首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Strongly acidic soil (e.g. pH < 5.0) is detrimental to tea productivity and quality. Wheat, rice and peanut biochar produced at low temperature (max 300 °C) and differing in alkalinity content were incorporated into Xuan‐cheng (Ultisol; initial pHsoil/water = 1/2.5 4.12) and Ying‐tan soil (Ultisol; initial pH soil/water = 1/2.5 4.75) at 10 and 20 g/kg (w/w) to quantify their liming effect and evaluate their effectiveness for acidity amelioration of tea garden soils. After a 65‐day incubation at 25 °C, biochar application significantly (< 0.05) increased soil pH and exchangeable cations and reduced Al saturation of both tea soils. Association of H+ ions with biochar and decarboxylation processes was likely to be the main factor neutralizing soil acidity. Further, biochar application reduced acidity production from the N cycle. Significant (< 0.05) increases in exchangeable cations and reductions in exchangeable acidity and Al saturation were observed as the rate of biochar increased, but there were no further effects on soil pH. The lack of change in soil pH at the higher biochar rate may be due to the displacement of exchangeable acidity and the high buffering capacity of biochar, thereby retarding a further liming effect. Hence, a significant linear correlation between reduced exchangeable acidity and alkalinity balance was found in biochar‐amended soils (< 0.05). Low‐temperature biochar of crop residues is suggested as a potential amendment to ameliorate acidic tea garden soils.  相似文献   

2.
Purpose

Several interactions between Al and the solid phase of soil influence Al buffering in soil solution. This work evaluated soils cultivated with Pinus taeda L. to determine Al forms in organic and mineral horizons using various extraction methods and to relate acidity with clay mineralogy.

Materials and methods

Organic and mineral horizons of 10 soil profiles (up to 2.1 m deep) in southern Brazil were sampled. Organic horizons were separated into fresh, aged, and fermented/humified litter. The following Al extraction methods were utilized: 0.5 mol L?1 pH 2.8 CuCl2–Al complexed in organic matter; 1.0 mol L?1 KCl–exchangeable Al; water–Al soluble in soil solution; HF concentrated?+?HNO3 concentrated?+?H2O2 30% (v/v)–total Al. Six sequential extractions were carried out to isolate different forms of amorphous minerals that can buffer Al on soil solution: 0.05 and 0.1 mol L?1 sodium pyrophosphate; 0.1 and 0.2 mol L?1 ammonium oxalate; 0.25 and 0.5 mol L?1 NaOH. Samples of clay were also analyzed by XRD.

Results and discussion

There was a clear effect of litter age on increasing total Al concentration. In the aged litter and fermented and/or humified litter, levels of total Al were 1.4 to 3.8 and 1.5 to 7.8 times greater than in fresh litter, respectively. The CuCl2 method had higher Al extraction capacity than the KCl method for litter. The lowest Al–pyrophosphate values were observed in the Oxisol, which also had a predominance of gibbsite and the lowest levels of Al–KCl and Al–CuCl2. There was an inverse relationship between degree of soil weathering and soluble and exchangeable Al in soils. Available Al increased with higher Si proportion in minerals of the clay fraction (2:1?>?1:1?>?0:1).

Conclusions

The worst scenario was soils with the combination of high soluble and exchangeable Al levels and high concentrations of amorphous forms of Al minerals. The best predictors of Al accumulation in the youngest litter horizon were extractions of amorphous minerals with pyrophosphate and NaOH. These extractors are normally used to predict the level of Al buffering in soils. Organic matter had less influence on Al dynamics in soils.

  相似文献   

3.
红壤中铝的形态   总被引:41,自引:2,他引:41       下载免费PDF全文
以改进的连续分级提取方法,用1mol/L,KCl,0.2mol/L,HCl,0.1mol/L Na4P2O7(pH8.5),DCB溶液,0.33mol/L,柠檬酸钠和0.5mol/L NaOH为提取剂,把红壤中可提取的非晶态铝区分为交换态铝,肿附态无机羟基铝,有机配合态铝,氧化铁结合态铝,层间铝和非晶态铝硅酸盐。  相似文献   

4.

Purpose

The aluminium smelter located in the northern coast of Galicia (NW Spain) is a source of fluoride pollution. Previous papers Gago et al. (Commun Soil Sci Plant Anal 32:2503–2517, 2001, Fluoride 35:110–121, 2002) have identified an area of 3-km radius around the factory being affected by fluoride emissions. This study aims to investigate the influence of fluoride emissions on fluorine concentration and speciation as well as on aluminium speciation in soils in the vicinity of the smelter.

Materials and methods

PVC cylinders containing soil material from the A horizon of an unpolluted forest soil, similar to that in the vicinity of the factory, were placed within the A horizon of soils surrounding the smelter. The cylinders were placed at various distances (up to 3 km) from the factory in the direction of predominant winds. The PVC columns were removed after 6 months, and the soil material inside was divided into two slices (0–10 and 10–20 cm) and analysed for pH, total and available fluorine, exchangeable cations, effective cation exchange capacity (CEC) and oxalate-extracted aluminium. The soil solution was mimicked by aqueous extracts and analysed for pH, electrical conductivity, Ca, Mg, Na, K, total and free fluorine, total Al, acid-soluble Al, non-labile Al, labile Al and labile Al species.

Results and discussion

In the area closest to the factory (0.5 km), total and available fluorine in the upmost 10 cm soil increased by twofold and eightfold, respectively, while soluble fluoride increased by fourfold. Increases were also observed in exchangeable Ca, Mg, Al and CEC. Noncrystalline Al increased significantly at any distance from the smelter. Fluorine, pH, sulphate, aluminium and organic matter increased in the soil solution of surface (<10 cm) samples closest to the factory. Monomeric Al-organic matter complexes prevailed in the liquid phase at 0.5–1 km from the factory whereas inorganic Al complexes did at distances over 1 km. Among the inorganic Al complexes, fluoride complexes prevailed at distances less than 1 km and hydroxylated complexes at distances greater than 1 km. Al3+ concentration was always very low.

Conclusions

Emissions from an aluminium smelter led to increased concentrations of fluorine and various forms of aluminium in the nearby soil. These emissions mobilised aluminium, organic matter and probably sulphate from the soil. In the closest neighbourhood of the smelter, it was found that most soluble aluminium was bound to organic matter, hence having low toxicity, while at distances farther than 1 km Al-F and Al-OH complexes prevailed.  相似文献   

5.
Soil acidification occurs widely across the world, which has been partly attributed to land-use change. However, measureable effect of land-use change as well as parent materials on soil acidification remains poorly understood. Here, a typical area with intensive land-use change in the Pearl River Delta of China was chosen for this study. Topsoil (0–20 cm) and subsoil (20–40 cm) samples (n = 169) under different land uses (paddy fields, vegetable lands and orchards) and parent materials (granite and alluvial sediment) were collected in 2020. Soil pH, exchangeable base cations, exchangeable acidity and pH buffering capacity were measured to evaluate the status of soil acidification. The change of soil pH over the last 15 years was evaluated via comparing with historical data (n = 329) in 2005. The results showed a higher exchangeable acidity and lower pH buffering capacity and exchangeable base cations of soils derived from granite compared with soils derived from alluvial sediment in 2020. In the last 15 years, significant soil acidification under different parent materials was observed under vegetable lands and orchards but not paddy fields. Faster pH decline was found under land-use change from paddy fields compared with the unchanged vegetable lands or orchards. Furthermore, stronger acidification under the same land-use change was observed for soils derived from granite compared with soils derived from alluvial sediment. These results indicate that land-use change induced soil acidification is dependent on parent materials. This study implies that cropping management such as suitable rotation operation may slow soil acidification, and measures including straw returning may ameliorate acidified soils.  相似文献   

6.
The effect of aluminium on methane oxidation was examined from incubation experiments involving the addition of several concentrations of Al solution (0.1, 0.2, 0.5, 1, 3 and 5 mM) to two soil samples that possessed different CH4 oxidation potential. Atmospheric CH4 oxidation activity was inhibited by the addition of as little as 0.1 mM Al solution (approximately 0.5 μg of Al per gram dry weight soil) to a forest soil that contained low water-soluble Al and possessed a high CH4 oxidation potential. Our results indicate that Al inhibition of CH4 oxidation activity is concentration-dependant after a certain time and the inhibition increases gradually over time until at least 96 h have elapsed. We also found that relatively small amounts of Al additions, such as 10-20 μg per gram dry weight of soil, halved the CH4 oxidation rate compared to the control, regardless of the original CH4 oxidation potential of the soil. Since the Al concentrations used in our experiment are often observed in forest soils, we can assume that Al acts as an important inhibitor of CH4 oxidation in forest soils under natural conditions. The sharp falls and a continuous decrease in CH4 oxidation rate in other forest samples with the addition of deionized water implies that the water-soluble Al contained in soils contributes to the inhibition of CH4 oxidation rate. This result suggests that precipitation causes a relatively prolonged inhibition of CH4 oxidation in soils containing a high concentration of water-soluble Al.  相似文献   

7.
Abstract

Aluminum concentrations in soil solutions are not only controlled by inorganic clay minerals but also by organically bound aluminum. The objective of this study was to determine which pools contribute to Al dissolution. Soil samples were taken at various distances from tree trunks and at various depths at the Rolling Land Laboratory (RLL), Hachioji, Tokyo. Selective dissolution techniques were used to analyze the changes in pools of solid-phase aluminum. Soil pH values around Hinoki cypresses were in the aluminum buffer range. Exchangeable aluminum contents in soils under Hinoki cypresses were 104 mmolc kg-?1 on the average. This value was similar to that of the cation exchange capacity (CEC) of Andisols at RLL at a soil pH of 4. The relationship between the soil pH and exchangeable, organically bound, and amorphous aluminum pools showed that dissolved aluminum ions in the soil solution were primarily derived from the amorphous Al pool. Dissolved aluminum ions were substituted with base cations of soils, resulting in the increase of the content of exchangeable Al and/or the formation of complexes with organic matter which increased the proportion of organically bound Al pools. Increase in the proportion of organically bound Al pools indicated the importance of complexation with soil organic matter for controlling the aluminum concentration in the soil solution.  相似文献   

8.
Abstract

Acid soil limitations to plant growth were assessed In 55 horizons of 14 major Appalachian hill land soils. Aluminum sensitive “Romano” and Al‐tolerant “Dade” snapbeans (Phaseolus vulgaris L.) were grown for 5 weeks in limed and unlimed treatments of the 55 horizons. Shoot and root growth was depressed >20% in unlimed relative to limed treatments in approximately 2/3 of the horizons. Dade snapbeans were generally more tolerant of the acid soil conditions and had higher Ca concentrations in the shoots than Romano snapbeans. However, the sensitive‐tolerant snapbean pair could not consistently be used to identify horizons with soil Al problems. Growth of both snapbeans was generally best in A horizons and worst in E horizons. The E horizons in this study were characterized by low Ca saturation (exchangeable Ca x 100/cation exchange capacity) and high Al saturation (exchangeable Al x 100/cation exchange capacity). Exchangeable Ca, soil Ca saturation and total soil solution Ca were positively correlated (p<0.01) with snapbean root and shoot growth. Soil Al saturation, total soil solution Al and soil solution Al reacting in 15 seconds with 8‐hydroxyquinoline were negatively correlated (p<0.01) with growth. The ratio of Ca/Al in soil solution was more closely related to snapbean growth than the soil solution concentration of any individual element. Soil and soil solution Mn were, in general, not significantly correlated with snapbean growth. Many of the horizons in this study had both Al toxicity and Ca deficiency problems and interaction between Ca and Al affected both snapbean growth and Ca uptake. These findings confirm the importance of considering Ca as well as Al when investigating Al phytotoxicity.  相似文献   

9.
The modified Tessier’s sequential extraction procedure and rhizobox cultivation were employed to investigate the distribution of aluminum (Al) fractions in the acidic rhizosphere soil of Masson pine (Pinus massoniana lamb) seedlings. The results showed that the Al in soils was fractionated into five operationally defined fractions. Three sets of soil samples used in the rhizoboxes were collected from the three forest sites in the southeast of China: Sichuan, Zhejian, and Jiangsu. At the end of 100-day cultivation, the rhizosphere Al fractions for the original or bulk soils were in the order of residual > iron-manganese (Fe-Mn) oxides > organic > carbonate > exchangeable. However, in rhizosphere soil, the Al fraction follows the order of residual > organic > Fe-Mn oxides > carbonate > exchangeable. On average, the rhizosphere experienced significant increase in organically bound Al and slight decrease in exchangeable Al contents, but had decreases in contents for the other three Al fractions compared to the nonrhizosphere. The correlation analysis indicated that the Al contents accumulated in roots were significantly and positively correlated with exchangeable Al contents in the rhizosphere, and also characterized by the major portion of organically bound Al, which exhibited a bioavailable transformation of Al fractions. Results indicated that decreases in both redox potential and soil pH, as well as increase in dissolved organic carbon (DOC), were observed in the rhizosphere. Exchangeable Al and organic Al fractions were dependent mainly on soil pH (hydrogen ion concentration) and DOC, accordingly. Decreasing rhizosphere pH from 5.93 to 3.42 accelerated the secretion of organic carbon. These data are helpful for understanding the mobility and bioavailability of Al fractions in the acidic rhizosphere soils of Masson pine.  相似文献   

10.
This study evaluated soil health in fields of wheat (Triticum aestivum L. cv Shatabdi) and potatoes (Solanum tuberosum L.) irrigated by different blends of municipal wastewater (hereafter called wastewater). The crops were grown with and without added fertilizers over three consecutive years. The wastewater contained high concentrations of organic carbon (C), nitrogen (N), phosphorus (P), sodium (Na), potassium (K), calcium (Ca), magnesium (Mg), sulphur (S), zinc (Zn) and boron (B). It also contained negligible concentrations of a few heavy metals. Irrigation by wastewater resulted in an increase in the porosity of the surface soil and thus a reduced bulk density. Wastewater enhanced the saturated hydraulic conductivity and water retention capacity of the soils. The organic carbon, total N, available P and S, and exchangeable Na, K, Ca and Mg of the soils increased proportionately with the quantity of applied wastewater. C, N and K increased significantly (α = 0.05) when fields were irrigated using raw wastewater after applied fertilizers; the other elements accumulated in the soil insignificantly under both fertility levels. Electrical conductivity (EC) and pH of the upper 0–20 and 20–40 cm soil layers increased with the application of wastewater; the increase was significant only under raw wastewater irrigation. In the 40–60 cm soil layer, both EC and pH remained unchanged. The applied inorganic fertilizers raised EC but reduced soil pH. The wastewater contained large counts of total coliform (TC: 17.2 × 106 cfu/100 mL) and faecal coliform (FC: 13.4 × 103 cfu/100 mL). Irrigation using municipal wastewater is proposed for improving soil fertility as well as for alleviating water scarcity with the exception of some crops whose edible parts come in direct contact with wastewater and/or are eaten uncooked.  相似文献   

11.
In the Gilgel Gibe catchment in Ethiopia, local farmers intensify land use on Planosols by adjusting a traditional soil burning practice known as guie. The burning practice used to be applied in a cycle of shifting cultivation. However, more recently, farmers burn small plots to make fertile seedbeds for Eucalyptus seedlings in the first year before these trees are transplanted to larger plots. The purpose of this research was to assess the physico‐chemical properties of Planosols that have been subjected to burning over the last 10 yrs and evaluate the contribution of guie to land‐use intensification of these soils. Transect studies and interviews of local farmers, followed by chemical, physical and micromorphological analyses of samples from selected plots were used to compare the soil properties of recently (0–2 yrs) and formerly (3–10 yrs) burnt Planosols with those of unburnt Planosols. The analytical results show that the burning practice improved nutrient availability in the first 2 yrs after guie. Increased amounts of exchangeable aluminium (Al) were reported in the long term. Charge fingerprints illustrate that the nutrient‐buffering capacity of the soil was high shortly after the practice but subsequently decreased with time. Given the population pressure on the formerly extensively used Planosols, it is argued that the current application of guie on small, localized plots for raising Eucalyptus seedlings is well adapted to the local socio‐economic context and promotes land‐use intensification on the Planosols. The increased exchangeable Al content of former Eucalyptus seedbeds merits further in‐depth research into the biophysical sustainability of the burning practice.  相似文献   

12.
Abstract

We investigated boron (B) adsorption characteristics for 16 acid alluvial soils as a function of equilibrium B concentration (0–80 μg/mL) and the effect of soil properties on such adsorption. The adsorption data for the soils could be described by Freundlich, Temkin, and BET isotherm equations over the entire concentration ranges studied, and by Langmuir and Eadie‐Hofstee equations only over a limited range. In general, the B adsorption capacity and the energy of retention of the soils calculated from different equations are low, the average Langmuir adsorption maxima and bonding energy constant being 21.47 μg/g and 0.113 mL/μg, respectively, making B susceptible to leaching losses. Simple and multiple regression analysis show that the adsorption capacities are significantly influenced by organic carbon (C), cation exchange capacity (CEC), and different forms of aluminium (Al) content in soils. The energy related constants are also influenced by the forms of Al in soils. Existence of significant correlations between constants obtained from different equations confirmed the adsorption characteristics of the soils.  相似文献   

13.
Abstract

A phosphorus (P) greenhouse experiment was carried out with maize (Zea Mays L.) using surface horizons of three contrasted acid soils from southern Cameroon. The objectives were (i) to assess causal factors of maize differential growth and P uptake and (ii) to explore plant–soil interactions in acid soils under increasing P supply. Shoot and root dry‐matter yield and P uptake were significantly influenced by soil type and P rate (P<0.000), but the interaction was not significant. Soil properties that significantly (P<0.05) influenced maize growth variables were available P, soil pH, exchangeable bases [calcium (Ca), magnesium (Mg)], and exchangeable aluminium (Al). Data ordination through principal‐component analysis highlighted a four‐component model that accounted for 88.1% of total system variance (TSV) and summarized plant reaction in acid soil condition. The first component, associated with 36.1% of TSV, pointed at increasing root–shoot ratio with increasing soil acidity and exchangeable Al. The second component (24.6% of TSV) highlighted soil labile P pool increase as a function of P rate. The third and fourth components reflected nitrogen (N) accumulation in soils and soil texture variability, respectively.  相似文献   

14.
Abstract

Recently agricultural activity in the mountainous area of northern Thailand has increased and problems relating to soil fertility have arisen. In order to gain basic information about the soil properties associated with shifting cultivation, physicochemical properties of the surface soils (0–10 cm) and subsoils (30–40 cm) were investigated in selected villages in the area. The physicochemical properties of the soils studied are summarized as follows: 1) The soils were rich in organic matter, content of which ranged from 11.4 to 63.3 g C kg?1 in the surface soil. 2) The pH(H2O) of the soils mostly ranged from 5 to 7 and soil acidity was more pronounced in the deeper horizons. In the surface soils, exchangeable Ca and Mg were generally dominant, whereas exchangeable Al was often predominant in the subsoils. 3) Most of the soils showed a medium to fine texture with more than 30% clay. The clay mineral composition was characterized by various degrees of mixture of kaolin minerals and clay mica with, in some cases, a certain amount of 2:1-2:1:1 intergrades. 4) According to the ion adsorption curves, most of the B horizon soils were characterized by the predominance of permanent negative charges. On the other hand, organic matter contributed to the increase of variable negative charges in the surface soils. The content of organic matter and the percentage of the clay fraction were essential for determining the CEC of the soils of the surface 10 and 30–40 cm depths, respectively. Under the field conditions, the composition of exchangeable cations largely reflected the soil acidity. In addition, the content of organic matter also showed a significant correlation with that of available N in the surface soils. Thus, soil acidity both in the surface soils and subsoils, organic matter content in the surface soils, and clay content in the subsoils were considered to be the main factors that affected soil chemical fertility in the area.  相似文献   

15.
Different forms of manganese (Mn) were investigated, including total, diethylenetriamine penta-acetic acid (DTPA) extractable, soil solution plus exchangeable (Mn), Mn adsorbed onto inorganic sites, Mn bound by organic sites, and Mn adsorbed onto oxide surfaces, from four soil taxonomic orders in northwestern India. The total Mn content was 200–950 mg kg?1, DTPA-extractable Mn content was 0.60–5.80 mg kg?1, soil solution plus exchangeable Mn content was 0.02–0.80 mg kg?1, Mn adsorbed onto inorganic sites was 2.46–90 mg kg?1, and Mc adsorbed onto oxide surfaces was 6.0–225.0 mg kg?1. Irrespective of the different fractions of Mn their content was generally greater in the fine-textured Alfisols and Inceptisols than in coarse-textured Entisols and Aridisols. The proportion of the Mn fractions extracted from the soil was in the order as follows: Adsorbed onto oxide surfaces > adsorbed onto inorganic site > organically bound > DTPA > soil solution + exchangeable. Based on coefficient of correlation, the soil solution plus exchangeable Mn, held onto organic site and oxide surface (amorphous) and DTPA-extractable Mn, increased with increase in organic carbon of the soil. The two forms, adsorbed onto inorganic site (crystalline) and DTPA extractable, along with organic carbon, increased with increase in clay content of the soil. DTPA-Mn and Mn adsorbed onto oxide surfaces and held on organic site decreased with increased with an increase in calcium carbonate and pH. Total Mn was strongly correlated with organic carbon and clay content of soil. Among the forms, Mn held on the organic site, water soluble + exchangeable and adsorbed onto oxide surface were positively correlated with DTPA-extractable Mn. DTPA-extractable Mn seems to be a good index of Mn availability in soils and this form is helpful for correction of Mn deficiency in the soils of the region. The uptake of Mn was greater in fine-textured Inceptisols and Alfisols than in coarse-textured Entisols and Aridisols. Among the different forms only DTPA-extractable Mn was positively correlated with total uptake of Mn. Among soil properties Mn uptake was only significantly affected by pH of the soil.  相似文献   

16.
低分子量有机酸对可变电荷土壤铝活化动力学的影响   总被引:1,自引:0,他引:1  
从动力学角度研究了几种低分子量有机酸对2种酸性土壤中铝的活化和活化铝在土壤固/液相之间分配的影响。结果表明:对于络合能力弱的醋酸和乳酸,主要通过质子作用活化铝,且活化作用明显小于盐酸。而络合能力较强的苹果酸、草酸和柠檬酸,主要通过络合作用促进铝的释放,且这种作用随有机酸根阴离子络合能力的增强而增加。在氧化铁含量较高的砖红壤中,苹果酸、草酸和柠檬酸通过专性吸附增加土壤表面负电荷,从而增加土壤交换态铝;但在氧化铁含量较低的红壤中,草酸和柠檬酸主要通过形成可溶性铝络合物降低交换态铝。活化铝在土壤固/液相间的分配主要决定于溶液中有机阴离子与土壤固相表面对铝离子的竞争。醋酸和乳酸活化的铝主要以交换态铝存在;而草酸和柠檬酸活化的铝主要以有机酸-铝络合物存在于溶液中,特别是在氧化铁低的红壤中,这将促进铝在土壤-水体中的迁移。  相似文献   

17.
Toxicity of aluminium for the earthworm Eisenia andrei was studied in artificial soil at different pH levels. In a range-finding test, effects of three different aluminium salts on earthworm survival were determined. AlCl3 appeared to be most toxic, with LC50 values of 316, 359 and >1000 mg Al/kg dry soil at pHKCl of 3.5, 4.4 and 6.7, respectively in the control soils. Effects of this salt interfered with a strong decrease of soil pH with increasing aluminium concentration. Al2(SO4)3 was less toxic with LC50 values of 457, >4000 and >4000 mg Al/kg dry soil at pH 3.24, 4.86 and 7.22, respectively. Al2O3 did not affect earthworm survival at concentrations of 5000 mg Al/kg and pH levels between 2.4 and 7.1.In the main test, earthworms were exposed for 6 weeks to soils treated with Al2(SO4)3. As in the range-finding test, aluminium sulfate was most toxic at a pH of 3.4 with an LC50 of 589 mg Al/kg dry soil. At this pH, growth and cocoon production of earthworms were significantly reduced at 320 mg Al/kg dry soil, while at 1000 mg Al/kg dry soil all earthworms died. Survival was not affected by 1000 mg Al/kg dry soil at pH 4.3 and 7.3. At pH 4.3, growth was significantly reduced at 1000 mg Al/kg dry soil and cocoon production at 320 and 1000 mg Al/kg dry soil. At pH 7.3, aluminium only affected cocoon production at the two highest exposure levels. At the highest two exposure levels at pH 7.3, growth was significantly increased, suggesting a trade-off between growth and reproduction. These effects of aluminium at the highest soil pH could not be explained from the concentration of extractable, monomeric (labile) aluminium in soil, which decreased with increasing soil pH.  相似文献   

18.
Weathering of soil minerals is a key determinant of ground and surface water quality and is also important in pedogenic and rhizosphere processes. The relative importance of biotic and abiotic studies in mineral weathering, however, is poorly understood. We investigated the impact of Picea abies seedlings, an ectomycorrhizal fungus and humic acid on the solubilization of aluminium (Al), iron (Fe) and silicon (Si) in an E horizon forest soil over 10 months. Elemental budgets were constructed based upon losses in drainage water, accumulation in plants and changes in the pools of exchangeable ions. Plants and mycorrhizas or both had a significant effect on the total amounts of Al, Fe and Si mobilized from the soil. Significantly larger amounts of Al and Fe were recovered in plants than those lost in drainage water, whereas the opposite trend was true for Si. The continual addition of dissolved organic matter to the soil in the form of humic acid had an effect only on mobilization of Fe, which increased due to larger plant uptake and an increase in the exchangeable pool. The mobilization of Fe and Si were positively correlated with hyphal length, soil respiration and concentrations of oxalate in the soil solution, and mobilization of Al was strongly correlated with plant weight. Scanning electron microscopy revealed that most fungal hyphae were associated with mineral surfaces with little occupation of cracks and micropores within mineral grains. Evidently ectomycorrhizas have important impacts on mineral dissolution and the chemistry of forest soils.  相似文献   

19.
Samples from the organic horizons of taiga podzolic soils of the Komi Republic were studied, and the possible equilibria established in the soil-KCl solution system (c = 1 mol/l) at the determination of the exchangeable acidity by the Sokolov method were examined. It was shown that the exchangeable acidity was due to aluminum(III) ions in 6% of the samples with pHKCl≤4 and due to the H+ ions formed during the dissociation of water-soluble organic acids in the other samples. A group of samples from the horizons in which Fe3+ ions could appreciably contribute to the soil acidity was discriminated.  相似文献   

20.
This experiment aimed to immobilize Cu in polluted agricultural soils via the application of agrochemicals to reduce its bioavailability to plants. A greenhouse pot experiment was established using a Cu contaminated vineyard topsoil collected from a farm in Greece. The soil was mixed with inorganic [i.e., zeolite (Z), Al‐oxide (AX), Mn‐oxide (MX), and phosphate rock (PR)] as well as organic amendments [i.e., activated charcoal (AC), commercial peat soil material (CP), and compost from olive oil processing wastes (COW)] with an application rate of 2.5% and cultivated by corn (Zea maize). After plant harvesting, Cu was measured separately in the aboveground biomass and roots, respectively, whereas the soil samples were analyzed for DTPA‐extractable and geochemical fractions of Cu (soluble + exchangeable fraction, sorbed and carbonate fraction, Fe‐/Mn‐oxides fraction, and organic fraction). The immobilizing agents, except MX, reduced the soluble plus exchangeable Cu in the treated soil. The lowest concentrations of the soluble plus exchangeable Cu occurred in the soil amended with AC followed by CP, AX, COW, PR, and Z, respectively. The amendments decreased the uptake of Cu by corn. Concentrations of Cu were between 11 and 38% lower in the above ground biomass and 19 and 48% lower in the roots than the control. The organic amendments were more effective than the inorganic additives. The AC was the most effective organic additive and AX was the most effective inorganic amendment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号