levels (quadrat, patch, habitat type, and landscape) for three diversity measures (species richness, Shannon index, and Simpson diversity). The model implies that what we measure as within-community diversity at a higher scale level is the combined effect of heterogeneity at various lower levels. The results suggest that the proportions of the individual diversity components depend on the habitat type and on the chosen diversity aspect. One habitat type may be more diverse than another at patch level, but less diverse at the level of habitat type. Landscape composition apparently is a key factor for explaining landscape species richness, but affects evenness only little. Before we can test the effect of landscape structure on landscape species richness, several problems will have to be solved. These include the incorporation of neighbourhood effects, the unbiased estimation of species richness components, and the quantification of the contribution of a landscape element to landscape species richness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号