首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Context

The relative importance of habitat area and connectivity for species richness is often unknown. Connectivity effects may be confounded with area effects or they may be of minor importance as posited by the habitat-amount hypothesis.

Objectives

We studied effects of habitat area and connectivity of linear landscape elements for plant species richness at plot level. We hypothesized that connectivity of linear landscape elements, assessed by resistance distance, has a positive effect on species richness beyond the effect of area and, further, that the relative importance of connectivity varies among groups of species with different habitat preferences and dispersal syndromes.

Methods

We surveyed plant species richness in 50 plots (25 m2) located on open linear landscape elements (field margins, ditches) in eight study areas of 1 km2 in agricultural landscapes of Northwest Germany. We calculated the area of linear landscape elements and assessed their connectivity using resistance distance within circular buffers (500 m) around the plots. Effects of area and connectivity on species richness were modelled with generalised linear mixed models.

Results

Species richness did not increase with area. Resistance distance had significant negative effects on total richness and on the richness of typical species of grasslands and wetlands. Regarding dispersal syndromes, resistance distance had negative effects on the richness of species with short-distance, long-distance and aquatic dispersal. The significant effects of resistance distance indicated that species richness increased with connectivity of the network of linear landscape elements.

Conclusions

Connectivity is more important for plant species richness in linear landscape elements than area. In particular, the richness of plant species that are dispersal limited and confined to semi-natural habitats benefits from connective networks of linear landscape elements in agricultural landscapes.
  相似文献   

2.

Context

The biodiversity hotspot for conservation of New Caledonia has facing high levels of forest fragmentation. Remnant forests are critical for biodiversity conservation and can help in understanding how does forest fragmentation affect tree communities.

Objective

Determine the effect of habitat configuration and availability on tree communities.

Methods

We mapped forest in a 60 km2 landscape and sampled 93 tree communities in 52 forest fragments following stratified random sampling. At each sampling point, we inventoried all trees with a diameter at breast height ≥10 cm within a radius of 10 m. We then analysed the response of the composition, the structure and the richness of tree communities to the fragment size and isolation, distance from the edge, as well as the topographical position.

Results

Our results showed that the distance from the forest edge was the variable that explained the greatest observed variance in tree assemblages. We observed a decrease in the abundance and richness of animal-dispersed trees as well as a decrease in the abundance of large trees with increasing proximity to forest edges. Near forest edges we found a shift in species composition with a dominance of stress-tolerant pioneer species.

Conclusions

Edge-effects are likely to be the main processes that affect remnant forest tree communities after about a century of forest fragmentation. It results in retrogressive successions at the edges leading to a dominance of stress-tolerant species. The vegetation surrounding fragments should be protected to promote the long process of forest extension and subsequently reduce edge-effects.
  相似文献   

3.

Context

The application of regional-level airborne lidar (light detection and ranging) data to characterize habitat patches and model habitat connectivity over large landscapes has not been well explored. Maintaining a connected network of habitat in the presence of anthropogenic disturbances is essential for regional-level conservation planning and the maintenance of biodiversity values.

Objectives

We quantified variation in connectivity following simulated changes in land cover and contrasted outcomes when different conservation priorities were emphasized.

Methods

First, we defined habitat patches using vegetation structural attributes identified via lidar. Second, habitat networks were constructed for different forest types and assessed using network connectivity metrics. And finally, land cover change scenarios were simulated using a series of habitat patch removals, representing the impact of implementing different spatial prioritization schemes.

Results

Networks for different forest structure types produced very different patch distributions. Conservation scenarios based on different schemes led to contrasting changes during land cover change simulations: the scheme prioritizing only habitat area resulted in immediate near-term losses in connectivity, whereas the scheme considering both habitat area and their spatial configurations maintained the overall connectivity most effectively. Adding climate constraints did not diminish or improve overall connectivity.

Conclusions

Both habitat area and habitat configuration should be considered in dynamic modeling of habitat connectivity under changing landscapes. This research provides a framework for integrating forest structure and cover attributes obtained from remote sensing data into network connectivity modeling, and may serve as a prototype for multi-criteria forest management and conservation planning.
  相似文献   

4.

Context

Biodiversity in arid regions is usually concentrated around limited water resources, so natural resource managers have constructed artificial water catchments in many areas to supplement natural waters. Because invasive species may also use these waters, dispersing into previously inaccessible areas, the costs and benefits of artificial waters must be gauged and potential invasion- and climate change-management strategies assayed.

Objectives

We present a network analysis framework to identify waters that likely contribute to the spread of invasive species.

Methods

Using the Sonoran Desert waters network and the American bullfrog (Lithobates catesbeianus)—a known predator, competitor, and carrier of pathogens deadly to other amphibians—as an example, we quantified the structural connectivity of the network to predict regional invasion potential under current and two future scenarios (climate change and management reduction) to identify waters to manage and monitor for invasive species.

Results

We identified important and vulnerable waters based on connectivity metrics under scenarios representing current conditions, projected climate-limited conditions, and conditions based on removal of artificial waters. We identified 122,607 km2 of land that could be used as a buffer against invasion and 67,745 km2 of land that could be augmented by artificial water placement without facilitating invasive species spread.

Conclusions

Structural connectivity metrics can be used to evaluate alternative management strategies for invasive species and climate mitigation.
  相似文献   

5.

Context

Tropical forest regeneration is increasingly prominent as agro-pastoral lands are abandoned. Regeneration is characterised as favouring ‘marginal’ lands; however, observations of its drivers are often coarse or simple, leaving doubt as to spatial dynamics and causation.

Objectives

We quantified the spatial dynamics of forest regeneration relative to marginality and remnant forest cover in a 3000 km2 pastoral region in northern tropical Australia.

Methods

Classification and regression trees related the extent and distribution of regeneration to soil agricultural potential, land-cover history, terrain slope, distance to primary forest, and primary forest fragment size, as defined by aerial photography.

Results

Secondary forest extent and distribution overwhelmingly reflect the proximity and size of primary forest fragments. Some 85 % of secondary forest area occurs <1 km of primary forest, and 86 % of secondary forest patches >50 ha are <400 m from primary forest and coincident with historic primary forest fragments. Where primary forest fragments are >8.5 ha, secondary forest area declines less rapidly with increasing distance from primary forest up to 1.5 km. Marginality inferred by soil potential and slope had no bearing on regeneration, except at the coarsest of spatial scales where regeneration is a proxy for primary forest cover.

Conclusion

Findings underline the need to conserve even modest rainforest patches as propagule reservoirs enabling regeneration. Marginality per se may have a limited role in regeneration. As most secondary forest was an extension of primary forest, its unique conservation value relative to that of primary forest may likewise merit reconsideration.
  相似文献   

6.

Context

Sustained timber harvesting conflicts with the long-term viability of boreal caribou (Rangifer tarandus caribou) populations. The spatial arrangement of harvest blocks in the landscape could mitigate the impact of logging on caribou populations. For the forest industry, however, these measures represent constraints that reduce the annual allowable cut (AAC).

Objective

Estimate the long-term impacts of spatial constraints to harvesting, applied alone or in combination, on AAC and boreal caribou populations.

Methods

We divided a 30,000 km2 region into 20 harvest block sizes varying from 50 to 1000 km2, and modeled the implementation of spatially explicit harvest schedule plans in combination with wildfire and caribou population dynamics. We then evaluated the probability of persistence of boreal caribou populations.

Results

The probability of maintaining an AAC target declined with increasing target AAC, increasing size of operating area, and increasing adjacency constraints. In contrast, the probability of maintaining caribou populations declined with increasing AAC, decreasing size of operating areas, and decreasing adjacency constraints. An increase in operating area size from 50 to 300 km2 produced a considerable gain in AAC for all adjacency constraints.

Conclusions

Because adjacency constraints led only to a small increase in the probability of maintaining caribou populations, we recommend adopting less constraining landscape management actions, such as a 70-year period between two consecutive harvests in the same ~300-km2 operating area.
  相似文献   

7.

Context

Butterflies have been continuously declining for several decades in Europe due to many factors, such as farming intensification. Rural landscapes have undergone dramatic changes leading to homogenized landscapes.

Objectives

In this study, we investigated how landscape composition, structure and connectivity impact butterfly communities according to their ecological and biological traits.

Methods

We made use of 5669 Lepidoptera surveys performed at 4525 distinct locations in lowland Central France. We considered 19 ecological groups based on habitat specialization, mobility, diet, voltinism or overwintering strategy. Generalized linear mixed-effect models were used to relate the species richness of these groups to landscape variables defined in circular zones with radius from 250 m to 5 km.

Results

Richness of most species groups co-varied with landscape variables, with the exception of mobile, imago-overwintering, monophagous and polyphagous species. Habitat proportion explained more variation in butterfly diversity than habitat connectivity or habitat diversity. Moreover, the best proportion models were generally found for the 250-m circular zones. Thirteen species groups were disfavored by cropland amount. Except for forest specialists and high mobility group, no other group was more diverse in landscapes dominated by a single land cover type. Rather, for total diversity and 14 groups, species richness peaked for forest proportions varying between 40 and 80%, and for total diversity and nine groups for grassland proportions ranging from 30 to 60%.

Conclusions

These results indicate that landscape homogenization is contributing to the ongoing decline in butterflies, and support preserving and (re)creating mosaics of grasslands and forests.
  相似文献   

8.

Context

Although small isolated habitat patches may not be able to maintain a minimum viable population, small patches that are structurally isolated may be functionally connected if individuals can cross the gaps between them, in which case, their areas could be added to form a larger habitat patch, eventually surpassing the size threshold for holding a viable population.

Objectives

We studied whether models based on the size and isolation of habitat patches could be used to predict the distribution of the Chestnut-throated Huet-Huet (Pteroptochos castaneus) in fragmented landscapes of the coastal range of the Maule region, central Chile.

Methods

We selected seven 10,000-ha landscapes (8.4–70.7% forest cover). For each habitat patch we made 18 predictions of the presence of the species based on the combination of two thresholds: three critical patch sizes for maintaining a viable population (62.5, 125 and 250 ha) and six critical isolation distances between patches (0, 10, 50, 100, 150 and 200 m). We used playbacks in 59 sampling points to estimate the species’ presence/absence. We used logistic regressions to test whether the output of the patch-matrix models could explain part of the variation in the presence of Pteroptochos castaneus.

Results

The best predictions for the presence of P. castaneus were obtained with the most conservative scenarios (125–250 ha to 0–10 m), including a positive effect of the understory cover and a lack of effect of the forest type (native or exotic).

Conclusions

Our findings suggest that the long term persistence of P. castaneus may depend on the existence of large and/or very connected forest tracts.
  相似文献   

9.

Context

Connectivity assessments typically rely on resistance surfaces derived from habitat models, assuming that higher-quality habitat facilitates movement. This assumption remains largely untested though, and it is unlikely that the same environmental factors determine both animal movements and habitat selection, potentially biasing connectivity assessments.

Objectives

We evaluated how much connectivity assessments differ when based on resistance surfaces from habitat versus movement models. In addition, we tested how sensitive connectivity assessments are with respect to the parameterization of the movement models.

Methods

We parameterized maximum entropy models to predict habitat suitability, and step selection functions to derive movement models for brown bear (Ursus arctos) in the northeastern Carpathians. We compared spatial patterns and distributions of resistance values derived from those models, and locations and characteristics of potential movement corridors.

Results

Brown bears preferred areas with high forest cover, close to forest edges, high topographic complexity, and with low human pressure in both habitat and movement models. However, resistance surfaces derived from the habitat models based on predictors measured at broad and medium scales tended to underestimate connectivity, as they predicted substantially higher resistance values for most of the study area, including corridors.

Conclusions

Our findings highlighted that connectivity assessments should be based on movement information if available, rather than generic habitat models. However, the parameterization of movement models is important, because the type of movement events considered, and the sampling method of environmental covariates can greatly affect connectivity assessments, and hence the predicted corridors.
  相似文献   

10.

Context

Various species of forest trees are commonly used for ornamental purposes and are therefore frequently found in nonforest ecosystems. They constitute an important component of the so-called trees outside forests (TOF). Not much is known, however, about the drivers of TOF spatial distribution either in urbanized or in agricultural landscapes since they are generally absent from forest inventories.

Objective

The present study focused on the spatial distribution of TOF across agricultural landscapes and their potential role in the dispersal of a forest pest insect, the pine processionary moth, Thaumetopoea pityocampa (PPM).

Methods

All the TOF belonging to the genera Pinus, Cedrus and Pseudotsuga were considered as potential hosts and inventoried within a 22 × 22 km study window. We fitted a nonstationary Poisson process to the empirical data and used the distance to the nearest building as a covariate.

Results

Both empirical and simulated data indicated that TOF associated to human artifacts/urbanized areas constituted the main source of landscape connectivity for the PPM in the open fields under study. Because they do not account for TOF, forest inventories dramatically underestimate landscape connectivity and provide an erroneous picture of the PPM habitat distribution.

Conclusions

We conclude that TOF, especially the ornamental component, must be taken into account when it comes to understanding forest insect landscape dynamics or genetics. The omnipresence of TOF also suggests a potentially huge role in pest dispersal and invasive species expansion.
  相似文献   

11.

Context

Landscape heterogeneity (the composition and configuration of matrix habitats) plays a major role in shaping species communities in wooded-agricultural landscapes. However, few studies consider the influence of different types of semi-natural and linear habitats in the matrix, despite their known ecological value for biodiversity.

Objective

To investigate the importance of the composition and configuration of matrix habitats for woodland carabid communities and identify whether specific landscape features can help to maintain long-term populations in wooded-agricultural environments.

Methods

Carabids were sampled from woodlands in 36 tetrads of 4 km2 across southern Britain. Landscape heterogeneity including an innovative representation of linear habitats was quantified for each tetrad. Carabid community response was analysed using ordination methods combined with variation partitioning and additional response trait analyses.

Results

Woodland carabid community response was trait-specific and better explained by simultaneously considering the composition and configuration of matrix habitats. Semi-natural and linear features provided significant refuge habitat and functional connectivity. Mature hedgerows were essential for slow-dispersing carabids in fragmented landscapes. Species commonly associated with heathland were correlated with inland water and woodland patches despite widespread heathland conversion to agricultural land, suggesting that species may persist for some decades when elements representative of the original habitat are retained following landscape modification.

Conclusions

Semi-natural and linear habitats have high biodiversity value. Landowners should identify features that can provide additional resources or functional connectivity for species relative to other habitat types in the landscape matrix. Agri-environment options should consider landscape heterogeneity to identify the most efficacious changes for biodiversity.
  相似文献   

12.

Context

Quantifying gene flow in natural populations is a key topic in both evolutionary and conservation biology. Understanding the extent to which the landscape matrix facilitates or impedes gene flow is becoming a high priority in a context of worldwide habitat loss and fragmentation.

Objectives

Unexpectedly, a lower genetic diversity and a higher genetic structure have been previously observed in the less fragmented and the most forested habitat across four pine marten (Martes martes) populations in France. Our aim was to quantify the effect of landscape on the spatial distribution of genetic diversity in two populations in contrasting habitats.

Methods

We conducted an individual-based landscape genetics analysis in a highly fragmented rural plain (Bresse, n = 126) and in a highly forested (50 %) mountainous area (Ariège, n = 88) in France. We tested for isolation-by-resistance using least-cost distances and used a causal modeling approach on 16,384 landscape and 104 elevation resistance scenarios.

Results

Landscape structure influenced the genetic differentiation in Bresse, with vegetation providing more genetic connectivity over the study area than open areas, while roads and human buildings showed unexpected low resistance to gene flow. In Ariège, genetic differentiation was mainly associated with changes in elevation, with an optimal elevation for gene flow of around 1700 m, likely associated with changes in vegetation structure.

Conclusions

The pine marten seems to be able to cope with human-dominated landscapes and with fragmented forest landscapes, whereas elevation is the major driver of genetic differentiation in our mountainous landscape. Additionally, we highlight the importance of spatial replication in landscape genetics for deriving reliable conservation and management measures over the species distribution.
  相似文献   

13.

Context

Habitat loss and fragmentation may alter habitat occupancy patterns, for example through a reduction in regional abundance or in functional connectivity, which in turn may reduce the number of dispersers or their ability to prospect for territories. Yet, the relationship between landscape structure and habitat niche remains poorly known.

Objectives

We hypothesized that changes in landscape structure associated with habitat loss and fragmentation will reduce the habitat niche breadth of forest birds, either through a reduction in density-dependent spillover from optimal habitat or by impeding the colonization of patches.

Methods

We surveyed forest birds with point counts in eastern Ontario, Canada, and analyzed their response to loss and fragmentation of mature woodland. We selected 62 landscapes varying in both forest cover (15–45%) and its degree of fragmentation, and classified them into two categories (high versus low levels of loss and fragmentation). We determined the habitat niche breadth of 12 focal species as a function of 8 habitat structure variables for each landscape category.

Results

Habitat niche breadth was narrower in landscapes with high versus low levels of loss and fragmentation of forest cover. The relative occupancy of marginal habitat appeared to drive this relationship. Species sensitivity to mature forest cover had no apparent influence on relative niche breadth.

Conclusions

Regional abundance and, in turn, density-dependent spillover into suboptimal habitat appeared to be determinants of habitat niche breadth. For a given proportion of forest cover, fragmentation also appeared to alter habitat use, which could exacerbate its other negative effects unless functional connectivity is high enough to allow individuals to saturate optimal habitat.
  相似文献   

14.

Context

Submersed aquatic vegetation (SAV) performs water quality enhancing functions that are critical to the overall health of estuaries such as the Chesapeake Bay. However, eutrophication and sedimentation have decimated the Bay’s SAV population to a fraction of its historical coverage. Understanding the spatial distribution of and connectedness among patches is important for assessing the dynamics and health of the remaining SAV population.

Objectives

We seek to explore the distribution of SAV patches and patterns of potential connectivity in the Chesapeake Bay through time.

Methods

We assess critical distances, from complete patch isolation to connection of all patches, in a merged composite coverage map that represents the sum of all probable Vallisneria americana containing patches between 1984 and 2010 and in coverage maps for individual years within that timeframe for which complete survey data are available.

Results

We have three key findings: First, the amount of SAV coverage in any given year is much smaller than the total recently occupied acreage. Second, the vast majority of patches of SAV that are within the tolerances of V. americana are ephemeral, being observed in only 1 or 2 years out of 26 years. Third, this high patch turnover results in highly variable connectivity from year to year, dependent on dispersal distance and patch arrangement.

Conclusions

Most of the connectivity thresholds are beyond reasonable dispersal distances for V. americana. If the high turnover in habitat occupancy is due to marginal water quality, relatively small improvements could greatly increase V. americana growth and persistence.
  相似文献   

15.

Context

Context Bats are considered as an ecological indicator of habitat quality due to their sensitivity to human-induced ecosystem changes. Hence, we will focus the study on two indicator species of bats as a proxy to evaluate structure and composition of the landscape to analyze anthropic pressures driving changes in patterns.

Objectives

This study develops a spatially-explicit model to highlight key habitat nodes and corridors which are integral for maintaining functional landscape connectivity for bat movement. We focus on a complex mountain landscape and two bat species: greater (Rhinolophus ferrumequinum) and lesser (Rhinolophus hipposideros) horseshoe bats which are known to be sensitive to landscape composition and configuration.

Methods

Species distribution models are used to delineate high-quality foraging habitat for each species using opportunistic ultrasonic bat data. We then performed connectivity analysis combining (modelled) suitable foraging habitat and (known) roost sites. We use graph-theory and the deviation in the probability of connectivity to quantify resilience of the landscape connectivity to perturbations.

Results

Both species were confined to lowlands (<1000 m elevation) and avoided areas with high road densities. Greater horseshoe bats were more generalist than lesser horseshoe bats which tended to be associated with broadleaved and mixed forests.

Conclusions

The spatially-explicit models obtained were proven crucial for prioritizing foraging habitats, roost sites and key corridors for conservation. Hence, our results are being used by key stakeholders to help integrate conservation measures into forest management and conservation planning at the regional level. The approach used can be integrated into conservation initiatives elsewhere.
  相似文献   

16.

Context

Ungulate browsers often alter plant composition and reduce diversity in forests worldwide, yet our ability to predict browse impact on vegetation remains equivocal. Theory suggests, however, that ungulate distribution and foraging impacts are shaped by scale-dependent decisions based on variation in habitat composition and structure encountered within their home range.

Objective

Examine how variation in habitat composition at landscape (259 ha) scales modulates browse impact on vegetation at local scales.

Methods

We measured vegetation richness and abundance in plots with and without white-tailed deer (Odocoileus virginianus) at 23 northern hardwood forest sites distributed across a 6500 km2 area in Pennsylvania, USA. Experimental sites were embedded within landscapes with varying levels of habitat composition and deer densities.

Results

Browsing reduced vegetation richness and cover by as much as 53 and 70%, respectively; however, we found browse impact was modulated by variation in the relative abundance of managed habitats that alter forage availability. Specifically, relative to fenced areas, browse impact weakened and ultimately disappeared as the proportion of forage-rich habitats (e.g., recent harvests) increased to ≥20%. Conversely, vegetation grew increasingly depauperate as landscapes contained greater proportions of forage-poor habitats (i.e., older harvests), particularly when browsed.

Conclusions

Our results underscore how management actions that alter forage availability to ungulates throughout the landscape (i.e. the foodscape) can shape forest-ungulate interactions and suggest a new paradigm whereby managers evaluate and undertake actions at the appropriate spatio-temporal scales to proactively limit the deleterious impact of browsing on plant biodiversity.
  相似文献   

17.

Context

Spatial scale and pattern play important roles in forest aboveground biomass (AGB) estimation in remote sensing. Changes in the accuracy of satellite images-estimated forest AGBs against spatial scales and pixel distribution patterns has not been evaluated, because it requires ground-truth AGBs of fine resolution over a large extent, and such data are difficult to obtain using traditional ground surveying methods.

Objectives

We intend to quantify the accuracy of AGB estimation from satellite images on changing spatial scales and varying pixel distribution patterns, in a typical mixed coniferous forest in Sierra Nevada mountains, California.

Methods

A forest AGB map of a 143 km2 area was created using small-footprint light detection and ranging. Landsat Thematic Mapper images were chosen as typical examples of satellite images, and resampled to successively coarser resolutions. At each spatial scale, pixels forming random, uniform, and clustered spatial patterns were then sampled. The accuracies of the AGB estimation based on Landsat images associated with varying spatial scales and patterns were finally quantified.

Results

The changes in the accuracy of AGB estimation from Landsat images are not monotonic, but increase up to 60–90 m in spatial scale, and then decrease. Random and uniform spatial patterns of pixel distributions yield better accuracy for AGB estimation than clustered spatial patterns. The corrected NDVI (NDVIc) was the best predictor of AGB estimation.

Conclusions

A spatial scale of 60–90 m is recommended for forest AGB estimation at the Sierra Nevada mountains using Landsat images and those with similar spectral resolutions.
  相似文献   

18.

Context

The analysis of individual movement choices can be used to better understand population-level resource selection and inform management.

Objectives

We investigated movements and habitat selection of 13 bobcats in Vermont, USA, under the assumption individuals makes choices based upon their current location. Results were used to identify “movement-defined” corridors.

Methods

We used GPS-collars and GIS to estimate bobcat movement paths, and extracted statistics on land cover proportions, topography, fine-scale vegetation, roads, and streams within “used” and “available” space surrounding each movement path. Compositional analyses were used to determine habitat preferences with respect to landcover and topography; ratio tests were used to determine if used versus available ratios for vegetation, roads, and streams differed from 1. Results were used to create travel cost maps, a primary input for corridor analysis.

Results

Forested and scrub-rock land cover were most preferred for movement, while developed land cover was least preferred. Preference depended on the composition of the “available” landscape: Bobcats moved?>?3 times more quickly through forest and scrub-rock habitat when these habitats were surrounded by agriculture or development than when the available buffer was similarly composed. Overall, forest edge, wetland edge and higher stream densities were selected, while deep forest core and high road densities were not selected. Landscape-scale connectivity maps differed depending on whether habitat suitability, preference, or selection informed the travel cost map.

Conclusions

Both local and landscape scale land cover characteristics affect habitat preferences and travel speed of bobcats, which in turn can inform management and conservation activities.
  相似文献   

19.

Context

Wildfire activity in boreal forests is projected to increase dramatically in response to anthropogenic climate change. By altering the spatial arrangement of fuels, land-cover configuration may interact with climate change to influence fire-regime dynamics at landscape and regional scales.

Objectives

We evaluate how land cover interacts with weather conditions to influence boreal-forest burning from 2012 to 2014 in Alaska.

Methods

Using geospatial fire and land-cover data, we quantify relationships between area burned and land cover, and test whether observed patterns of burning differ from random under varying weather conditions and fire sizes.

Results

Mean summer moisture index was correlated with annual area burned (ρ = ?0.78, p < 0.01), the total number of fires (ρ = ?0.68, p = 0.01), and the number of large fires (>500 km2; ρ = ?0.58, p = 0.04). Area burned was related positively to percent cover of coniferous forest and woody wetlands, and negatively to percent cover of shrub scrub, dwarf scrub, and open water and barren areas. Fires preferentially burned coniferous forest, which represented 50.1 % of the area burned in warmer/drier summers and 40.3 % of area burned in cooler/wetter summers, compared to the 34.5 % (±4.2 %) expected by random selection of land-cover classes. Overall vegetation tended to burn more similarly to random in warmer/drier than cooler/wetter years.

Conclusions

Land cover exerted greater influences on boreal fire regimes when weather conditions were less favorable for forest burning. Reliable projections of boreal fire-regime change thus require consideration of the interactions between climate and land cover, as well as feedbacks from land-cover change.
  相似文献   

20.

Context

Although forest fragmentation is generally thought to impact tree growth and mortality negatively, recent work suggests some forests are resilient. Experimental forests provide an opportunity to examine the timing and extent of forest tree resilience to disturbance from fragmentation.

Objectives

We used the Wog Wog Habitat Fragmentation Experiment in southeastern Australia to test Eucalyptus growth and survivorship responses to forest fragmentation over a 26 year period.

Methods

We measured 2418 tree diameters and used spline-regression techniques to examine non-monotonic fragmentation effect over two time periods.

Results

Over the first 4 years after fragmentation, individual eucalypt tree growth was greater than in continuous forest for large trees and mortality rates were higher only within 10 m of edges. Over the following 22 years only the effects on tree growth remained and on average all fragments rebounded so that their biomass and mortality rates were equivalent to continuous forest. Importantly non-monotonic patterns were observed in growth and mortality with respect to area and distance from edge in both study periods, demonstrating that fragmentation impacts on trees can be strong in localized areas (greatest in 3 ha fragments and 0–30 m edges) and over short time periods.

Conclusions

Dry-sclerophyll eucalypt forests join the set of forest types that display resilient growth dynamics post fragmentation. Moreover, persistent non-monotonic impacts on tree growth with respect to tree size, fragment area, and fragment distance from edge, highlighting landscape fragmentation as a driver of habitat heterogeneity within remnant forest fragments.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号