首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Context

Methods for measuring restoration success that include functional connectivity between species’ populations are rare in landscape ecology and restoration practices. We developed an approach that analyzes connectivity between populations of target species and their dispersal probabilities to assess restoration success based on easily accessible input data. Applying this method to landscape development scenarios can help optimize restoration planning.

Objectives

We developed an assessment for restoration success and restoration planning based on functional connectivity between species’ populations and spatially explicit scenarios. The method was used in a case study to test its applicability.

Methods

Based on data on available habitat, species’ occurrence and dispersal ranges, connectivity metrics and dispersal probabilities for target species are calculated using the software Conefor Sensinode. The metrics are calculated for scenarios that reflect possible changes in the landscape to provide a basis for future restoration planning. We applied this approach to floodplain meadows along the Upper Rhine for four plant species and three future scenarios.

Results

In the case study, habitats of the target species were poorly connected. Peucedanum officinale and Sanguisorba officinalis were more successful in recolonizing new habitats than Iris spuria and Serratula tinctoria. The scenarios showed that restoration of species-rich grassland was beneficial for dispersal of the target species. As expected in the agriculturally dominated study area, restoration of former arable land significantly increased dispersal probabilities.

Conclusions

In the case study, the developed approach was easily applicable and provided reasonable results. Its implementation will be helpful in decision-making for future restoration planning.
  相似文献   

2.

Context

Light pollution is a global change affecting a major proportion of global land surface. Although the impacts of Artificial Light At Night (ALAN) have been documented locally for many taxa, the extent of effect of ALAN at a landscape scale on biodiversity is unknown.

Objectives

We characterized the landscape-scale impacts of ALAN on 4 insectivorous bat species Pipistrellus pipistrellus, Pipistrellus kuhlii, Eptesicus serotinus, Nyctalus leisleri, and compared the extent of their effects to other major land-use pressures.

Methods

We used a French national-scale monitoring program recording bat activity among 2-km car transect surveys, and extracted landscape characteristics around transects with satellite and land cover layers. For each species, we performed multi-model averaging at 4 landscape scales (from 200 to 1000 m buffers around transects) to compare the relative effects of the average radiance, the proportion of impervious surface and the proportion of intensive agriculture.

Results

For all species, ALAN had a stronger negative effect than impervious surface at the 4 landscape scales tested. This effect was weaker than the effect of intensive agriculture. The negative effect of ALAN was significant for P. pipistrellus, P. kuhlii and E. serotinus, but not for N. leisleri. The effect of impervious surface varied among species while intensive agriculture had a significant negative effect on the 4 species.

Conclusion

Our results highlight the need to consider the impacts of ALAN on biodiversity in land-use planning and suggest that using only impervious surface as a proxy for urbanization may lead to underestimated impacts on biodiversity.
  相似文献   

3.

Context

Beyond the recognized importance of protecting large areas of contiguous habitat, conservation efforts for many species are complicated by the fact that patch suitability may also be affected by characteristics of the landscape within which the patch is located. Currently, little is known about the spatial scales at which species respond to different aspects of the landscape surrounding an occupied patch.

Objectives

Using grassland bird point count data, we describe an approach to evaluating scale-specific effects of landscape composition on patch occupancy.

Methods

We used data from 793 point count surveys conducted in idle and grazed grasslands across Wisconsin, USA from 2012 to 2014 to evaluate scale-dependencies in the response of grassland birds to landscape composition. Patch occupancy models were used to evaluate the relationship between occupancy and landscape composition at scales from 100 to 3000 m.

Results

Bobolink (Dolichonyx oryzivorus) exhibited a pattern indicating selection for grassland habitats in the surrounding landscape at all spatial scales while selecting against other habitats. Eastern Meadowlark (Sturnella magna) displayed evidence of scale sensitivity for all habitat types. Grasshopper Sparrow (Ammodramus savannarum) showed a strong positive response to pasture and idle grass at all scales and negatively to cropland at large scales. Unlike other species, patch occupancy by Henslow’s Sparrow (A. henslowii) was primarily influenced by patch area.

Conclusions

Our results suggest that both working grasslands (pasture) and idle conservation grasslands can play an important role in grassland bird conservation but also highlight the importance of considering species-specific patch and landscape characteristics for effective conservation.
  相似文献   

4.

Context

Interactions between landscape-scale processes and fine-grained habitat heterogeneity are usually invoked to explain species occupancy in fragmented landscapes. In variegated landscapes, however, organisms face continuous variation in micro-habitat features, which makes necessary to consider ecologically meaningful estimates of habitat quality at different spatial scales.

Objectives

We evaluated the spatial scales at which forest cover and tree quality make the greatest contribution to the occupancy of the long-horned beetle Microplophorus magellanicus (Coleoptera: Cerambycidae) in a variegated forest landscape.

Methods

We used averaged data of tree quality (as derived from remote sensing estimates of the decay stage of single trees) and spatially independent pheromone-baited traps to model the occurrence probability as a function of multiple cross-scale combinations between forest cover and tree quality (with scales ranging between 50 and 400 m).

Results

Model support and performance increased monotonically with the increasing scale at which tree quality was measured. Forest cover was not significant, and did not exhibit scale-specific effects on the occurrence probability of M. magellanicus. The interactive effect between tree quality and forest cover was stronger than the independent (additive) effects of tree quality and particularly forest cover. Significant interactions included tree quality measured at spatial scales ≥200 m, but cross-scale interactions occurred only in four of the seven best-supported models.

Conclusions

M. magellanicus respond to the high-quality trees available in the landscape rather than to the amount of forest per se. Conservation of viable metapopulations of M. magellanicus should consider the quality of trees at spatial scales >200 m.
  相似文献   

5.

Context

Abundance and diversity of bumblebees have been declining over the past decades. To successfully conserve bumblebee populations, we need to understand how landscape characteristics affect the quantity and quality of floral resources collected by colonies and subsequently colony performance.

Objectives

We therefore investigated how amount and composition of pollen collected by buff-tailed bumblebee Bombus terrestris colonies was affected by the surrounding landscape (i.e. the proportion of forest, urban, semi-natural habitats) and how they were related to colony growth.

Methods

Thirty B. terrestris colonies were placed at grassland sites differing in surrounding landscape. Colonies were established in spring when availability of flowering plants was highest, and their weight gain was monitored for 1 month. We additionally recorded the quantity and compared plant taxonomic composition and nutritional quality (i.e. amino acid composition) of pollen stored.

Results

Bumblebee colonies varied little in the pollen spectra collected despite differences in surrounding landscape composition. They collected on average 80 % of pollen from woody plants, with 34 % belonging to the genus Acer. Early colony growth positively correlated with total amount of woody pollen and protein collected and decreased with increasing proportions of semi-natural habitats and total amino acid concentrations.

Conclusions

Our results suggest that woody plant species represent highly important pollen sources for the generalist forager B. terrestris early in the season. We further show that colony growth of B. terrestris is predominantly affected by the quantity, not quality, of forage, indicating that several abundant plant species flowering throughout the bumblebees’ foraging season may cover the colonies’ nutritional needs.
  相似文献   

6.

Context

Species-specific models of landscape capability (LC) can inform landscape conservation design. Landscape capability is “the ability of the landscape to provide the environment […] and the local resources […] needed for survival and reproduction […] in sufficient quantity, quality and accessibility to meet the life history requirements of individuals and local populations.” Landscape capability incorporates species’ life histories, ecologies, and distributions to model habitat for current and future landscapes and climates as a proactive strategy for conservation planning.

Objectives

We tested the ability of a set of LC models to explain variation in point occupancy and abundance for seven bird species representative of spruce-fir, mixed conifer-hardwood, and riparian and wooded wetland macrohabitats.

Methods

We compiled point count data sets used for biological inventory, species monitoring, and field studies across the northeastern United States to create an independent validation data set. Our validation explicitly accounted for underestimation in validation data using joint distance and time removal sampling.

Results

Blackpoll warbler (Setophaga striata), wood thrush (Hylocichla mustelina), and Louisiana (Parkesia motacilla) and northern waterthrush (P. noveboracensis) models were validated as predicting variation in abundance, although this varied from not biologically meaningful (1%) to strongly meaningful (59%). We verified all seven species models [including ovenbird (Seiurus aurocapilla), blackburnian (Setophaga fusca) and cerulean warbler (Setophaga cerulea)], as all were positively related to occupancy data.

Conclusions

LC models represent a useful tool for conservation planning owing to their predictive ability over a regional extent. As improved remote-sensed data become available, LC layers are updated, which will improve predictions.
  相似文献   

7.

Context

The role of agricultural landscapes in biodiversity conservation is an emerging topic in a world experiencing a worrying decrease of species richness. Farm systems may either decrease or increase biological diversity, depending on land-use intensities and management.

Objectives

We present an intermediate disturbance-complexity model (IDC) of cultural landscapes aimed at assessing how different levels of anthropogenic disturbance on ecosystems affect the capacity to host biodiversity depending on the land matrix heterogeneity. It is applied to the Mallorca Island, amidst the Mediterranean biodiversity hotspot.

Methods

The model uses the disturbance exerted when farmers alter the Net Primary Production through land-use change as well as when they remove a share of it (HANPP), together with Shannon–Wiener index (H′) of land-cover diversity. The model is tested with a twofold-scalar experimental design (1:50,000 and 1:5000) of a set of landscape units along three time points (1956, 1989, 2011). Species richness of breeding and wintering birds, taken as a biodiversity proxy, is used in an exploratory factor analysis.

Results

The results clearly show that when intermediate levels of HANPP are performed within intermediate levels of complexity (H′) in landscape patterns, like agro-forest mosaics, great bird species richness and high socio-ecological resilience can be maintained. Yet, these complex-heterogeneous landscapes are currently vanishing due to industrial farm intensification, rural abandonment and urban sprawl.

Conclusions

The results make apparent the usefulness of transferring the concept of intermediate disturbance-complexity interplay to cultural landscapes. Our spatial-explicit IDC model can be used as a tool for strategic environmental assessment of land-use planning.
  相似文献   

8.

Context

Landscape spatio-temporal heterogeneity is regarded as an important driver of biodiversity. In agricultural landscapes, the composition and configuration of cultivated fields and their multi-year dynamics should be considered. But the habitat-matrix paradigm in landscape ecology has resulted in little consideration of cropped areas.

Objectives

The main objective of our study was to determine the influences of spatial and multi-year temporal heterogeneity of the crop mosaic on carabid beetle assemblages of agricultural landscapes.

Methods

Carabids were sampled in 40 cereal fields in western France, and their species richness, total abundance and abundance of species groups with different dispersal abilities were measured. For each sampling site, we computed different metrics that characterized crop mosaic spatial and temporal heterogeneity. We quantified relationships between carabid assemblages and heterogeneity metrics and tested their significance.

Results

Total carabid abundance increased with increase in temporal heterogeneity of the crop mosaic. However, all species were not influenced in the same way by spatial and temporal heterogeneity metrics. Some species with high dispersal power such as Trechus quadristriatus were more abundant in landscapes with high spatial heterogeneity, whereas the abundance of less mobile species such as Poecilus cupreus were only positively influenced by temporal crop dynamics.

Conclusions

Our results suggest that both the spatial and temporal heterogeneity of the crop mosaic affects farmland biodiversity, at least for species that use crops during their life cycle or disperse through fields. We highlight the importance of taking this heterogeneity into account in further ecological studies on biodiversity in agricultural landscapes.
  相似文献   

9.

Context

Common species important for ecosystem restoration stand to lose as much genetic diversity from anthropogenic habitat fragmentation and climate change as rare species, but are rarely studied. Salt marshes, valuable ecosystems in widespread decline due to human development, are dominated by the foundational plant species black needlerush (Juncus roemerianus Scheele) in the northeastern Gulf of Mexico.

Objectives

We assessed genetic patterns in J. roemerianus by measuring genetic and genotypic diversity, and characterizing population structure. We examined population connectivity by delineating possible dispersal corridors, and identified landscape factors influencing population connectivity.

Methods

A panel of 19 microsatellite markers was used to genotype 576 samples from ten sites across the northeastern Gulf of Mexico from the Grand Bay National Estuarine Research Reserve (NERR) to the Apalachicola NERR. Genetic distances (FST and Dch) were used in a least cost transect analysis (LCTA) within a hierarchical model selection framework.

Results

Genetic and genotypic diversity results were higher than expected based on life history literature, and samples structured into two large, admixed genetic clusters across the study area, indicating sexual reproduction may not be as rare as predicted in this clonal macrophyte. Digitized coastal transects buffered by 500 m may represent possible dispersal corridors, and developed land may significantly impede population connectivity in J. roemerianus.

Conclusions

Results have important implications for coastal restoration and management that seek to preserve adaptive potential by sustaining natural levels of genetic diversity and conserving population connectivity. Our methodology could be applied to other common, widespread and understudied species.
  相似文献   

10.

Context

Golden-cheeked warblers (Setophaga chrysoparia), an endangered wood-warbler, breed exclusively in woodlands co-dominated by Ashe juniper (Juniperus ashei) in central Texas. Their breeding range is becoming increasingly urbanized and habitat loss and fragmentation are a main threat to the species’ viability.

Objectives

We investigated the effects of remotely sensed local habitat and landscape attributes on point occupancy and density of warblers in an urban preserve and produced a spatially explicit density map for the preserve using model-supported relationships.

Methods

We conducted 1507 point-count surveys during spring 2011–2014 across Balcones Canyonlands Preserve (BCP) to evaluate warbler habitat associations and predict density of males. We used hierarchical Bayesian models to estimate multiple components of detection probability and evaluate covariate effects on detection probability, point occupancy, and density.

Results

Point occupancy was positively related to landscape forest cover and local canopy cover; mean occupancy was 0.83. Density was influenced more by local than landscape factors. Density increased with greater amounts of juniper and mixed forest and decreased with more open edge. There was a weak negative relationship between density and landscape urban land cover.

Conclusions

Landscape composition and habitat structure were important determinants of warbler occupancy and density, and the large intact patches of juniper and mixed forest on BCP (>2100 ha) supported a high density of warblers. Increasing urbanization and fragmentation in the surrounding landscape will likely result in lower breeding density due to loss of juniper and mixed forest and increasing urban land cover and edge.
  相似文献   

11.

Context

In the ecology of Lyme disease emergence, it remains unclear to what extent spread of the tick vector (Ixodes scapularis) and the pathogen (Borrelia burgdorferi) are dependent upon the dispersal of vertebrate hosts in spatially heterogeneous landscapes. Yet, empirical measure of these complex ecologically driven spread processes present conceptual and methodological challenges despite important public health implications.

Objectives

To examine the relationship between landscape characteristics and tick-borne disease spread, we modeled the influence of landscape connectivity for a simplified vertebrate host community (white-footed mouse—Peromyscus leucopus, American robin—Turdus migratorius, white-tailed deer—Odocoileus virginianus) on the potential spread of the tick population compared to the pathogen in a spatially-structured landscape.

Methods

We parameterized a hybrid demographic-dispersal connectivity model by combining a series of reported host dispersal and tick burden estimates with empirically-measured tick abundance and pathogen prevalence sampled from a Lyme-endemic island landscape in Thousand Islands National Park (Ontario, Canada) and simulated several tick- and pathogen-spread scenarios.

Results

The extent of tick spread by mice [amount of reachable habitat (ARH)?=?18.0%] is considerably similar to that of robins (ARH?=?18.7%), while deer support the greatest tick spread extent (ARH?=?82.0%). Infected mice carrying ticks support the highest pathogen spread (ARH?=?19.8%). Short-distance pathogen spread and long-distance tick spread were facilitated by intermediate stepping stone habitat fragments.

Conclusions

We provide evidence that host functional connectivity mediates tick spread differently than pathogen spread, and depends strongly on landscape configuration. Our study therefore emphasizes the importance of landscape spatial heterogeneity on the ecological processes that influence regional tick-borne disease spread.
  相似文献   

12.

Context

The pasture-woodlands of Central Europe are low-intensity grazing systems in which the structural richness of dynamic forest-grassland mosaics is causal for their high biodiversity. Distinct mosaic patterns in Picea abies- and Fagus sylvatica-dominated pasture-woodlands in the Swiss Jura Mountains suggest a strong influence of tree species regeneration ecology on landscape structural properties. At the landscape scale, however, cause-effect relationships are complicated by habitat selectivity of livestock.

Objectives

We asked which tree species regeneration traits and what kind of feedbacks among local-scale vegetation dynamics and landscape-scale herbivore behavior are causal for the contrasted landscape structural characteristics of Picea- and Fagus-dominated pasture-woodlands.

Methods

We performed simulation experiments of mosaic pattern formation in both pasture-woodland types. The regeneration traits, namely dispersal distance, resistance to browsing and tolerance to shade, and the rules for habitat selection of cattle were modified and the corresponding shifts in landscape structure were analyzed.

Results

Dispersal distance showed a significant, but only local, effect promoting forest fringe formation. Saplings’ resistance to browsing mainly determined overall tree cover, but did not influence landscape structure. At the landscape scale, both shade tolerance of saplings and selective habitat use by cattle were responsible for forest-grassland segregation: high shade tolerance triggered segregation, whereas non-selective habitat use hindered it.

Conclusions

Existing local-scale theory on pasture-woodland dynamics is complemented by an herbivore-vegetation feedback among spatial scales. In low-intensity pastures, where large herbivores are preferentially “grazers” and trees form dense canopies, an intrinsic trend towards forest-grassland segregation at the expense of forest-grassland ecotones is predicted.
  相似文献   

13.

Context

Environmental heterogeneity is considered an important mechanism of biodiversity. How environmental heterogeneity is characterised by the compositional, structural and functional variation of biotic and abiotic components is a central research theme in conservation.

Objectives

We explore how environmental heterogeneity relates to the underlying physical landscape template and how that relationship changes over space and time. We examine how, in some areas, environmental heterogeneity may also be driven by dynamic ecological processes, and how this relates to patterns of plant species richness.

Method

We use local geographically weighted regression to spatially partition environmental heterogeneity, measured as Landsat spectral variance, into the portion explained by stable physical landscape properties (R2) and the portion unexplained (1?R2) which we term landscape complexity. We explore how this relationship varies spatially and temporally as a function of dynamic ecological processes such as rainfall and season in Kruger National Park, as well as plant species richness at landscape scales.

Results

The significance and direction of relationships varied over space and time and as a function of rainfall and season. R2 values generally decreased in higher rainfall summer months and revealed patterns describing the importance of known stable factors relative to unknown dynamic factors. Landscape complexity (1?R2) explained over 70 % of variation in species richness.

Conclusions

Rainfall and seasonality are important drivers of environmental heterogeneity. The spatial arrangement and magnitude of model agreement helped disentangle the relative influence of the physical landscape template on environmental heterogeneity. Given the high correlation with species richness, landscape complexity provides complementary guidance to biodiversity research and monitoring prioritization.
  相似文献   

14.

Context

Emissions of greenhouse gases in urban areas play an important role in climate change. Increasing attention has been given to urban landscape structure–emission relationships (SERs). However, it remains unknown if and to what extent SERs are dependent on observational scale.

Objective

To assess how changing observational scales (in terms of spatial and thematic resolutions) of urban landscape structure affect SERs.

Methods

We examined correlations between 16 landscape metrics and greenhouse gas emissions across 52 European cities, through (1) systematic manipulation of spatial and thematic resolutions of the urban land use/cover (ULUC) dataset, and (2) comparison between available standard ULUC datasets with different spatial resolutions.

Results

Our analyses showed that the observed SERs significantly depend on both thematic and spatial resolutions of the ULUC data. For the 16 landscape metrics, we found diverse spatial/thematic scaling relations exhibiting monotonic, hump-shaped or scale-invariant trends. For different landscape metrics, the SERs were strongest at different spatial scales, suggesting that there is no consistent scaling relation over those observational scales.

Conclusions

SERs are highly sensitive to spatial and thematic resolutions of landscape data. To avoid the problem of ‘ecological fallacy,’ important caveats should be taken for interpretations based on single landscape metrics. Particular consideration should be paid to metrics that are easily interpretable, predictable in scaling behaviors, and important for shaping SERs, such as PLAND, ED, and LPI. Systematic investigations on scaling behaviors of SERs over well-defined scale domains are encouraged in future studies linking greenhouse gas emissions and urban landscape structure.
  相似文献   

15.

Context

Barriers to dispersal influence the ability of individuals to expand into new areas and can ultimately define success of reintroduction programs. American marten (Martes americana) were reintroduced to the Upper Peninsula of Michigan, USA, from multiple, genetically differentiated source populations from 1955 to 1992. Previous research found multiple genetic clusters near release sites with little admixing, suggesting barriers to dispersal exist.

Objectives

We sought to identify whether the contact zones between genetic clusters coincided with landscape features hypothesized to influence M. americana dispersal. We also investigated whether the degree of landscape contiguity within each genetic cluster differed among clusters.

Methods

We mapped cluster boundaries in M. americana genetic assignment probabilities and used correlation length as a measure of landscape contiguity between genetic clusters. We then evaluated the effects of land cover and roads on spatial genetic structure using a spatial autoregressive model.

Results

We found that gene flow was facilitated by contiguous coniferous forest and low incidence of roads. However, the strength of those relationships varied by genetic cluster. Contact zones among some genetic clusters spatially coincided with areas of high road and low conifer contiguity, compared to within-clusters.

Conclusions

In contrast to landscape genetic analyses focused on identifying barriers to gene flow, we incorporated methods that are relatively novel in landscape genetics to quantify how landscape contiguity influences spatial genetic structure. Using this method we were able to identify landscape barriers to dispersal at the genetic cluster boundaries for a reintroduced species distributed continuously across the landscape.
  相似文献   

16.

Context

Context Bats are considered as an ecological indicator of habitat quality due to their sensitivity to human-induced ecosystem changes. Hence, we will focus the study on two indicator species of bats as a proxy to evaluate structure and composition of the landscape to analyze anthropic pressures driving changes in patterns.

Objectives

This study develops a spatially-explicit model to highlight key habitat nodes and corridors which are integral for maintaining functional landscape connectivity for bat movement. We focus on a complex mountain landscape and two bat species: greater (Rhinolophus ferrumequinum) and lesser (Rhinolophus hipposideros) horseshoe bats which are known to be sensitive to landscape composition and configuration.

Methods

Species distribution models are used to delineate high-quality foraging habitat for each species using opportunistic ultrasonic bat data. We then performed connectivity analysis combining (modelled) suitable foraging habitat and (known) roost sites. We use graph-theory and the deviation in the probability of connectivity to quantify resilience of the landscape connectivity to perturbations.

Results

Both species were confined to lowlands (<1000 m elevation) and avoided areas with high road densities. Greater horseshoe bats were more generalist than lesser horseshoe bats which tended to be associated with broadleaved and mixed forests.

Conclusions

The spatially-explicit models obtained were proven crucial for prioritizing foraging habitats, roost sites and key corridors for conservation. Hence, our results are being used by key stakeholders to help integrate conservation measures into forest management and conservation planning at the regional level. The approach used can be integrated into conservation initiatives elsewhere.
  相似文献   

17.

Context

Methods for detecting contemporary, fine-scale population genetic structure in continuous populations are scarce. Yet such methods are vital for ecological and conservation studies, particularly under a changing landscape.

Objectives

Here we present a novel, spatially explicit method that we call landscape relatedness (LandRel). With this method, we aim to detect contemporary, fine-scale population structure that is sensitive to spatial and temporal changes in the landscape.

Methods

We interpolate spatially determined relatedness values based on SNP genotypes across the landscape. Interpolations are calculated using the Bayesian inference approach integrated nested Laplace approximation. We empirically tested this method on a continuous population of brown bears (Ursus arctos) spanning two counties in Sweden.

Results

Two areas were identified as differentiated from the remaining population. Further analysis suggests that inbreeding has occurred in at least one of these areas.

Conclusions

LandRel enabled us to identify previously unknown fine-scale structuring in the population. These results will help direct future research efforts, conservation action and aid in the management of the Scandinavian brown bear population. LandRel thus offers an approach for detecting subtle population structure with a focus on contemporary, fine-scale analysis of continuous populations.
  相似文献   

18.

Context

Conservation planning is increasingly using “coarse filters” based on the idea of conserving “nature’s stage”. One such approach is based on ecosystems and the concept of ecological integrity, although myriad ways exist to measure ecological integrity.

Objectives

To describe our ecosystem-based index of ecological integrity (IEI) and its derivative index of ecological impact (ecoImpact), and illustrate their applications for conservation assessment and planning in the northeastern United States.

Methods

We characterized the biophysical setting of the landscape at the 30 m cell resolution using a parsimonious suite of settings variables. Based on these settings variables and mapped ecosystems, we computed a suite of anthropogenic stressor metrics reflecting intactness (i.e., freedom from anthropogenic stressors) and resiliency metrics (i.e., connectivity to similar neighboring ecological settings), quantile-rescaled them by ecosystem and geographic extent, and combined them in a weighted linear model to create IEI. We used the change in IEI over time under a land use scenario to compute ecoImpact.

Results

We illustrated the calculation of IEI and ecoImpact to compare the ecological integrity consequences of a 70-year projection of urban growth to an alternative scenario involving securing a network of conservation core areas (reserves) from future development.

Conclusions

IEI and ecoImpact offer an effective way to assess ecological integrity across the landscape and examine the potential ecological consequences of alternative land use and land cover scenarios to inform conservation decision making.
  相似文献   

19.

Context

Dispersal is essential for species persistence and landscape genetic studies are valuable tools for identifying potential barriers to dispersal. Macaws have been studied for decades in their natural habitat, but we still have no knowledge of how natural landscape features influence their dispersal.

Objectives

We tested for correlations between landscape resistance models and the current population genetic structure of macaws in continuous rainforest to explore natural barriers to their dispersal.

Methods

We studied scarlet macaws (Ara macao) over a 13,000 km2 area of continuous primary Amazon rainforest in south-eastern Peru. Using remote sensing imagery from the Carnegie Airborne Observatory, we constructed landscape resistance surfaces in CIRCUITSCAPE based on elevation, canopy height and above-ground carbon distribution. We then used individual- and population-level genetic analyses to examine which landscape features influenced gene flow (genetic distance between individuals and populations).

Results

Across the lowland rainforest we found limited population genetic differentiation. However, a population from an intermountain valley of the Andes (Candamo) showed detectable genetic differentiation from two other populations (Tambopata) located 20–60 km away (F ST = 0.008, P = 0.001–0.003). Landscape resistance models revealed that genetic distance between individuals was significantly positively related to elevation.

Conclusions

Our landscape resistance analysis suggests that mountain ridges between Candamo and Tambopata may limit gene flow in scarlet macaws. These results serve as baseline data for continued landscape studies of parrots, and will be useful for understanding the impacts of anthropogenic dispersal barriers in the future.
  相似文献   

20.

Context

Urban landscapes are a mixture of built structures, human-altered vegetation, and remnant semi-natural areas. The spatial arrangement of abiotic and biotic conditions resulting from urbanization doubtless influences the establishment and spread of non-native species in a city.

Objectives

We investigated the effects of habitat structure, thermal microclimates, and species coexistence on the spread of a non-native lizard (Anolis cristatellus) in the Miami metropolitan area of South Florida (USA).

Methods

We used transect surveys to estimate lizard occurrence and abundance on trees and to measure vegetation characteristics, and we assessed forest cover and impervious surface using GIS. We sampled lizard body temperatures, habitat use, and relative abundance at multiple sites.

Results

At least one of five Anolis species occupied 79 % of the 1035 trees surveyed in primarily residential areas, and non-native A. cristatellus occupied 25 % of trees. Presence and abundance of A. cristatellus were strongly associated with forest patches, dense vegetation, and high canopy cover, which produced cooler microclimates suitable for this species. Presence of A. cristatellus was negatively associated with the ecologically similar non-native A. sagrei, resulting in reduced abundance and a shift in perch use of A. cristatellus.

Conclusions

The limited spread of A. cristatellus in Miami over 35 years is due to the patchy, low-density distribution of wooded habitat, which limits dispersal by diffusion. The presence of congeners may also limit spread. Open habitats—some parks, yards and roadsides—contain few if any A. cristatellus, and colonization of isolated forest habitat appears to depend on human-mediated dispersal.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号