首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
2.
3.
    
ObjectiveTo compare the effects of intravenous (IV) lidocaine and fentanyl on the cough reflex and autonomic response during endotracheal intubation in dogs.Study designRandomized, blinded, superiority clinical trial.AnimalsA total of 46 client-owned dogs undergoing magnetic resonance imaging.MethodsAfter intramuscular methadone (0.2 mg kg–1), dogs were randomized to be administered either IV lidocaine (2 mg kg–1; group L) or fentanyl (7 μg kg–1; group F). After 5 minutes, alfaxalone was administered until endotracheal intubation was possible (1 mg kg–1 IV over 40 seconds followed by 0.4 mg kg–1 increments to effect). Total dose of alfaxalone was recorded and cough reflex at endotracheal intubation was scored. Heart rate (HR) was continuously recorded, Doppler systolic arterial blood pressure (SAP) was measured every 20 seconds. Vasovagal tonus index (VVTI) and changes (Δ) in HR, SAP and VVTI between pre-intubation and intubation were calculated. Groups were compared using univariate and multivariate analysis. Statistical significance was set as p < 0.05.ResultsGroup F included 22 dogs and group L 24 dogs. The mean (± standard deviation) alfaxalone dose was 1.1 (± 0.2) and 1.35 (± 0.3) mg kg–1 in groups F and L, respectively (p = 0.0008). At intubation, cough was more likely in group L (odds ratio = 11.3; 95% confidence intervals, 2.1 – 94.2; p = 0.01) and HR increased in 87.5% and 54.5% of groups L and F, respectively (p = 0.02). The median (range) ΔHR between pre-intubation and intubation was higher (13.1%; – 4.3 to + 55.1) in group L (p = 0.0021). Between groups, SAP and VVTI were similar.Conclusion and clinical relevanceAt the stated doses, whilst reducing the alfaxalone dose, fentanyl is superior to lidocaine in suppressing the cough reflex and blunting the increase in HR at endotracheal intubation in dogs premedicated with methadone.  相似文献   

4.
    
ObjectiveTo assess the effects of intravenous (IV) fentanyl on cough reflex and quality of endotracheal intubation (ETI) in cats.Study designRandomized, blinded, negative controlled clinical trial.AnimalsA total of 30 client-owned cats undergoing general anaesthesia for diagnostic or surgical procedures.MethodsCats were sedated with dexmedetomidine (2 μg kg–1 IV), and 5 minutes later either fentanyl (3 μg kg–1, group F) or saline (group C) was administered IV. After alfaxalone (1.5 mg kg–1 IV) administration and 2% lidocaine application to the larynx, ETI was attempted. If unsuccessful, alfaxalone (1 mg kg–1 IV) was administered and ETI re-attempted. This process was repeated until successful ETI. Sedation scores, total number of ETI attempts, cough reflex, laryngeal response and quality of ETI were scored. Postinduction apnoea was recorded. Heart rate (HR) was continuously recorded and oscillometric arterial blood pressure (ABP) was measured every minute. Changes (Δ) in HR and ABP between pre-intubation and intubation were calculated. Groups were compared using univariate analysis. Statistical significance was set as p < 0.05.ResultsThe median and 95% confidence interval of alfaxalone dose was 1.5 (1.5–1.5) and 2.5 (1.5–2.5) mg kg–1 in groups F and C, respectively (p = 0.001). The cough reflex was 2.10 (1.10–4.41) times more likely to occur in group C. The overall quality of ETI was superior in group F (p = 0.001), with lower laryngeal response to ETI (p < 0.0001) and ETI attempts (p = 0.045). No differences in HR, ABP and postinduction apnoea were found.Conclusions and clinical relevanceIn cats sedated with dexmedetomidine, fentanyl could be considered to reduce the alfaxalone induction dose, cough reflex and laryngeal response to ETI and to improve the overall quality of ETI.  相似文献   

5.
ObjectiveTo investigate whether intratesticular injection of lidocaine pre-surgery would reduce the intraoperative responses to elective castration in dogs.Study designDouble-blinded, randomized, controlled, prospective clinical study.AnimalsForty-two client-owned dogs weighing 2.2–38.4 kg and aged between 4.5 and 56 months.MethodsGroup L dogs received an intratesticular injection of 2% lidocaine (2 mg kg?1) and Group S an identical volume of saline prior to surgery. Premedication was with acepromazine and morphine intramuscularly. Anaesthesia was induced with propofol intravenously and maintained with isoflurane vaporized in oxygen. Heart rate (HR), mean arterial pressure (MAP), respiratory rate (fR), end-tidal isoflurane (Fe′ISO) and carbon dioxide concentrations, oxygen saturation and ECG were monitored during surgery. Fe′ISO was maintained at 1.0 ± 0.1%. Supplemental propofol was given in response to gross movement.ResultsGroup L had significantly lower maximum values for both HR and MAP. Group L displayed significantly smaller increases in HR during exteriorization of the first testis than Group S. There was an overall significant difference in MAP between groups during all surgical events (p = 0.041) and time points (p = 0.002). In univariate analysis, Group L showed significantly less changes in MAP during skin incision, exteriorization of the first testis and clamping of both spermatic cords. Group S reached its highest fR significantly earlier. Group L (eight dogs) required additional propofol 33 ± 18 minutes after the start of surgery and Group S (seven dogs) at 19 ± 17 minutes; this difference was not statistically significant. Seven dogs in Group L and 12 dogs in Group S required rescue analgesia with morphine (GCMPS-SF score ≥6); this difference was not statistically significant. No adverse effects were reported postoperatively.Conclusions and clinical relevanceBased on this study, the authors recommend the use of intratesticular lidocaine for surgical castration in dogs.  相似文献   

6.
    
ObjectiveTo determine whether final year veterinary students take longer to perform endotracheal intubation than qualified veterinary surgeons.Study designObservational cohort study.AnimalsA total of 38 healthy mesocephalic dogs undergoing general anaesthesia for a clinical purpose unrelated to this study.MethodsTime to successful endotracheal intubation, measured from termination of intravenous induction drug administration to confirmation of endotracheal intubation, was recorded for two groups: final year veterinary students (group S) and qualified veterinary surgeons (group V). Animal age, breed and anaesthetic induction agent were also recorded. Following normality testing the groups were compared for each variable using the Student’s t test or Mann–Whitney U test where appropriate. The level of significance was defined as p < 0.05. Timed data are presented as median and interquartile range.ResultsTime to successful intubation was 54.2 (31.3) seconds in group S and 11.7 (8.5) seconds in group V, the difference being significant (p < 0.001). There was also a significant difference between groups for animal age (p = 0.036) but not for breed (p = 0.573) or induction agent (p = 0.239).Conclusionsand clinical relevance Veterinary students take longer to achieve successful endotracheal intubation of anaesthetized healthy dogs compared with qualified veterinary surgeons. To mitigate any additional risk of dogs developing hypoxaemia, it is recommended that a 55 second time limit is set after which the supervisor intervenes and takes over the intubation procedure. Preoxygenation may be used as an additional mitigation strategy.  相似文献   

7.
    
ObjectiveTo compare the ease of endoscopic duodenal intubation (EDI) in dogs during maintenance of general anaesthesia with isoflurane or propofol infusion.Study designProspective, randomized, partially blinded clinical trial.AnimalsA total of 22 dogs undergoing upper gastrointestinal tract endoscopy to include EDI were recruited.MethodsDogs were randomly assigned isoflurane (ISO; n = 10) or propofol (PROP; n = 11) for maintenance of general anaesthesia. Following anaesthetic premedication with intramuscular medetomidine (0.005 mg kg–1) and butorphanol (0.2 mg kg–1), general anaesthesia was induced with propofol, to effect, maintained with 1.5% (vaporizer setting) isoflurane in 100% oxygen or 0.2 mg kg–1 minute–1 propofol. The dose of both agents was adjusted to maintain general anaesthesia adequate for the procedure. Degree of sedation 20 minutes post-anaesthetic premedication, propofol induction dose, anaesthetist and endoscopist training grade, animal’s response to endoscopy, presence of gastro-oesophageal and duodenal-gastric reflux, spontaneous opening of the lower oesophageal and pyloric sphincters, antral movement and time to achieve EDI were recorded. EDI was scored 1 (immediate entry with minimal manoeuvring) to 4 (no entry after 120 seconds) by the endoscopist, blinded to the agent in use. Data were tested for normality (Shapiro-Wilk test) and differences between groups analysed using independent t test, Mann-Whitney U test and Fisher’s exact test as appropriate.ResultsThere were no significant differences between groups for EDI score [median (interquartile range): 2 (3) ISO, 2 (3) PROP] or time to achieve EDI [mean ± standard deviation: 52.50 ± 107.00 seconds (ISO), 70.00 ± 196.00 seconds (PROP)]. Significantly more dogs responded to passage of the endoscope into the oesophagus in group PROP compared with group ISO (p = 0.01).Conclusions and clinical relevanceMaintenance of general anaesthesia with either isoflurane or propofol did not affect EDI score or time to achieve EDI.  相似文献   

8.
ObjectiveTo evaluate the effect of local anaesthesia of the mesovarium on end-tidal isoflurane (Fe′iso) concentration and vital parameters during canine ovariohysterectomy.Study designProspective, randomized, blinded study.AnimalsTwenty client-owned dogs undergoing elective ovariohysterectomy. Mean age 1.7 (±0.53, SD) years and mean body weight 21 kg (±5.9, SD).MethodsPre-medication was with intravenous acepromazine (0.02 mg kg−1) and methadone (0.1 mg kg−1). Anaesthesia was induced with propofol and maintained with isoflurane in oxygen. One group (n = 10) received local infiltration of the mesovarium with 0.5 mL lidocaine 2% and one group (n = 10) with 0.5 mL NaCl 0.9%. Heart (HR) and respiratory rates (fr), invasive mean arterial blood pressure (MAP) and Fe′isowere recorded. The Fe′iso was adjusted according to changes in HR, RR and MAP. Time points used for comparison were T1 (after induction of anaesthesia before surgery), T2 (after lidocaine infiltration of the mesovarium) and T3 (surgical manipulation of the ovaries). Data were analysed using a mixed model for repeated measurement anova and the Tukey adjustment. Results are presented as mean ± SD; p < 0.05 was considered significant.ResultsIn both groups, HR and fr remained stable at the three time points. Mean values ranged from 84 to 94 beats minute−1 and from 10 to 14 breaths minute−1. The Fe′iso was significantly lower at T3 compared to T1 and mean values ranged from 0.95% to 1.24%. The mean arterial blood pressure was significantly higher at T3 compared to T1 and mean values ranged from 58 to 96 mm Hg. At none of the time points were there significant differences between the two groups for HR, fr, MAP or Fe′iso.ConclusionNeither an isoflurane sparing effect nor a difference in autonomic response to surgery was demonstrated following local anaesthesia of the mesovarium.Clinical relevanceThere appeared to be minimal benefit from local anaesthesia of the mesovarium during this study.  相似文献   

9.
    
The effects of propofol on intraocular pressure (IOP) and end tidal CO2 (ETCO2) were studied because an elevation in the latter may alter IOP. Twenty dogs were divided into two groups (G1 and G2). G1 dogs were induced with 10 mg/kg (IV) of propofol followed by a 0.4 mg/kg/min continuous infusion of the same agent diluted in a 0.2% dextrose solution for 1 h. G(CAPS) 2 dogs served as the control group, where only dextrose solution was administered, under the same time intervals as in G1. Applanation tonometry (Tono-Pen) was used to determine IOP and ETCO2 as a method to determine partial CO2 pressure. Measurements were taken every 15 min for 1 h, with M1 occurring immediately before IV administration. IOP and ETCO2 were not statistically significant in either groups. Based on the results, it may be concluded that propofol does not alter IOP and ETCO2.  相似文献   

10.
为研究利多卡因(lidocaine)和布吡卡因(bupivacaine)行硬膜外阻滞时的药代动力学特征,将16只健康犬随机分成2组(n=8),硬膜外阻滞时按体质量分别注入2%利多卡因6mg/kg和0.5%布吡卡因2mg/kg,在注药后的3、5、8、10、15、20、30、40、50、60、75、90、120、150、180min分别采取股动脉血,用气相色谱法测定血药浓度,比较2组药代动力学指标。结果表明,利多卡因和布吡卡因的药-时曲线均符合一室开放模型,t1/2ka分别为(3.55±0.73)min和(7.76±0.38)min,tpeak分别为(18.8±2.2)min和(35.6±1.5)min,Cmax分别为(4.67±0.37)mg/L和(1.38±0.08)mg/L,AUC分别为(739±73)μg.mL-1.min和(366±45)μg.mL-1.min,CL分别为(12.2±4.6)mL/min和(5.5±0.67)mL/min。  相似文献   

11.
ObjectiveTo report the cardiovascular variables, anaesthetic effects and recovery quality of an anaesthesia technique using variable rate infusion propofol combined with constant rate infusion fentanyl in dogs undergoing elective surgery.Study designProspective clinical trial.AnimalsA total of 27 dogs, aged 2.7 ± 2.65 years and weighing 24 ± 11 kg.MethodsFollowing intramuscular acepromazine (0.03 or 0.05 mg kg?1) and subcutaneous carprofen (4 mg kg?1) pre-medication, anaesthesia was induced with propofol (4.0 ± 0.5 mg kg?1) intravenously (IV). All dogs were ventilated with 100% oxygen to maintain normocapnia. Propofol was infused at 0.4 mg kg?1 minute?1 for 20 minutes and then at 0.3 mg kg?1minute?1. If mean arterial blood pressure (MAP) decreased below 70 mmHg, propofol infusion was reduced by 0.1 mg kg?1 minute?1. Five minutes after induction of anaesthesia, fentanyl was administered (2 μg kg?1) IV followed by the infusion at 0.5 μg kg?1 minute?1 and atropine (40 μg kg?1) IV. Heart rate, MAP, respiratory rate, tidal volume, end-tidal carbon dioxide, presence of reflexes, movements and recovery times and quality were recorded.ResultsMean anaesthetic duration was 131 ± 38.5 minutes. Mean heart rate peaked 10 minutes after atropine injection and gradually declined, reaching pre-anaesthetic values at 55 minutes. MAP easily was maintained above 70 mmHg. Mean times to return of spontaneous ventilation, extubation, head lift and sternal recumbency were 21 ± 10.1, 33 ± 14.6, 43 ± 19.7 and 65 ± 23.4 minutes, respectively. Recovery was smooth and quiet. The time to sternal recumbency was significantly correlated with the duration of anaesthesia and total dose of propofol; time to extubation was correlated to total dose of propofol.Conclusion and clinical relevancePropofol and fentanyl infusions provided stable cardiovascular function and satisfactory conditions for surgery. Some modifications of infusion rates are required to improve the long-recovery times.  相似文献   

12.
ObjectiveTo investigate the cardiorespiratory, nociceptive and endocrine effects of the combination of propofol and remifentanil, in dogs sedated with acepromazine.Study designProspective randomized, blinded, cross-over experimental trial.AnimalsTwelve healthy adult female cross-breed dogs, mean weight 18.4 ± 2.3 kg.MethodsDogs were sedated with intravenous (IV) acepromazine (0.05 mg kg?1) followed by induction of anesthesia with IV propofol (5 mg kg?1). Anesthesia was maintained with IV propofol (0.2 mg kg?1 minute?1) and remifentanil, infused as follows: R1, 0.125 μg kg?1 minute?1; R2, 0.25 μg kg?1 minute?1; and R3, 0.5 μg kg?1 minute?1. The same dogs were administered each dose of remifentanil at 1-week intervals. Heart rate (HR), mean arterial pressure (MAP), respiratory rate (fR), end tidal CO2 (Pe′CO2), arterial hemoglobin O2 saturation, blood gases, and rectal temperature were measured before induction, and 5, 15, 30, 45, 60, 75, 90, and 120 minutes after beginning the infusion. Nociceptive response was investigated by electrical stimulus (50 V, 5 Hz and 10 ms). Blood samples were collected for plasma cortisol measurements. Statistical analysis was performed by anova (p < 0.05).ResultsIn all treatments, HR decreased during anesthesia with increasing doses of remifentanil, and increased significantly immediately after the end of infusion. MAP remained stable during anesthesia (72–98 mmHg). Antinociception was proportional to the remifentanil infusion dose, and was considered satisfactory only with R2 and R3. Plasma cortisol concentration decreased during anesthesia in all treatments. Recovery was smooth and fast in all dogs.Conclusions and clinical relevanceInfusion of 0.25–0.5 μg kg?1 minute?1 remifentanil combined with 0.2 mg kg?1 minute?1 propofol produced little effect on arterial blood pressure and led to a good recovery. The analgesia produced was sufficient to control the nociceptive response applied by electrical stimulation, suggesting that it may be appropriate for performing surgery.  相似文献   

13.
    
ObjectiveTo compare the effect of alfaxalone and propofol on heart rate (HR) and blood pressure (BP) after fentanyl administration in healthy dogs.Study designProspective, randomised clinical study.AnimalsFifty healthy client owned dogs (ASA I/II) requiring general anaesthesia for elective magnetic resonance imaging for neurological conditions.MethodsAll dogs received fentanyl 7 μg kg−1 IV and were allocated randomly to receive either alfaxalone (n = 25) or propofol (n = 25) to effect until endotracheal (ET) intubation was possible. Heart rate and oscillometric BP were measured before fentanyl (baseline), after fentanyl (Time F) and after ET intubation (Time GA). Post-induction apnoea were recorded. Data were analysed using Fisher’s exact test, Mann Whitney U test and one-way anova for repeated measures as appropriate; p value <0.05 was considered significant.ResultsDogs receiving propofol showed a greater decrease in HR (-14 beat minute−1, range -47 to 10) compared to alfaxalone (1 beat minute−1, range -33 to 26) (p = 0.0116). Blood pressure decreased over the three time periods with no difference between groups. Incidence of post-induction apnoea was not different between groups.ConclusionFollowing fentanyl administration, anaesthetic induction with propofol resulted in a greater negative chronotropic effect while alfaxalone preserved or increased HR.Clinical relevanceFollowing fentanyl administration, HR decreases more frequently when propofol rather than alfaxalone is used as induction agent. However, given the high individual variability and the small change in predicted HR (-7.7 beats per minute after propofol), the clinical impact arising from choosing propofol or alfaxalone is likely to be small in healthy animals. Further studies in dogs with myocardial disease and altered haemodynamics are warranted.  相似文献   

14.
ObjectiveTo assess the cardiorespiratory and hypnotic-sparing effects of ketamine co-induction with target-controlled infusion of propofol in dogs.Study designProspective, randomized, blinded clinical study.AnimalsNinety healthy dogs (ASA grades I/II). Mean body mass 30.5 ± SD 8.6 kg and mean age 4.2 ± 2.6 years.MethodsAll dogs received pre-anaesthetic medication with acepromazine (0.03 mg kg?1) and morphine (0.2 mg kg?1) administered intramuscularly 30 minutes prior to induction of anaesthesia. Heart rate and respiratory rate were recorded prior to pre-medication. Animals were allocated into three different groups: Group 1 (control) received 0.9% NaCl, group 2, 0.25 mg kg?1 ketamine and group 3, 0.5 mg kg?1 ketamine, intravenously 1 minute prior to induction of anaesthesia, which was accomplished using a propofol target-controlled infusion system. The target propofol concentration was gradually increased until endotracheal intubation was possible and the target concentration at intubation was recorded. Heart rate, respiratory rate and noninvasive blood pressure were recorded immediately prior to induction, at successful intubation and at 3 and 5 minutes post-intubation. The quality of induction was graded according to the amount of muscle twitching and paddling observed. Data were analysed using a combination of chi-squared tests, Fisher's exact tests, Kruskal–Wallis, and anova with significance assumed at p< 0.05.ResultsThere were no significant differences between groups in the blood propofol targets required to achieve endotracheal intubation, nor with respect to heart rate, noninvasive blood pressure or quality of induction. Compared with the other groups, the incidence of post-induction apnoea was significantly higher in group 3, but despite this dogs in this group had higher respiratory rates overall.Conclusions and clinical relevanceUnder the conditions of this study, ketamine does not seem to be a useful agent for co-induction of anaesthesia with propofol in dogs.  相似文献   

15.
ObjectiveTo determine the effects of graded doses of propofol on cardiovascular parameters and intraocular pressures (IOP) in normal dogs.Study designProspective, randomized, modified Latin square, cross-over experimental study.AnimalsEleven adult random-source dogs weighing 20.2 ± 5.7 kg.MethodsThere were three treatment groups: propofol 8 mg kg?1 intravenous (IV) until loss of jaw tone (Group P), propofol until loss of jaw tone +20% (Group P20), and propofol until loss of jaw tone +50% (Group P50). Atracurium 0.1 mg kg?1 IV was administered in all treatments immediately after the propofol. All dogs received the three treatments in a randomized order, with at least a one week interval between treatments. Direct arterial blood pressure and IOP by applanation tonometry were obtained at baseline, after 5 minutes of pre-oxygenation (before induction), before, and after intubation. Blood gas samples were obtained at baseline, after pre-oxygenation, and before intubation.ResultsThere was no significant difference in IOP readings at any time point among groups. The IOP was significantly higher before intubation versus before induction in all three groups. There was a significantly smaller change in systolic, mean (MAP), and diastolic (DAP) arterial pressures in the P50 group compared with the P group after intubation. There was a significantly smaller change in MAP and DAP in the P50 group compared with the P20 group after intubation. The increase in CO2 from before induction to before intubation was significantly greater in the P50 group than in the P or P20 groups.Conclusions and clinical relevanceGraded doses of propofol did not affect the increase in IOP observed with propofol induction in normal dogs. Higher doses of propofol are of no apparent additional benefit in animals who cannot tolerate an abrupt increase in IOP but may be of benefit in dogs who cannot tolerate an abrupt increase in blood pressure accompanying orotracheal intubation.  相似文献   

16.
17.
    

Objective

To investigate changes in serum cardiac troponin I (cTnI) concentrations in dogs in which medetomidine was used for sedation or for premedication prior to anaesthesia with propofol and sevoflurane.

Study design

Prospective clinical study.

Animals

A total of 66 client-owned dogs.

Methods

The dogs were sedated with medetomidine (0.04 mg kg?1) intravenously (IV) (group M; n = 20) and left to breath room air or anaesthetized with propofol (6.5 ± 0.76 mg kg?1 IV) and sevoflurane (4.5% vaporizer setting) in oxygen (group P + S; n = 20) or with medetomidine (0.04 mg kg?1 IV), propofol (1.92 ± 0.63 mg kg?1) and sevoflurane (3% vaporizer setting) in oxygen (group M + P + S; n = 26), respectively. After 35 minutes, medetomidine was antagonized with atipamezole (0.1 mg kg?1 intramuscularly). Blood samples for serum cTnI determination were taken before sedation or anaesthesia, 6 and 12 hours and 4 days thereafter. Serum cTnI concentrations were measured with the Architect STAT Troponin-I assay.

Results

Before sedation or anaesthesia, cTnI concentrations were above the detection limit in 22 out of 66 (33%) of dogs. Compared to basal values, cTnI concentrations significantly increased at 6 and 12 hours in all groups and at day 4 in group M. There were no differences in cTnI concentration between groups at baseline, at 6 hours and at 4 days. At 12 hours, cTnI concentrations were significantly higher in groups M and P + S, respectively, compared to group M + P + S.

Conclusions and clinical relevance

Oxygenation during anaesthesia and reduction of propofol and sevoflurane dose due to the sparing effects of medetomidine might have played a role in alleviation of myocardial hypoxic injury as indicated by the less severe and short-lived increase of cTnI in the M + P + S group.  相似文献   

18.

Objective

To determine the effect of fentanyl on the induction dose of propofol and minimum infusion rate required to prevent movement in response to noxious stimulation (MIRNM) in dogs.

Study design

Crossover experimental design.

Animals

Six healthy, adult intact male Beagle dogs, mean ± standard deviation 12.6 ± 0.4 kg.

Methods

Dogs were administered 0.9% saline (treatment P), fentanyl (5 μg kg?1) (treatment PLDF) or fentanyl (10 μg kg?1) (treatment PHDF) intravenously over 5 minutes. Five minutes later, anesthesia was induced with propofol (2 mg kg?1, followed by 1 mg kg?1 every 15 seconds to achieve intubation) and maintained for 90 minutes by constant rate infusions (CRIs) of propofol alone or with fentanyl: P, propofol (0.5 mg kg?1 minute?1); PLDF, propofol (0.35 mg kg?1 minute?1) and fentanyl (0.1 μg kg?1 minute?1); PHDF, propofol (0.3 mg kg?1 minute?1) and fentanyl (0.2 μg kg?1 minute?1). Propofol CRI was increased or decreased based on the response to stimulation (50 V, 50 Hz, 10 mA), with 20 minutes between adjustments. Data were analyzed using a mixed-model anova and presented as mean ± standard error.

Results

ropofol induction doses were 6.16 ± 0.31, 3.67 ± 0.21 and 3.33 ± 0.42 mg kg?1 for P, PLDF and PHDF, respectively. Doses for PLDF and PHDF were significantly decreased from P (p < 0.05) but not different between treatments. Propofol MIRNM was 0.60 ± 0.04, 0.29 ± 0.02 and 0.22 ± 0.02 mg kg?1 minute?1 for P, PLDF and PHDF, respectively. MIRNM in PLDF and PHDF was significantly decreased from P. MIRNM in PLDF and PHDF were not different, but their respective percent decreases of 51 ± 3 and 63 ± 2% differed (p = 0.035).

Conclusions and clinical relevance

Fentanyl, at the doses studied, caused statistically significant and clinically important decreases in the propofol induction dose and MIRNM.  相似文献   

19.
    
ObjectiveTo evaluate the effects of the co-administration of midazolam on the dose requirement for propofol anesthesia induction, heart rate (HR), systolic arterial pressure (SAP) and the incidence of excitement.Study designProspective, randomized, controlled and blinded clinical study, with owner consent.AnimalsSeventeen healthy, client owned dogs weighing 28 ± 18 kg and aged 4.9 ± 3.9 years old.MethodsDogs were sedated with acepromazine 0.025 mg kg?1 and morphine 0.25 mg kg?1 intramuscularly (IM), 30 minutes prior to induction of anesthesia. Patients were randomly allocated to receive midazolam (MP; 0.2 mg kg?1) or sterile normal saline (CP; 0.04 mL kg?1) intravenously (IV) over 15 seconds. Propofol was administered IV immediately following test drug and delivered at 3 mg kg?1 minute?1 until intubation was possible. Scoring of pre-induction sedation, ease of intubation, quality of induction, and presence or absence of excitement following co-induction agent, was recorded. HR, SAP and respiratory rate (fR) were obtained immediately prior to, immediately following, and 5 minutes following induction of anesthesia.ResultsThere were no significant differences between groups with regard to weight, age, gender, or sedation. Excitement occurred in 5/9 dogs following midazolam administration, with none noted in the control group. The dose of propofol administered to the midazolam group was significantly less than in the control group. Differences in HR were not significant between groups. SAP was significantly lower in the midazolam group compared with baseline values 5 minutes after its administration. However, values remained clinically acceptable.Conclusions and clinical relevanceThe co-administration of midazolam with propofol decreased the total dose of propofol needed for induction of anesthesia in sedated healthy dogs, caused some excitement and a clinically unimportant decrease in SAP.  相似文献   

20.
    
ObjectiveTo assess as premedicants, the sedative, cardiorespiratory and propofol-sparing effects in dogs of dexmedetomidine and buprenorphine compared to acepromazine and buprenorphine.Study designProspective, randomised, blinded clinical studyAnimalsSixty healthy dogs (ASA grades I/II). Mean (SD) body mass 28.0 ± 9.1 kg, and mean age 3.4 ± 2.3 years.MethodsDogs were allocated randomly to receive 15 μg kg?1 buprenorphine combined with either 30 μg kg?1 acepromazine (group 1), 62.5 μg m?2 dexmedetomidine (group 2), or 125 μg m?2 dexmedetomidine (group 3) intramuscularly. After 30 minutes, anaesthesia was induced using a propofol target controlled infusion. Heart rate, respiratory rate, and oscillometric arterial blood pressure were recorded prior to induction, at endotracheal intubation and at 3 and 5 minutes post-intubation. Induction quality and pre-induction sedation were scored on 4 point scales. Propofol target required for endotracheal intubation was recorded. Data were analysed using Chi-squared tests, Kruskal-Wallis, one way and general linear model anova (p < 0.05).ResultsAge was significantly lower in group 1 (1.0 (1.0–3.8) years) than group 2 (5.0 (2.0–7.0) years), (median, (IQR)). There were no significant differences in sedation or quality of induction between groups. After premedication, heart rate was significantly lower and arterial blood pressures higher in groups 2 and 3 than group 1, but there was no significant difference between groups 2 and 3. Propofol targets were significantly lower in group 3 (1.5 (1.0–2.5) μg mL?1) than group 1 (2.5 (2.0–3.0) μg mL?1); no significant differences existed between group 2 (2.0 (1.5–2.5) μg mL?1) and the other groups (median, (interquartile range)).Conclusions and Clinical relevanceWhen administered with buprenorphine, at these doses, dexmedetomidine had no advantages in terms of sedation and induction quality over acepromazine. Both doses of dexmedetomidine produced characteristic cardiovascular and respiratory effects of a similar magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号