首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Archived soil samples from the beginning and end of three long‐term field trials conducted in central France were analysed for total uranium (U) and thorium (Th) contents to evaluate the effect of 15–30 yr of phosphorus (P) fertilizer treatments on the accumulation of these elements in the topsoil. For comparison, the soil samples were also analysed for total P. Three treatments were compared: no P application (P0), 26 kg P/ha/yr (P26) and 52 kg P/ha/yr (P52). Significant effects of P fertilizer were observed on U content and, to a lesser extent, on Th content as a result of the P52 treatment at two of the field trials. This effect was demonstrated both in the analyses at the end of the field trials [P52–P0: +0.25 and +0.44 mg U/kg soil, +0.58 (not significant) and +1.03 mg Th/kg soil] and when considering the changes in U and Th contents between the beginning and the end of the field trials (end–start: +0.18 and +034 mg U/kg soil, +0.35 and +0.45 mg Th/kg soil). The P fertilizer effect was also supported by the correlations of U and Th with total levels of P in the soil. However, in one of the three trials, no significant accumulation of U or Th because of fertilizer could be seen, suggesting either that less U and Th were applied using a different P fertilizer and/or that soil heterogeneity masked significant effects.  相似文献   

2.
Topsoil samples from a long‐term fertilizer trial on a red earth rice paddy from Jiangxi Province, China, were used to investigate soil organic carbon (SOC) mineralization using aerobic incubation for 58 days at 20 °C and 25 °C. SOC mineralization rates varied between 0.62 and 0.76 mg C/g SOC/h at 20 °C, and between 0.65 and 0.97 mg C/g SOC/h at 25 °C. There was no significant correlation between the mineralization potential and SOC content in treated soil samples. However, a close correlation was found between total C mineralization and the carbon stability index. This suggests that the potential C release from the soil is controlled by C lability rather than by total SOC. The calculated Q10 quotient was negatively correlated with dithionate‐citrate‐bicarbonate‐extracted Fe. It is suggested that the free Fe‐oxyhydrates that are prevalent in red earth paddy soils provide physico‐chemical protection and control biological decomposition rates under warming and these are modified in the long‐term fertilizer treatments. The enhancement of physico‐chemical protection of labile SOC by free Fe‐oxyhydrates is a potential mechanism for soil C stabilization under warming conditions. The interaction with fertilizers in the red earth‐derived paddies of South China deserves further study.  相似文献   

3.
Paddy soils in subtropical China are usually deficient in phosphorus (P) and require regular application of chemical fertilizers. This study evaluated the effects of chemical fertilizers on the distribution of soil organic carbon (SOC), total nitrogen (N) and available P, and on the activity of the associated enzymes in bulk soil and aggregates. Surface soils (0–20 cm) were collected from a 24‐yr‐old field experiment with five treatments: unfertilized control (CK), N only (N), N and potassium (NK), N and P (NP), and N, P and K (NPK). Undisturbed bulk soils were separated into >2, 1–2, 0.25–1, 0.053–0.25 and <0.053 mm aggregate classes using wet sieving. Results showed that both NP‐ and NPK‐treated soils significantly increased mean weight diameter of aggregates, SOC, available P in bulk soil and aggregates, as compared to CK. Most SOC and total N adhered to macro‐aggregates (>0.25 mm), which accounted for 64–81% of SOC and 54–82% of total N in bulk soil. The activities of invertase and acid phosphatase in the 1–2 mm fraction were the highest under NPK treatment. The highest activity of urease was observed in the <0.053 mm fraction under NP treatment. Soil organic carbon and available P were major contributors to variation of enzyme activities at the aggregate scale. In conclusion, application of NP or NPK fertilizers promoted the formation of soil aggregates, nutrient contents and activities of associated enzymes in P‐limited paddy soils, and thus enhanced soil quality.  相似文献   

4.
The long‐term measurement of soil redox potential (EH) by permanently installed Pt electrodes may be restricted by electrode breakdown (electrode rupture and resin leakage) and contamination, especially under wet and strongly reducing soil conditions. The EH of a slightly alkaline (pH 7.1 to 7.3) Calcaric Gleysol developed from marine sediment in the dyked marsh of Schleswig‐Holstein, Northern Germany, was monitored weekly during a 4‐year period using permanently installed Pt electrodes. Measurements were performed in fivefold at 10, 30, 60, 100, and 150 cm. Furthermore, water table level was recorded. Sulfide occurred in 150 cm as a heritage of the previous marine environment. Mean water table level was 84 cm below the soil surface but was characterized by both short‐term and seasonally strong fluctuations. Levels of water table ranged from 33 to >200 cm below soil surface. In consistence with water table level, the EH continually decreased with soil depth. Mean redox conditions were oxidizing at 10 (550 mV) and 30 cm (430 mV), weakly reducing at 60 cm (230 mV), and moderately reducing at 100 (120 mV) and 150 cm depth (–80 mV). Soil hydrology differed markedly during the study as expressed by periods of water saturation for each depth. This was reflected by Pt electrodes response, since period of water saturation and EH were significantly negatively correlated as calculated for each year and depth (rs = –0.971; n = 20; P < 0.01). The 60‐cm depth was most frequently influenced by water table fluctuations, showed the largest EH range (920 mV) and the most distinct seasonal pattern in EH. Good function of the electrodes in this depth can be concluded even after long time of installation in soil. Although established in a sulfide‐bearing environment, three of five electrodes at 150 cm showed a substantial increase (+500 mV) in EH during summer of the third and fourth years of investigation, which had low water tables. It is not clear whether the non‐response of two electrodes was due to electrode contamination or spatial variation in EH. When operating in reducing systems, this problem can be circumvented by installing a large number of electrodes or by a regular replacement of electrodes. Using properly constructed and permanently installed Pt electrodes, soil EH can be monitored for extended periods under wet and reducing soil conditions.  相似文献   

5.
The present study combined a physical fractionation procedure with the determination of the natural abundance of 15N to investigate the impact of organic manure and mineral fertilizer application, and fallow on changes of N associated with different soil particle size fractions. The long‐term field experiment was conducted since 1956 in Ultuna, Sweden, on an Eutric Cambisol. Nitrogen in bulk soil and in particle size fractions changed significantly since 1956. The Nt concentrations in bulk soil decreased in all treatments not receiving organic materials. Comparing the N contribution of particle‐size fractions to the total N amount revealed the following ranking: silt > clay > fine clay > fine sand > coarse sand. The relative contribution of N in silt sized particles significantly increased from low to high bulk soil N contents, whereas N in clay and fine clay fractions decreased. The C : N ratios of particle size fractions differed considerably more between treatments than C : N ratios in bulk soils. Generally, the C : N ratios decreased from coarse to fine fractions emphasizing the tendency of smaller fractions being more significant as N sink than as Corg sink. 15N abundances varied more between particle size fractions of single treatments than between bulk soil from differently treated plots. Within treatments we observed differences of up to 7.1 ‰ between particle size fractions. In most cases δ 15N values increased with decreasing particle sizes. This pattern on average was similar to changes in δ 13 C. Our results suggest that silt sized particles acted as medium‐term sink of introduced N and that 15N abundances in particle size fractions sensitively reflect changes in N status in response to soil management.  相似文献   

6.
The application of density fractionation is an established technique, but studies on short‐term dynamics of labile soil fractions are scarce. Objectives were (1) to quantify the long‐term and short‐term dynamics of soil C and N in light fraction (LFOC, LFON, ρ ≤ 2.0 g cm–3) and microbial biomass C (Cmic) in a sandy Cambisol as affected by 28 y of different fertilization and (2) to determine the incorporation of C4‐C into these labile fractions during one growing season of amaranth. The treatments were: straw incorporation plus application of mineral fertilizer (MSI) and application of farmyard manure (FYM) each at high (MSIH, FYMH, 140–150 kg N ha–1 y–1) and low (MSIL, FYML, 50–60 kg N ha–1 y–1) rates at four field replicates. For all three sampling dates in 2008 (March, May, and September), stocks of LFOC, LFON and Cmic decreased in the order FYMH > FYML > MSIH, MSIL. However, statistical significance varied markedly among the sampling dates, e.g., with LFOC being significantly different (p ≤ 0.05) in the order given above (sampling date in March), significantly different depending on the fertilizer type (May), or nonsignificant (September). The high proportion of LFOC on the stocks of soil organic C (45% to 55%) indicated the low capacity of soil‐organic‐matter stabilization on mineral surfaces in the sandy Cambisol. The incorporation of C4‐C in the LFOC during one growing season of amaranth was small in all four treatments with C4‐LFOC ranging from 2.1% to 3.0% of total LFOC in March 2009, and apparent turnover times of C3‐derived LFOC ranged from 21 to 32 y for the sandy soils studied. Overall, our study indicates that stocks of LFOC and LFON in a sandy arable soil are temporarily too variable to obtain robust significant treatment effects of fertilizer type and rate at common agricultural practices within a season, despite the use of bulked six individual cores per plot, a common number of field replicates of four, and a length of treatments (28 y) in the order of the turnover time (21–32 y) of C3‐derived LFOC.  相似文献   

7.
Changes in grain yields and soil organic carbon (SOC) from a 26 y dryland fertilization trial in Pingliang, Gansu, China, were recorded. Cumulative C inputs from straw and root and manure for fertilizer treatments were estimated. Mean wheat (Triticum aestivum L.) yields for the 18 y ranged from 1.72 t ha–1 for the unfertilized plots (CK) to 4.65 t ha–1 for the plots that received manure (M) annually with inorganic N and P fertilizers (MNP). Corn (Zea mays L.) yields for the 6 y averaged 2.43 and 5.35 t ha–1 in the same treatments. Yields declined with year except in the CK for wheat. Wheat yields for N only declined with time by 117.8 kg ha–1 y–1 that was the highest decrease among all treatments, and that for NP declined by 84.7 kg ha–1 y–1, similar to the declines of 77.4 kg ha–1 y–1 for the treatment receiving straw and N annually and P every second year (SNP). Likewise, the corn yields declined highly for all treatments, and the declined amounts ranged from 108 to 258 kg ha–1 y–1 which was much higher than in wheat. These declined yields were mostly linked to both gradual dry weather and nutrients depletion of the soil. The N only resulted in both P and K deficiency in the soil, and soil N and K negative balances in the NP and MNP were obvious. Soil organic carbon (SOC) in the 0–20 cm soil layer increased with time except in the CK and N treatments, in which SOC remained almost stable. In the MNP and M treatments, 24.7% and 24.0% of the amount of cumulative C input from organic sources remained in the soil as SOC, but 13.7% of the C input from straw and root in the SNP, suggesting manure is more effective in building soil C than straw. Across the 26 y cropping and fertilization, annual soil‐C sequestration rates ranged from 0.014 t C ha–1 y–1 for the CK to 0.372 t C ha–1 y–1 for the MNP. We found a strong linear relationship (R2 = 0.74, p = 0.025) between SOC sequestration and cumulative C input, with C conversion–to–SOC rate of 16.9%, suggesting these dryland soils have not reached an upper limit of C sequestration.  相似文献   

8.
Limiting the use of phosphorous (P) in intensive agriculture is necessary to decrease losses to surface waters. Balanced fertilizer application (P supply equals P offtake by the crop) is a first step to limit the use of P. However, it is questioned whether this balance approach is sufficient to maintain soil fertility. A long‐term field experiment (17 yr), on grazed grassland, has been conducted on sandy soil, marine clay soil and peat soil to obtain insight into the effects of balanced P fertilizer application on soil test P values and to explain the results by changes in P pools in the soil. The balance approach led to a gradual decline in plant available P, measured as P‐AL, in the topsoil (<0.10 m deep). This decline was accompanied by a decline in oxalate extractable P, dithionite extractable P and inorganic P (0.5 m H2SO4). The decline in these mineral P pools in the topsoil was (partly) compensated by an increase in the amount of organic P. There was evidence for the accumulation of P in an occluded form, especially at one of sites which received P as Gafsa rock phosphate [Ca3(PO4)2].  相似文献   

9.
《Soil Use and Management》2018,34(3):306-315
Quantifying temporal and spatial variation of soil phosphorus (P) input, output and balance across Chinese arable land is necessary for better P management strategies. Here, we address this challenge using a soil P budget to analyse the soil P balance in arable land across the whole of China, for the period 1980–2012. Results indicated that the total P input to soil increased from 22.5 kg P/ha in 1980 to 79.1 kg P/ha in 2012. However, the total P output from soil only increased from 17.9 kg P/ha in 1980 to 36.9 kg P/ha in 2012. Therefore, the average net soil P surplus in China increased from 4.6 kg P/ha in 1980 to 42.1 kg P/ha in 2012. Our research found great variation in soil P balances across different regions. Soil P balance varied between regions with the order of southeast (SE) > north central (NC) and the middle and lower reaches of Yangtze River (MLYR) > southwest (SW) > northwest (NW) > northeast (NE). Phosphorus that has accumulated in agricultural soil across China could theoretically meet crop P demands for approximately 4.8–12.0 yrs, depending on the bioavailability of P stored in soils. Increasing the return rates of manure and straw could substantially reduce the demand for fertilizer‐P. This paper represents a basis for more targeted, regionally informed P fertilizer recommendations in Chinese soils.  相似文献   

10.
The Humboldt‐University of Berlin conducts several long‐term field trials designed to assess the effects of tillage methods, crop rotations, organic fertilization, mineral nitrogen, phosphorus, and potassium fertilizers, liming, irrigation, and weather conditions. On silty sand soils shallow ploughing resulted in a distinct accumulation of soil organic matter and phosphorus in the tilled soil layer while potassium and pH values were unaffected. On average shallow ploughing increased yields, with a tendency for higher yields in spring crops and lower yields in winter cereals. Different amounts of organic and mineral fertilizers applied over 30 years resulted in a great differentiation in soil organic matter content. In the following 32 years this variation stayed more or less unchanged, but with an overall reduction in the carbon content. In variants in which phosphate and potassic fertilizers were omitted, 16 kg ha—1 P and 15 kg ha—1 K per year were still being mobilized in the soil after 60 years. In treatments with mineral fertilization, the phosphorus is nearly balanced whilst only 60 % of the potassium is withdrawn from the soil. Additional organic fertilizers, given as farm yard manure, led to a nutrient surplus of 19 kg ha—1 a—1 P and 99 kg ha—1 a—1 K. Omitted liming caused an acidification of the soil to such an extent that crop production became impossible.  相似文献   

11.
Investigations carried out at Field F3 of the Halle long‐term fertilization trials using data from 1974 to 1983 showed that with adequate supply of mineral N‐fertilizer soil organic matter (SOM) had no significant effects of yield. Similarly enhanced SOM did not justify a reduction of mineral N (Stumpe et al., 2000). The studies presented here examine the effects of the SOM differences existing after the termination of those trials in 1986 up until 1997 (then mainly differences of hardly decomposable SOM) in comparison to farmyard manuring with enhanced mineral N application (3‐factor‐experiment). As with total SOM, hardly decomposable SOM did not directly affect yields. The effects of FYM treatment observed at lower mineral‐N levels were compensated for by enhanced mineral‐N supply. The direct effect of FYM (40 t ha—1) corresponded to a mineral‐N supply of about 60 kg ha—1 and the residual effect to about 20 kg ha—1. The differences of the C‐content in the soil at the beginning of the present studies continued throughout the experimental period of 12 years. In addition, significant differentiation has been caused by FYM and N fertilization in comparison to unfertilized treatments. The major finding is that differences in SOM content do not lead to yield differences on physically good soils (chernozem‐like soils) if appropriate compensation by mineral‐N fertilization takes place.  相似文献   

12.
The soil of the long‐term experiment laid out 1949 in Halle has the potential to supply much P. The P taken up by plants where no P (P0) or 15 kg ha−1 yr−1 (P1) was applied was much greater than the P applied as fertilizer (P1). A decrease in yield was measured only after the first 25 years on P0 soils but the P1 treatment has, so far, shown no decrease. Lactate extractions of the soil did not reflect P‐uptake suitably. The release of P from insoluble into water soluble forms was at a minimum after 30 years in P0 soils. P1 soils have now also declined to this minimum value and it remains to be seen whether yields decrease in this treatment in the future. Parallel to this trend, the P sorption increased in P0 soils. The subsoil also seems to be an important source for P supply, possibly influenced by root exudates. Further work is needed to gain a better understanding of soil P dynamics in connection with root exudates and microbes and to identify parameters which will provide more reliable means of calculating fertilizer P requirements.  相似文献   

13.
Soil degradation is a serious problem and an important environmental issue in many ecosystems. Without integrative, interdisciplinary and historical approaches, understanding the effects of long‐term soil degradation is difficult. According to this idea it is hypothesized that in order to study long‐term natural and human‐induced soil degradation, it is necessary to use interdisciplinary and multidisciplinary approaches with respect to temporal and spatial landscape changes. The results of the investigation of colluvial sediments and soils in research area in Schleswig‐Holstein (Germany) with a high resolution in space and time—using the four‐dimensional landscape analysis—indicated the temporal and spatial variation of soils and sediments from the Mesolithic until Modern times. Intensive soil degradation occurred as a result of the land clearance and agricultural land use in the investigation areas since the Neolithic time. The general results of this investigation show that the use of an interdisciplinary and multidisciplinary approach with pedological and geomorphological perspectives for different times and places can help to reconstruct the long‐term natural and human‐induced soil degradation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
A long‐term fertilization experiment with monoculture corn (Zea mays L.) was established in 1980 on a clay‐loam soil (Black Soil in Chinese Soil Classification and Typic Halpudoll in USDA Soil Taxonomy) at Gongzhuling, Jilin Province, China. The experiment aimed to study the sustainability of grain‐corn production on this soil type with eight different nitrogen (N)‐, phosphorus (P)‐, and potassium (K)–mineral fertilizer combinations and three levels (0, 30, and 60 Mg ha–1 y–1) of farmyard manure (FYM). On average, FYM additions produced higher grain yields (7.78 and 8.03 Mg ha–1) compared to the FYM0 (no farmyard application) treatments (5.67 Mg ha–1). The application of N fertilizer (solely or in various combinations with P and K) in the FYM0 treatment resulted in substantial grain‐yield increases compared to the FYM0 control treatment (3.56 Mg ha–1). However, the use of NP or NK did not yield in any significant additional effect on the corn yield compared to the use of N alone. The treatments involving P, K, and PK fertilizers resulted in an average 24% increase in yield over the FYM0 control. Over all FYM treatments, the effect of fertilization on corn yield was NPK > NP = NK = N > PK = P > K = control. Farmyard‐manure additions for 25 y increased soil organic‐matter (SOM) content by 3.8 g kg–1 (13.6%) in the FYM1 treatments and by 7.8 g kg–1 (27.8%) in the FYM2 treatments, compared to a 3.2 g kg–1 decrease (11.4%) in the FYM0 treatments. Overall, the results suggest that mineral fertilizers can maintain high yields, but a combination of mineral fertilizers plus farmyard manure are needed to enhance soil organic‐matter levels in this soil type.  相似文献   

15.
The influence of 30 years of cropping with different fertilizer and farmyard manure (FYM) inputs on the contents and depth distribution of organic C, total N (Nt), soil mineralizable N, and organic and inorganic N fractions was investigated in an Eutrochrept. Continuous application of 100 %NPK(+S), 150 %NPK(+S), and 100 %NPK(+S)+FYM led to a marked increase in organic C, total N, hydrolyzable N (viz., amino acid N, hydrolyzable NH4‐N, hexose amine N, and unidentified hydrolyzable N), and nonhydrolyzable N as compared to an adjacent fallow. The contents of the various organic N fractions were largest in surface soil and thereafter decreased with the depth. However, at 30 – 45 cm depth the content of organic C was not affected by the different treatments except 100 %NPK(+S)+FYM. On the other hand, continuous cropping without fertilization resulted in a depletion of total hydrolyzable N in control over fallow by 27.2 % (0–15 cm), 19.6 % (15–30 cm), and 4.7 % (30–45 cm). The incorporation of FYM with 100 %NPK(+S) resulted in greater contents of soil mineralizable N as compared to 100 %NPK(+S) (0–15, 15–30 cm). The proportion of hydrolyzable N (57–76 % of Nt) decreased and that of nonhydrolyzable N (22–40 % of Nt) increased with depth. The proportion of amino acid N (19–26 % of Nt), hexose amine N (2.1–3.5 % of Nt) and unidentified hydrolyzable N (17–27 % of Nt) decreased with depth. All organic soil N fractions including even nonhydrolyzable N in surface and subsurface soils were highly significantly correlated with soil mineralizable N derived from incubations under waterlogged and aerobic conditions. The best correlation to mineralizable N was found for amino acid N and the least significant correlation for nonhydrolyzable N.  相似文献   

16.
A field incubation experiment was carried out to test the applicability of N‐mineralization parameters for mature bio‐waste compost for use in a simulation model. The parameters were previously obtained from a laboratory experiment. Micro‐lysimeters were used for incubation, containing four different vineyard soils that were treated with three different compost‐application rates (0, 30, and 50 Mg compost ha–1). Between 2.0% and 45.2% of total bio‐waste compost N was mineralized and leached from the micro‐lysimeters during the two‐year investigation period. The application of a simulation model for soil N dynamics revealed two major drawbacks of the model: (1) in most of the soils, extraordinary high mineralization rates were observed within a few weeks after compost amendment, which could not be explained by the model, and (2) the average compost‐N‐mineralization rates were estimated as being close to the observed rates (–6%), but distinct deviations in some cases (–46% to +29%) led to considerable miscalculations in long‐term simulations. Excluding the effect of these two processes from the data set, the remaining variance could be well explained by the model for all soils treated with compost (modeling efficiency ≥0.98). Based on the average performance, the mineralization parameters for mature bio‐waste compost are considered to be applicable for use in any simulation model based on the double‐exponential approach for calculating fertilizer recommendations, whereas the functions calculating the impact of environmental factors on N mineralization in the model need to be revised. The initial mineralization flush observed in most of the compost treatments was attributed to a priming effect. The experiment showed that such a priming effect can cause exceptionally high rates of N mineralization from mature bio‐waste compost in a viticultural environment, which exceed the potential mineralization rates known for bio‐waste compost applied to arable soils in Germany.  相似文献   

17.
Six of originally eight long‐term trials in Halle (Saale), Germany, are still continuing. Five are situated at Julius‐Kühn‐Feld, an experimental station launched by Julius Kühn in Halle in 1866. Apart from the Eternal Rye trial established in 1878, those are phosphorus, potassium, lime, and organic fertilization long‐term trials, all being launched by Karl Schmalfuß in 1949. Other long‐term trials have been terminated, but data are available on the effects of nitrogen fertilization and the physiological reaction of fertilizers. Another long‐term trial in Halle (Adam‐Kuckhoff‐Straße 17b) investigates the influence of fertilization on soil formation from loess. Up to now, the major results are as follows: 1. Changes in soil‐ecological properties due to fertilization and rotation were only evident after 30 years, and new steady states sometimes took 70 years to occur. 2. In the long term, the C‐ and N‐contents of the soil largely depend on the amount of hardly decomposable organic matter applied with organic fertilization. High mineral‐N doses, with consequent high crop and root residues, increased the humus content of the soil. 3. Mineral fertilization can replace organic fertilization in terms of sustainable yield capacity provided equal nutrient amounts were applied. 4. The high P‐supply ability of the soil in Halle could not be explained by traditional soil analysis methods of calculating plant‐available P. With some restrictions, the same is valid for K. 5. At the experimental site, soluble salts (nitrate, sulphate) accumulated in the subsoil. 6. A regular lime demand of central German chernozems could be proved, especially in case of low soil organic matter (SOM) and physiologically acid fertilization.  相似文献   

18.
A long‐term field experiment, conducted since 1962 in Gumpenstein (Austria) on a Dystric Cambisol, was used for the present investigation. We combined a physical fractionation procedure with the determination of natural abundance of 13C and FT‐IR spectroscopy to study the influence of fertilizer amendments (organic manure and mineral fertilizers) and management practices (fallow vs. cropped) on changes in organic carbon (OC) associated with different particle‐size fractions. The OC content in bulk soil decreased or was not affected by slurry+straw, PK, and NPK treatments in both fallow and cropped plots after 28 and 38 yr of treatment. However, OC in plots receiving organic manures increased depending on the quality of the organic manures applied. The ranking among the different treatments under both fallow and cropped plots was: animal manure (liquid) > animal manure (solid) > cattle slurry = slurry+straw = PK = NPK. Results showed that the two types of management practices, fallow (non‐tilled) vs. cropped (tilled) had effects on OC concentrations. Comparing the OC contribution of particle‐size fractions to the total OC amount revealed the following ranking: silt > clay > fine sand > coarse sand except in the plots receiving solid or liquid animal manure. Size fractions within treatments showed larger variations of 13C abundances than bulk samples between treatments. The natural abundances of 13C increased especially in cropped (and tilled) plots. It was shown by cluster analysis that FT‐IR spectra differentiated between the different treatments originating from different land management practices. The present study revealed that below‐ground C deposition by agricultural plants can hardly compensate the C losses due to tillage.  相似文献   

19.
长期不同施肥对土壤和玉米锌含量的影响   总被引:1,自引:2,他引:1       下载免费PDF全文
利用棕壤肥料长期定位试验,研究不同施肥处理对耕层土壤pH值、有机质、不同形态Zn和玉米茎秆、籽粒中Zn含量的影响,揭示长期施肥条件下,Zn在土壤-植物系统中的迁移规律及其影响因素。试验开始于1979年,采用玉米-玉米-大豆轮作体系,试验处理为:N1P、N1PK、N1、N2、CK、M1N1P、M1N1PK、M1N1、M1N2、M1、M2N1P、M2N1PK、M2N1、M2N2、M2,其中CK为不施肥处理,N1和N2施氮量分别为120和180kg/hm2,M1和M2施有机肥量分别为13.5和27 t/hm2。在2015年玉米收获期,采集了不同施肥处理0~20 cm耕层土壤样品,分析了土壤pH值、有机质,测定了土壤不同形态Zn和玉米籽粒、茎秆中Zn含量。与1979年原始土壤相比,绝大多数处理土壤pH值都显著降低,化肥处理降低1~2个单位,有机肥和化肥配施降低0.5~0.8个单位,单独施用有机肥pH值有所增加。不施肥处理土壤有机质、全量Zn和有效态Zn均下降,施用化肥绝大多数处理土壤有机质、全量和有效态Zn含量基本保持不变;施用有机肥处理,土壤有机质、全量和有效态Zn含量均显著增加。施用有机肥也显著增加有机结合态和交换态Zn含量。玉米籽粒和茎秆中Zn含量也表现为不施肥处理最低,施用化肥或有机肥配施化肥处理显著增加。pH值与土壤有效锌之间没有显著负相关关系,土壤有机质与有效态Zn、全Zn、籽粒以及茎秆Zn之间均呈现显著性正相关关系。经过长期耕作和施肥,土壤pH值显著下降,施用氮肥是引起土壤pH值下降的主要原因。长期不施肥土壤和植物中Zn含量下降,而施用有机肥显著增加土壤和植物中Zn含量。施用有机肥主要是通过增加土壤有机质含量,从而提高有机结合态和可交换态Zn的储量来为土壤和植物提供更多的Zn。pH值降低对土壤锌的活化作用不显著。  相似文献   

20.
This study aims to examine the effects of long‐term fertilization and cropping on some chemical and microbiological properties of the soil in a 32 y old long‐term fertility experiment at Almora (Himalayan region, India) under rainfed soybean‐wheat rotation. Continuous annual application of recommended doses of chemical fertilizer and 10 Mg ha–1 FYM on fresh‐weight basis (NPK + FYM) to soybean (Glycine max L.) sustained not only higher productivity of soybean and residual wheat (Triticum aestivum L.) crop, but also resulted in build‐up of total soil organic C (SOC), total soil N, P, and K. Concentration of SOC increased by 40% and 70% in the NPK + FYM–treated plots as compared to NPK (43.1 Mg C ha–1) and unfertilized control plots (35.5 Mg C ha–1), respectively. Average annual contribution of C input from soybean was 29% and that from wheat was 24% of the harvestable aboveground biomass yield. Annual gross C input and annual rate of total SOC enrichment from initial soil in the 0–15 cm layer were 4362 and 333 kg C ha–1, respectively, for the plots under NPK + FYM. It was observed that the soils under the unfertilized control, NK and N + FYM treatments, suffered a net annual loss of 5.1, 5.2, and 15.8 kg P ha–1, respectively, whereas the soils under NP, NPK, and NPK + FYM had net annual gains of 25.3, 18.8, and 16.4 kg P ha–1, respectively. There was net negative K balance in all the treatments ranging from 6.9 kg ha–1 y–1 in NK to 82.4 kg ha–1 y–1 in N + FYM–treated plots. The application of NPK + FYM also recorded the highest levels of soil microbial‐biomass C, soil microbial‐biomass N, populations of viable and culturable soil microbes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号