共查询到20条相似文献,搜索用时 15 毫秒
1.
《Land Degradation \u0026amp; Development》2017,28(5):1752-1762
Spatial variability of hydro‐physical properties has long been observed, whereas temporal variation is much less documented and considered in studies and applications, particularly of paddy clay soils under different cropping systems. The objective of this study was therefore to assess the seasonal‐ and inter‐seasonal variation of selected hydro‐physical properties of a paddy clay soil under different rice‐based cropping systems with contrasting tillage. In a long‐term experiment, plots were arranged in a randomized complete block design with four treatments and four replications: (i) rice–rice–rice; (ii) rice–maize–rice; (iii) rice–mung bean–rice; and (iv) rice–mung bean–maize. Soil samples were collected at three depths (0–10, 10–20 and 20–30 cm) at three times during two cropping seasons, i.e., 15 days after soil preparation (DASP), 45 DASP and 90 DASP during the winter–spring and spring–summer seasons. Results show that temporal variability of soil bulk density, macro‐porosity (MacP) and matrix‐porosity within both seasons and between seasons was limited for cropping systems with upland crop rotations, whereas within season variation was significant for rice monoculture system. Observed variation in bulk density, matrix‐porosity and MacP was mainly associated with cropping system and soil depth. Field saturated hydraulic conductivity of topsoil showed great temporal variability, both seasonal and inter‐seasonal, in correspondence with MacP (r = 0·58). These results highlight the need of depth differentiated soil sampling and time consideration when evaluating management practices on soil physical properties and modeling the hydrological behavior of paddy soil. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
2.
长江中游双季稻田不同轮作方式对土壤质量的影响 总被引:1,自引:0,他引:1
研究长江中游地区不同种植模式和秸秆还田管理下农田土壤养分、有机碳及其酶活性的变化,评估农业管理措施对土壤质量的影响,可为长江中游双季稻区农业资源高效利用及可持续发展提供理论依据。2012—2017年进行不同轮、连作长期定位试验,设置冬季休耕—双季稻,冬种紫云英—、油菜—、大蒜—和轮作(马铃薯、大蒜、油菜和紫云英年际轮作)—双季稻5个处理,在冬季作物秸秆和水稻秸秆双重还田条件下,通过运用多元方差分析、相关性分析和主成分分析等统计方法,结合南方双季稻田土壤的适宜性,筛选出最小数据集(minimum data set,MDS)中土壤质量指标并测定,最后采用模糊数学方法对双季稻区的土壤质量进行定量评价。结果表明,在长江中游双季稻区,经过6年的冬季种植合适作物并秸秆双重还田,相比冬季休闲处理,除冬季种植大蒜处理外,其他冬种处理均能有效提高稻田土壤质量10.73%~12.91%,不同冬种方式下双季稻田的土壤质量高低依次为不同冬种轮作(0.726)冬季种植油菜(0.723)冬季种植紫云英(0.712)冬季休闲(0.643)冬季种植大蒜(0.638)。由此可见,适宜的轮作方式及秸秆双重还田能显著提高双季稻土壤质量,这为南方稻田健康可持续发展提供了理论支撑。 相似文献
3.
水旱轮作制下连续秸秆覆盖对土壤理化性质和作物产量的影响 总被引:11,自引:3,他引:11
采用田间定位试验研究方法,于2008~2010连续3年研究了水旱轮作制下连续秸秆覆盖对土壤理化性质和作物产量的影响。结果表明,连续秸秆覆盖显著降低了土壤表层(05cm)容重,提高了05cm和515cm土层土壤含水量。同时连续秸秆覆盖还田还可以显著提高025cm土层土壤有机质、碱解氮、速效磷和速效钾含量。秸秆覆盖对表层(05cm)土壤养分状况的效应更明显。秸秆连续覆盖5季后,05cm土层土壤速效钾含量的增幅(7.64%~15.33%)速效磷(7.52%~10.03%)碱解氮(7.30%~8.74%)有机质(6.08%~7.53%)。秸秆覆盖还田后,可以提高作物产量。其中旱季作物(小麦、油菜)的增产效应要高于水季作物(水稻),并且随着秸秆还田年限和用量的增加,作物的增产幅度也随之提高。起主要作用的产量构成因素是小麦、水稻的有效穗数以及油菜单株角果数和每角粒数。 相似文献
4.
Kazuyuki Inubushi Miwa Yashima Shunsuke Hanazawa Akio Goto Kisho Miyamoto Tatsushi Tsuboi 《Soil Science and Plant Nutrition》2020,66(1):247-253
ABSTRACT This study aims to characterize soil chemical properties and microbial biomass, greenhouse gas production, and organic matter dynamics in upland rice field as affected by the long-term fertilizer managements in Uganda. Soil total C (TC) and N (TN) contents were in the relatively smaller range under different fertilizer treatments, even after 20 crop seasons. However, available phosphate contents showed positive correlation with average yield of upland rice. Incubation experiments were conducted under aerobic or under flooding conditions to measure CO2, methane, and nitrous oxide productions. After the incubation, soil samples were extracted to quantify nitrification rate for aerobic condition and ammonification rate for flooding condition. Soil microbial biomass carbon (MBC) and nitrogen were measured. Stable isotope ratio of 13C and 15N were also determined for the soil samples. CO2 production potential under aerobic condition was higher than the flooding condition. The qCO2 (CO2/MBC) in the treatment applied with compost tended to be higher than the other treatments. Positive correlation between nitrous oxide production and nitrification was found. The delta 13C values of the soil samples indicated that the effect of C4 plants before rice cultivation still remained, while the contribution of biological N2 fixation was little according to delta 15N values. These results indicate that soil microbial biomass in upland rice field of the long-term fertilizer experiment in Uganda was characterized with higher qCO2. Greenhouse gas production was affected by fertilizer management, while soil organic C before the long-term experiment still remained in the experiment. 相似文献
5.
A study was carried out on a silty clay loam soil (Typic Haplustept) to evaluate the effect of farmyard manure (FYM) vis‐à‐vis fertilizer and irrigation application on the soil organic C content and soil structure. The fertilizer treatments comprised of eight different combinations of N and FYM and three water regimes. The results indicated that the application of FYM and increasing N rate increased soil organic carbon (SOC) content. Addition of FYM also increased the percentage of large sized water stable aggregates (> 5 mm) and reduced the percentage of smaller size aggregates. This was reflected in an increase in the mean weight diameter (MWD) and improved soil structure. The organic carbon content in macroaggregates (> 1 mm) was greater compared to microaggregates, and it declined with decrease in size of microaggregates. This difference in organic C content between macro‐ and microaggregates was more with higher N dose and FYM treated plots. The effect of residual FYM on MWD and organic C content of the soil after wheat harvest was not significant. The effect was less in deeper layers compared to surface layers of the soil. MWD was significantly correlated with the SOC content for the top two layers. 相似文献
6.
《植物养料与土壤学杂志》2017,180(3):381-388
The aim of this research was to investigate the effect of biochar amendment on soil acidity and other physico‐chemical properties of soil in Southern Ethiopia using a field experiment of three treatments: (1) biochar made of corn cobs, (2) biochar made of chopped Lantana camara stem, and (3) biochar made of Eucalyptus globulus feedstock and a control, in which neither of the biochar was used. Each treatment had three levels of 6, 12 and 18 t ha−1. The experiment was setup with RCBD in a factorial arrangement with three replications. In this regard, a total of 36 plots (each 2 × 2 m size) were applied with three replications to the depth of 0–15cm. From these 36 plots, composite soil samples were collected to the depth of 0–30 cm and analyzed for bulk density, total porosity, pH, soil organic carbon, total nitrogen, available phosphorus, potassium, and exchangeable acidity using standard procedures before and after biochar application. Two‐way ANOVA was also used to analyze the impact of the biochars on soil acidity and other properties. For the treatments that had significant effects, a mean separation was made using Least Significance Difference (LSD) test. The results showed the application of biochar significantly reduced, soil bulk density and exchangeable acidity when compared with a control (p < 0.05). Moreover, the total soil porosity, soil pH, total nitrogen, soil organic carbon, available phosphorus, and potassium were significantly increased in the soil. From among applied biochar treatments, Lantana camara applied at the level of 18 t ha−1 had a higher impact in changing soil physico‐chemical properties. In general, the study suggests that the soil acidity can be reduced by applying biochar as it can amend other soil physico‐chemical properties. 相似文献
7.
A long-term fertiliztion experiment was carried out in an experimental field in Lyczyn near Warsaw,Poland.Application ofmineral fertilizers ,especially Nfertilizer with and without farmyard manure accel-erated the eacidification process of the soil.Application of 1.6 t CaO ha^-1 every four years was essential to maintenance of the soil pHKCl at 5.5-6.6 and base saturation degree above 60% Application of 50 t farmyard manur ha^-1 every 4 years,whih contained 46 kg P and 240 kg K,was sufficient to maintain boh the K and P fertility of the soil.Besides,it was beneficial to alleviating soil acidifcation. As a result of long-term unbalanced fertilization,yield responses to N,P and K fertilizers incereased significantly with time.the efficiency of N from farmyard manure was found to be comparable to that of N fertilizer during 1988-1991. 相似文献
8.
对大庆地区具有代表性的温室进行调查研究,了解不同种植年限对番茄温室土壤微生物及土壤理化性状的影响,为解决温室土壤连作障碍问题奠定理论依据。结果表明,随着种植年限增加,细菌、真菌的数量及土壤速效钾、有效磷、碱解氮、有机质、盐分的含量呈增加趋势,种植年限为10年分别是对照(露地菜田)的2.14、1.33、2.18、2.09、1.96、2.86、9.5倍,土壤p H值相反,种植年限为10年比对照下降了0.64,但放线菌数量与B/F值[(细菌+放线菌)/真菌]在第5年与第7年达到最高,呈现先增高再降低的趋势,分别比对照增加了34.12%、44.26%;随着土壤深度的增加,土壤微生物数量及土壤速效钾、有效磷、碱解氮、有机质、盐分含量降低,土壤含水量、p H值增加。综合分析番茄连作对土壤微生物和土壤理化性状的影响,番茄连作6年后出现一定程度的连作障碍问题。 相似文献
9.
试验研究了土壤调理剂对土壤结构性质和甘蓝根系活力、光合指标的影响.结果表明,施用调理剂后,处理两次、处理一次分别使20 cm和30 cm土层的容重下降7.3%、1.9%和4.6%、1.3%,孔隙度分别提高9.3%、2.8%和5.9%、1.9%;与对照相比,处理两次后的阳离子交换量在0~27 cm、27~45 cm土层分别增加5.7%和10.9%;甘蓝的根系活力,处理与对照相比达到1%的显著差异水平;改变了Pn的光合日变化曲线,提高了甘蓝对光强的适应能力,光合能力加强. 相似文献
10.
热带地区不同香蕉长期轮作体系对土壤微生物和生物化学性质的影响 总被引:2,自引:0,他引:2
Soil microbiological and biochemical properties under various field crop rotations such as grains, pastures and vegetables have been studied intensively under short-term period. However, there is limited information about the influence of banana-based rotations on soil organic C, total N(TN), microbial biomasses and enzyme activities under long-term crop rotations. A field experiment arranged in a randomized complete block design with three replicates was carried out at the Wanzhong Farm in Ledong(18?37′–18?38′N, 108?46′–108?48′E), Hainan Province, China, to compare the responses of these soil parameters to long-term(10-year) banana(Musa paradisiaca)-pineapple(Ananas) rotation(AB), banana-papaya(Carica) rotation(BB) and banana monoculture(CK) in a conventional tillage system in the Hainan Island. Soil p H, total organic C(TOC), dissolved organic C(DOC), TN, total P(TP) and available P(AP) were found to be significantly higher(P 0.01) in AB and BB than CK at 0–30 cm soil depth. Microbial biomass C(MBC) and N(MBN) were observed 18.0%–35.2% higher in AB and 8.6%–40.5% higher in BB than CK at 0–30 cm. The activities of urease(UA), invertase(IA), dehydrogenase(DA) and acid phosphatase(APA) showed a mean of 21.5%–59.6% increase in AB and 26.7%–66.1% increase in BB compared with CK at 0–30 cm. Higher p H, TOC and DOC at 0–10 and 10–20 cm than at 20–30 cm were obtained despite of the rotations. Soil MBC and MBN and activities of UA, IA and DA decreased markedly(P 0.01) with increasing soil depth in the different rotation soils as well as the monoculture soil. In general, soil microbial biomass and enzymatic activities were more sensitive to changes in banana-based rotations than soil chemical properties, and consequently they were well-established as early indicators of changes due to crop rotations in the tropics. 相似文献
11.
《Soil Use and Management》2018,34(2):216-218
Relationships between the duration (in years) of practice and soil (0–30‐cm layer) chemical properties of 189 upland fields under organic farming in Japan were investigated. Electrical conductivity and available phosphorus (P), nitrate nitrogen (NO 3‐N), Cl− and sulphate sulphur (SO 4‐S) decreased and became constant with increasing duration of practice. This was probably because of the absence of mineral fertilizers and the reduced use of animal‐based fertilizers as the duration of organic farming increased. 相似文献
12.
Exploring the spatial relations between cereal yield and soil chemical properties and the implications for sampling 总被引:1,自引:0,他引:1
Abstract. In general, agricultural management has focused on differences between fields or on the gross differences within them. Recent developments in agricultural technology, yield mapping, Global Positioning Systems and variable rate applications, have made it possible to consider managing the considerable variation in soil and other properties within fields. This system is known as precision agriculture. More precise management of fields depends on a better understanding of the factors that affect crop input decisions. This paper examines the spatial variation in crop yield, soil nutrient status and soil pH within two agricultural fields using geostatistics. The observed properties vary considerably within each field. The relation between yield and the measured soil properties appears to be weak in general. However, the range of spatial correlation for yield, shown by the variogram, is similar to that of the soil chemical properties. In addition the latter changed little over two years. This suggests that information on the scale of variation of soil chemical properties can be derived from yield maps, which can also be used as a guide to a suitable sampling interval for soil properties. 相似文献
13.
Fatih M. Kiziloglu Metin Turan Ustun Sahin Ilker Angin Omer Anapali Mustafa Okuroglu 《植物养料与土壤学杂志》2007,170(1):166-172
The use of wastewater for irrigation is increasingly being considered as a technical solution to minimize soil degradation and to restore nutrient contents of soils. The aim of this study is to increase fertility and minimize degradation of soils irrigated with wastewater exposed to different purification treatments. A field experiment was conducted to investigate the effects of control and irrigation with wastewater, which had undergone different purification treatments, on macro‐ and micronutrient distribution within the soil profile and nutrient contents of cabbage (Brassica olerecea var. Capitate cv. Yalova‐1) in Erzurum, Turkey. Wastewater irrigation and preliminary treatment–wastewater irrigation significantly affected soil chemical properties especially at 0–30 cm soil depth and plant nutrient contents after one year. Application of wastewater increased soil salinity, organic matter, exchangeable Na, K, Ca, Mg, plant‐available P, and micro‐elements and decreased soil pH. Wastewater increased also yield and N, P, K, Fe, Mn, Zn, Cu, B, and Mo contents of cabbage plants. Undesirable side effects were not observed in plant heavy‐metal contents, due to salinity and toxic concentrations of metals from the application of wastewater to soil. 相似文献
14.
Noriko Iwashima Tsugiyuki Masunaga Reiji Fujimaki Ayu Toyota Ichiro Tayasu Tsutom Hiura 《Soil Science and Plant Nutrition》2013,59(6):783-792
Soil chemical properties were investigated under four types of forest to evaluate the effect of replacement of tree species on soil chemical properties in the north of Japan. Two sites had undergone a vegetation switch around 1960 from broadleaved to coniferous trees (BC) and coniferous to broadleaved trees (CB), while the other two sites had had no vegetation change and carried broadleaved trees (BB) and coniferous trees (CC). Soil samples from the four sites were analyzed for pH (water, H2O), electrical conductivity (EC), total carbon (C) and nitrogen (N) content, exchangeable cations [Ex. calcium (Ca), magnesium (Mg), potassium (K) and sodium (Na)], inorganic nitrogen (Inorg-N), nitrogen mineralization potential, total phosphorus (P), and available phosphate. Most of the soil chemical properties in both the upper (0–5?cm) and lower (5–10?cm) layers at the BC site had lower values than those at the BB site. Values of soil chemical properties in the upper and lower soil layers were similar at the BC and CC sites. pH, Inorg-N, EC, Ex.Ca and Ex.Mg in the upper layer at the CB site were significantly higher than those at CC site, whereas all soil properties at the CB site except for Inorg-N were similar to those at the BB site. In the lower layer at the CB site, values of soil chemical properties except for the C/N ratio were almost the same as those at the CC site, but lower than those at the BB site. The upper soil layer at sites where a vegetation switch had occurred was affected by the current tree species, whereas in the lower soil layer, the effects differed between the different vegetation switch patterns. At the CB site, where the vegetation switch was from coniferous to broadleaved trees, the soil chemical properties in the lower layer remained similar to those at the coniferous site (CC) 50 years after the vegetation switch, while changes in soil properties have occurred following the switch from broadleaved to coniferous trees. The change in soil nutrient content by vegetation switch was considerably affected by change in not only litter quality but also composition of earthworm community. In particular, a combination of epigeic and endogeic earthworms exhibited important roles for nutrient dynamics to the deeper soil layer. 相似文献
15.
The effects of fertilization on the distributions of organic carbon (OC) and nitrogen (N) in soil aggregates and whether these effects vary with cropping system have not been well addressed.Such information is important for understanding the sequestration of OC and N in agricultural soils.In this study,the distributions of OC and N associated with soil aggregates were analyzed in different fertilization treatments in a continuous winter wheat cropping system and a legume-grain rotation system in a 27-year field experiment,to understand the effects of long-term fertilization on the distributions of OC and N in aggregates and to examine the recovery of soil OC and N in a highland agroecosystem.Manure fertilizer significantly decreased soil bulk density but increased the amount of coarse fractions and their associated OC and N stocks in the soils of both systems.Fertilizers N + phosphorus (P) and manure had similar effects on total soil OC and N stocks in both systems,but had larger effects on the OC and N stocks in > 2 mm aggregates in the legume-grain rotation system than in the continuous winter wheat system.The application of P increased the OC and N stocks in > 2 mm aggregates and decreased the loss of N from chemical fertilizers in the legume-grain rotation system.The results from this study suggested that P fertilizer should be applied for legume-included cropping systems and that manure with or without chemical fertilizers should be applied for semiarid cropping systems in order to enhance OC and N accumulation in soils. 相似文献
16.
Mehdi Nourzadeh Mohammad Hossein Mahdian Mohammad Jafar Malakouti Kazem Khavazi 《Archives of Agronomy and Soil Science》2013,59(5):461-475
Determination of the chemical characteristics of soil for balanced fertilization on large scales is an important factor in achieving a precision agriculture. Laboratory analyses of soil properties are usually expensive and time consuming. Surmounting these problems is possible using geostatistics. Therefore, this research aims at selecting a proper interpolation method using 213 soil samples for alfalfa farmland in Hamadan Province, Iran. Various factors such as pH, EC, , , K, P, Fe, Zn, B and Co were measured. Ordinary kriging and co-kriging were assessed to derive maps of soil physico-chemical properties, using mean absolute error (MAE), mean bias error (MBE), root mean squared error (RMSE) and average kriging standard error (AKSE) as statistical criteria. Variography analysis indicated that the ranges of influence for pH, EC, , , K, P, Zn, Fe, B and Co were 65, 55, 78, 79, 75, 60, 50, 65, 70 and 30 km, respectively, and the measuring error varied between 0.366 and 0.843. The results revealed that, based on precision criteria, co-kriging was the best method for interpolating the chemical properties of soil. Finally, using to the co-kriging for each determined variable, a related zoning map for fertility management of the study area was prepared. 相似文献
17.
Influence of selected soil properties,soil management practices and socio‐economic variables on relative weed density in a hand hoe‐based conservation agriculture system 下载免费PDF全文
Z. Mavunganidze I. C. Madakadze J. Nyamangara P. Mafongoya 《Soil Use and Management》2016,32(3):433-445
Weeds are problematic to the smallholder farmers, who practise conservation agriculture (CA) in sub‐Saharan Africa, owing to an apparent lack of appropriate weed management strategies. We investigated weed dynamics under the planting basin (PB) system (hand hoe‐based CA) to assist the design of appropriate weed management options. On‐farm experiments were conducted under semi‐arid conditions in Zimbabwe to determine the effects of 11 selected soil properties, four socio‐economic variables and two soil management practices on relative weed density. Weed counts were made according to species at 3, 6 and 9 weeks after crop emergence. Multivariate ordination techniques and a quadratic model, developed with partial least squares, showed that Richardia scabra increased with sand content in the soil. Density of R. scabra and Melinis repens also increased with topsoil potassium content. When ranked according to importance, relative weed density was most dependent on sand content followed by topsoil potassium, nitrate, clay and silt content, and training related to crop production. Soil physico‐chemical properties, therefore, had greater influence on relative weed density than socio‐economic variables and soil management practices. We concluded that variability in weed density under the PB system was not necessarily determined by tillage alone, but was also a consequence of soil properties and to a lesser extent of socio‐economic variables and soil management practices. Understanding soil properties and management practices, which determine weed variability, helps in the design of general weed management recommendations that can be used by smallholders, most of whom do not have access to field‐specific advice. 相似文献
18.
通过对新疆玛纳斯县盐渍化土壤三个不同尺度(间距分别为50m、5m及0.5m)的284个样点取样分析测定,采用经典统计学、空间自相关、地质统计学和分形理论对土壤斥水性与理化性质进行空间格局分析。结果表明:1)土壤斥水性和pH符合正态分布,其余土壤属性符合对数正态分布。三尺度下土壤各属性绝大多数表现为中等变异水平。2)三尺度下土壤各属性的Moran’s I系数变化具有相似性,在-0.8~0.6范围内波动。3)三尺度下土壤各属性的半方差函数理论模型大多数能用球状模型来拟合。4)在一定范围内,土壤各属性具有一定的分形特征,分形维数变化幅度为1.75~1.96。分析表明不同尺度下土壤斥水性与理化性质具有一定的差异。 相似文献
19.
Stefanie Heinze Michael Vohland Rainer Georg Joergensen Bernard Ludwig 《植物养料与土壤学杂志》2013,176(4):520-528
The prediction accuracy of visible and near‐infrared (Vis‐NIR) spectroscopy for soil chemical and biological parameters has been variable and the reasons for this are not completely understood. Objectives were (1) to explore the predictability of a series of chemical and biological properties for three different soil populations and—based on these heterogeneous data sets—(2) to analyze possible predictive mechanisms statistically. A number of 422 samples from three arable soils in Germany (a sandy Haplic Cambisol and two silty Haplic Luvisols) of different long‐term experiments were sampled, their chemical and biological properties determined and their reflectance spectra in the Vis‐NIR region recorded after shock‐freezing followed by freeze‐drying. Cross‐validation was carried out for the entire population as well as for each population from the respective sites. For the entire population, excellent prediction accuracies were found for the contents of soil organic C (SOC) and total P. The contents of total N and microbial biomass C and pH were predicted with good accuracy. However, prediction accuracy for the other properties was less: content of total S was predicted approximately quantitatively, whereas Vis‐NIR spectroscopy could only differentiate between high and low values for the contents of microbial N, ergosterol, and the ratio of ergosterol to microbial biomass C. Contents of microbial biomass P and S, basal respiration, and qCO2 could not be predicted. Prediction accuracies were greatest for the entire population and the Luvisol at Garte, followed by the Luvisol at Hohes Feld, whereas the accuracy for the sandy Cambisol was poor. The poor accuracy for the sandy Cambisol may have been due to only smaller correlations between the measured properties and the SOC content compared to the Luvisols or due to a general poor prediction performance for sandy soils. Another reason for the poor accuracy may have been the smaller range of contents in the sandy soil. Overall, the data indicated that the accuracy of predictions of soil properties depends largely on the population investigated. For the entire population, the usefulness of Vis‐NIR for the number of chemical and biological soil properties was evident by markedly greater correlation coefficients (measured against Vis‐NIR predicted) compared to the Pearson correlation coefficients of the measured properties against the SOC content. However, the cross‐validation results are valid only for the closed population used in this study. 相似文献
20.
Feng Jing Xiaomin Chen Xin Wen Wei Liu Shimin Hu Zhijiang Yang Bilin Guo Yao Luo Qingxin Yu Yanling Xu 《Soil Use and Management》2020,36(2):320-327
This study focused on the effects of biochar (BC) application on soil chemical properties and mobilization of cadmium (Cd) and lead (Pb) in the paddy soil. BC was applied at the rate of 0, 10, 20 and 40 t ha−1, respectively. BC application caused a significant increase in soil organic carbon contents (SOC), pH, nitrate–nitrogen (-N),and available phosphorus contents (AP) in the top and subsurface soil, while SOC contents in the subsurface soil decreased with increasing rate of BC. BC40 effectively reduced the mobility of Cd and Pb from the top layer to the subsurface soil, while concentrations of Cd and Pb in the topsoil remained unchanged. Path analysis showed that the direct path coefficient AP was highest; SOC, -N and AP had a negative direct effect on the Cd and Pb in subsurface soil. Soil pH and -N had a high negative indirect effect through AP. The decision coefficient decreased in the following order: pH, AP, SOC, -N and -N. Regression analysis showed that soil Cd and Pb had a significant linear correlation with soil AP, whereas soil Pb also had a significant linear correlation with soil pH. In conclusion, BC40 can alter soil chemical properties and reduce the mobility of Cd and Pb from the top layer to the lower subsurface of the paddy soil. 相似文献