首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
2.
Measurements are reported of soil organic carbon content, dry bulk density, water retention characteristics, and saturated hydraulic conductivity of a sandy loam soil with two different crop rotations and two levels of fertilization. The water retention characteristics were fitted to the van Genuchten equation. Values of unsaturated hydraulic conductivity were estimated by calculation. It was found that crop rotation has much larger effects on these soil physical properties than fertilization. Water retention and hydraulic conductivity are greater when mustard, and clover with grass are included in the crop rotation, but only at water contents greater than 0,10 and 0, 13 kg kg?1respectívely.  相似文献   

3.
    
The effects of tillage treatment and axle load resulting from wheeled traffic on tilled soil (0 to 20 cm) were evaluated by measuring the changes in soil physical properties (bulk density and infiltration rate) and by measuring the impact on water retention in comparison with controlled plots. Data obtained from the experimental plots showed that infiltration rate was strongly affected by tillage treatments in 0‐ to 20‐cm depths. Dry bulk density was affected in 0‐ to 20‐cm depths by tillage treatments and axle load. Tillage system changed the ability of the soils to hold moisture and decreased the plant‐available water capacity.  相似文献   

4.
To explore the effects of long-term organic and mineral fertilization practices on the physical properties in Ultisol of south China, a study was conducted since 1998 to investigate the effects of a control (CK), application of chemical fertilizers (NPK), application of organic manure (OM), and NPK fertilizer plus straw returning (NPK + straw). Results showed that OM significantly increased soil water retention capacity at all tensions but with larger increment in low tension at depths of 0–10 cm and 10–20 cm (p < 0.05) when compared with the CK. On the contrary, NPK and NPK + straw led to a decrease in soil water retention capacity under chemical treatments. In the field both in wet and dry periods, soil water content was significantly higher in OM than in NPK + straw and NPK (p < 0.05) since soil hydraulic conductivity (saturated and unsaturated) are lower in OM than in other treatments (p < 0.05). OM was also found to have the lowest soil bulk density and penetration resistance of the four treatments. A high negative correlation was observed between the soil organic carbon and the bulk density and the penetration resistance (p < 0.01). In this way, the application of OM improved the clayey soil physical properties.  相似文献   

5.
    
This study investigated the extent of soil damage caused by field traffic associated with different levels of soil moisture deficit (SMD). The hybrid SMD model was used for computing temporal patterns of SMD which can be accurately predicted for a range of soil types in Ireland. The aim of this study was to determine SMD threshold limits to trafficability for incorporation into a decision support system for safe slurry spreading. A tractor and a fully loaded single‐axle slurry tanker (total weight ca. 18 tonnes) were driven over well, moderate and poorly drained soils at SMD values of 0, 5, 10 and 20 mm during drying phases. The change in soil bulk density (SBD) was used as an indicator of soil compaction, and rut profile measurements were taken to determine soil deformation indicative of surface damage. The effect of traffic on the grass crop was determined by measuring dry matter yield at 30 and 60 days posttraffic in the wheel‐rut and nontrafficked area. Results showed that the SMD at the time of traffic had a significant (P < 0.05) effect on the magnitude of the changes in SBD on soils of different drainage status, and on rut dimensions following traffic. DMY was significantly (P < 0.05) reduced on the wheeled compared with the nonwheeled soil. No differences in the magnitude of DMY loss were identified between the sites having different drainage status. An SMD value of 10 mm was suggested as an SMD threshold for trafficability for safe slurry spreading purposes.  相似文献   

6.
    
Detailed information on the profile distributions of agronomically important soil properties in the planting season can be used as criteria to select the best soil tillage practices. Soil cores (0–60 cm) were collected in May, 2012 (before soybean planting), from soil transects on a 30‐yr tillage experiment, including no‐tillage (NT), ridge tillage (RT) and mouldboard plough (MP) on a Brookston clay loam soil (mesic Typic Argiaquoll). Soil cores were taken every 19 cm across three corn rows and these were used to investigate the lateral and vertical profile characteristics of soil organic carbon (SOC), pH, electrical conductivity (EC), soil volumetric water content (SWC), bulk density (BD), and penetration resistance (PR). Compared to NT and MP, the RT system resulted in greater spatial heterogeneity of soil properties across the transect. Average SOC concentrations in the top 10 cm layer were significantly greater in RT than in NT and MP (= 0.05). NT soil contained between 0.8 and 2.5% (vol/vol) more water in the top 0–30 cm than RT and MP, respectively. MP soil had lower PR and BD in the plough layer compared to NT and RT soils, with both soil properties increasing sharply with depth in MP. The RT had lower PR relative to NT in the upper 35 cm of soil on the crop rows. Overall, RT was a superior conservation tillage option than NT in this clay loam soil; however, MP had the most favourable soil conditions in upper soil layers for early crop development across all treatments.  相似文献   

7.
    
Soil physical quality (SPQ) assessment is an important part in the evaluation of soil use, management, and conservation. It can be assessed using several physical properties, hydraulic indices, and functions. Soils from tropical and temperate regions represent different physical behaviors, and the quantification of their physical properties is important to support soil evaluation and modelling. The objective of this study was to evaluate the SPQ in a subtropical field under maize crop cultivation according to its physical properties, hydraulic indices, and functions in an attempt to infer the spatial variability and to determine the behavior of soil physical structure across a spatial domain. Commonly used soil key physical variables, such as texture, bulk density, total porosity, saturated hydraulic conductivity, and organic carbon content, were measured in a regular grid with a soil sampling density of 30 points per hectare, covering an area of 0.5 ha. Saturated hydraulic conductivity varied strongly between subsamples and in the field, suggesting the heterogeneity of the soil structure regarding water drainage. The physical variables were combined with other indicators, which were based on the soil water retention curve and the pore size distribution (PSD) function. Correlation analysis was performed to verify the relationship between the measured and calculated variables, and some strong linear correlations were revealed, such as between aeration energy index and microporosity (r = 0.608) and water retention energy index with microporosity (r = 0.532) and with bulk density (r = 0.541). For most sampled locations, the shape and location parameters of PSD showed results outside of the optimum ranges, whereas the hydraulic energy indices and cumulative hydraulic energy functions presented values that were similar to those found for some tropical soils described in the literature. The spatial variability of these indices was described using semivariograms and kriged maps, indicating the variability of the SPQ in this field.  相似文献   

8.
    
Both capacitive indicators derived from the water retention curve and dynamic measurements of the flow‐weighted mean pore radius, R0, were used to assess the soil physical quality of two agricultural areas (cropland and olive orchard) and two natural areas (grassland and managed woodlot plantation) potentially subject to soil degradation. The overall idea of the study was to investigate whether a dynamic indicator quantitatively derived from hydraulic conductivity measurements could be used to supplement the traditionally applied capacitive indicators retrieved from water retention measurements. According to the available criteria, only the surface layer of the cropland site showed optimal soil physical quality. In the grassland and woodlot sites, the physical quality was deteriorated also as a consequence of compaction because of grazing. Overall, the physical quality was better in tilled than nontilled soils. The optimal soil in terms of capacitive indicators had hydraulic conductivity close to saturation that was intermediate among the different land uses, and it remained 1·3–1·9 times higher than that observed in the natural sites even when the largest pores emptied. A depth effect on R0 was observed only when larger macropores were activated. It was suggested that water transmission parameters are more affected by changes in large pore domain. The plant available water content and Dexter's S‐index showed inverse statistically significant regressions with R0. The empirical relationships were physically convincing given that, at increasing R0, the contribution of macropores increases, water is transmitted faster below the root zone and the soil's ability to store water is reduced. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
    
The objective of this study was to investigate the effects of the long‐term addition of three compost types (vegetable, fruit and yard waste compost – VFYW, garden waste compost – GW and spent mushroom compost – SM) on the physical properties of a sandy soil and to quantify any such effects using indicators of soil physical quality. Soil samples were taken from a field with annual compost applications of 30 m3/ha for 10 yr and various physico‐chemical analyses were undertaken. Results show a significant increase in soil organic carbon (21%) with the VFYW and GW compost types. With SM, soil organic carbon increased by 16%. Increased soil macroporosity and water content at saturation with a corresponding decrease in bulk density were observed for all compost types. However, quantification of these improvements using existing soil physical quality indicators such as the ‘S‐index’, soil air capacity and matrix porosity gave mixed results showing that these indices perform poorly when applied to sandy soils. It is concluded that the long‐term application of compost does not significantly improve the physical properties of sandy soils, but the absence of adverse effects suggests that these soils are a viable disposal option for these composts, but new indices of quality are needed for the proper characterization of sandy soils.  相似文献   

10.
    
This study on soil quality parameters was conducted from December 2008 to July 2010 to see the short-term impacts of gray water irrigation on physical and chemical properties of soil. The results envisaged slight positive impacts of wastewater irrigation on upper soil layers (0–30 cm) with an increase in soil organic matter (SOM) from 1.45% to 1.89% and nutrient content increases from 199 to 267 kg ha?1 nitrogen (N), from 12.4 to 27.1 kg ha?1 phosphorus (P), and from 131 to 136 kg ha?1 potassium (K). Slight changes were also recorded in the soil pH and electrical conductivity (EC), which increased from 6.39 to 6.81 and 145 to 229 μS cm?1 respectively, in the upper soil layers. The soil bulk density (BD) slightly decreased to 1.34 g cm3 in the treatment plot from 1.45 g cm3 at the commencement of the trial, which indicates good soil conditioning under the gray water irrigation trial.  相似文献   

11.
土壤容重和温度对时域反射仪测定土壤水分的影响   总被引:13,自引:2,他引:13       下载免费PDF全文
土壤含量(θV)与电磁波在插入土壤的时域反射仪(TDR)探针中传播时间(T)的半理论,半经验标定曲线θV=(T/Tα-TS/Tα)/(K^0.5W-1)通常用于计算土壤含水量。本项试验应用TDR测定了不同质地及不同容重条件下烘干土壤的TS/Ta值。结果表明,四种被测土壤的Ts/Ta值介于1.61 ̄1.80,且土壤容重大,Ts/Ta值也大,三种农业土壤的Ts/Ta平均值可取1.68。用烘干至饱和含水  相似文献   

12.
通过对土壤的物理性质和水分特征曲线的测定,分析了刚察县4种植被类型土壤的持水性能和供水性能。结果表明,不同植被类型土壤水分特征曲线与Van Genuchten模型非常符合,R2值都高达0.99以上,说明用Van Genuchten模型描述不同类型土壤水分数量和能量之间的关系是比较准确的。不同植被类型土壤的物理性黏粒含量为:油菜地>高草地>草灌地,土壤容重为:高草地>草灌地>油菜地,而总孔隙度为:油菜地>草灌地>高草地,表明油菜地土壤水分物理性质明显优于草灌地和高草地。土壤持水能力随着土壤吸力的增加而呈现先急剧递减后变化平缓的趋势,不同植被类型土壤持水能力为:高草地>草灌地>油菜地。通过改善土壤结构,增加土壤密度和降低土壤总孔隙度等改善土壤物理性质的措施能对其持水性能产生积极作用。土壤供水能力随着土壤吸力的增加而递减,低吸力段高草地和稠密草灌地的土壤供水性能均优于油菜地和稀疏草灌地,而高吸力段油菜地和稠密草灌地的土壤供水性能优于高草地和稀疏草灌地,表明高草地和稀疏草灌地植被极易受到干旱的威胁。  相似文献   

13.
生物质炭对旱作农田土壤持水特性的影响   总被引:1,自引:3,他引:1  
为确定添加生物质炭对旱作农田土壤持水特性的影响,在隆中黄土高原典型旱作农田区设置相关定位试验,对不同生物质炭输入水平的土壤容重、土壤孔隙度、土壤水分常数及土壤水分特征曲线进行测定。结果表明,生物质炭的添加能够减小土壤容重,增加土壤孔隙度。随着生物质炭输入水平的增加,土壤容重的减小及土壤孔隙度的增加幅度加大。生物质炭达到50t/hm~2时土壤结构变化最为明显,0—5,5—10,10—30cm土层中土壤容重相比对照分别减小7.01%,9.91%,16.60%,土壤毛管孔隙度分别增加19.47%,21.02%,29.94%;并且生物质炭的施入可以增加土壤饱和含水量、土壤田间持水量、土壤有效水分含量。随着生物质炭输入水平的不断加大,各水分常数呈现出上升趋势,但当生物质炭输入水平达到40t/hm~2后涨幅空间开始减小。说明生物质炭的添加能够提高旱作农田的持水性能,但输入水平达到40t/hm~2后,土壤持水性能趋于稳定。  相似文献   

14.
Saturated hydraulic conductivity (Ksat) is regarded as a key soil physical variable to determine soil infiltration rate, percolation depth and other hydrological processes. The purpose of this study was to determine the best soil sampling’s ring size for measuring Ksat. For this purpose, 25 rings with five different diameters (2, 3, 4, 5 and 6 inch) and with the same depth of 20 cm (five replicates) were hammered in close vicinity to each other into the ground of undisturbed loess deposits of a small farm to measure Ksat and bulk density. Hydraulic conductivity was measured at three constant loads of 22, 27 and 32 cm. The results showed that the ring with the internal diameter of 6 inches had the minimum variation coefficient and maximum Ksat for all the three hydraulic heads. In addition, the bulk density of this ring size was less than the other rings.  相似文献   

15.
    
The objective of this study was to determine 13‐year management effects on soil properties between a corn–soybean (Zea mays–Glycine max) cropping system (CSRS) and vegetable production systems (VPS) on a soil in central Ohio. Three treatments included in the VPS were: (1) addition of wood chips, (2) permanent raised beds (PRB) with black polyethylene film (20 μm thick), and (3) bare soil surface (BSS). Additionally, (4) animal manure was applied in all CSRS and VPS treatments except for the wood chips (WCP) added plot in the VPS. Research data from the study show that relatively more soil organic carbon (SOC) stock in the 0–20 cm soil depth of the BSS treatment (100.6 Mg ha?1) was primarily due to differences in the type of soil amendments applied. For example, composted poultry manure was applied in the BSS and PRB plots, compared with input of fresh dairy manure mixed with straw being applied in the CSRS. Furthermore, soil management practices that aided in avoiding or reducing soil compaction (i.e., PRB or application of WCP in the surface) resulted in the overall improvement in soil structure and water retention, compared with that under chisel and disc ploughing done in the CSRS. The highest plant available water capacity (1.79 cm) was observed in the CSRS compared with 0.97 cm under BSS and PRB plots. These trends suggest that the type and amount of animal manure is critical to increasing SOC stocks in intensively cultivated VPS and CSRS in central Ohio, while also improving soil structure and water retention.  相似文献   

16.
在甘肃省河西内陆灌区的制种玉米田,采用田间试验方法,研究了保水型专用肥对土壤物理性质和蓄水量的影响及制种玉米田最佳施肥量。结果表明,影响玉米产量的因素由大到小依次为:CO(NH2)2>(NH4)2HPO4>糠醛渣>保水剂>ZnSO4·7H2O;因素间最佳组合为:CO(NH2)2600kg/hm2,(NH4)2HPO4350kg/hm2,ZnSO4·7H2O 30kg/hm2,保水剂19.98kg/hm2,糠醛渣15 000kg/hm2。保水型专用肥施肥量与玉米制种田容重呈负相关关系,与孔隙度、蓄水量、玉米植物学性质和经济性状呈正相关关系。随着保水型专用肥施用量梯度的增加,玉米穗粒数、穗粒重、百粒重、产量在增加,但边际产量、边际利润表现为递减,保水型专用肥施用量在10.00t/hm2的基础上再增加2.50t/hm2,收益出现负值。经回归统计分析,保水型专用肥施用量与玉米产量可用一元二次方程拟合,经济效益最佳施肥量为9.99t/hm2,玉米的理论产量为6 715.33kg/hm2。  相似文献   

17.
    
Soil compaction affects physical soil condition, in particular aeration, soil strength, and water availability and has adverse effects on plant growth. Bulk density is the most frequently used indicator to describe the state of compaction of a soil. However, this parameter lacks a direct functional relationship with plant growth. Various indicators have been proposed to simultaneously characterize the state of compaction of agricultural soil and its suitability for plant growth. This paper examines and compares the critical limits for crop plant growth based on three of these indicators: packing density, least limiting water range, and S parameter (the latter is the slope of the soil water‐retention curve in the inflexion point). In a first step, we reviewed the literature for published optimum and limiting values of bulk density and found that these values were highly dependent on clay and silt content. Converting them into corresponding values of packing density (composite index of bulk density and clay content), a value of 1.70 was found to effectively distinguish between optimum and limiting soil conditions for plant growth. In a second step, the packing density of 59 soil horizons sampled in N Switzerland was compared with the least limiting water range and the S parameter of these soil horizons (both determined by means of pedotransfer functions taken from the literature). A linear relationship between the three parameters was found, which allowed for a comparison of the published critical limits for plant growth based on these parameters. The critical limits of the three indicators, which had been postulated independently of each other in the literature, were found to agree well with each other. This means that all of them could equally be used to describe the compaction state of a soil and its physical suitability for plant growth. However, the proposed critical limits of packing density, least limiting water range, and S parameter still need further validation by field studies relating plant growth to soil compaction.  相似文献   

18.
  总被引:2,自引:0,他引:2  
Plant growth is directly affected by soil water, soil aeration, and soil resistance to root penetration. The least limiting water range (LLWR) is defined as the range in soil water content within which limitations to plant growth associated with water potential, aeration and soil resistance to root penetration are minimal. The LLWR has not been evaluated in tropical soils. Thus, the objective of the present study was to evaluate the LLWR in a Brazilian clay Oxisol (Typic Hapludox) cropped with maize (Zea mays L. cv. Cargil 701) under no-tillage and conventional tillage. Ninety-six undisturbed soil samples were obtained from maize rows and between rows and used to determine the water retention curve, the soil resistance curve and bulk density. The results demonstrated that LLWR was higher in conventional tillage than in no-tillage and was negatively correlated with bulk density for values above 1.02 g cm−3. The range of LLWR variation was 0–0.1184 cm3 cm−3 in both systems, with mean values of 0.0785 cm3 cm−3 for no-tillage and 0.0964 cm3 cm−3 for conventional tillage. Soil resistance to root penetration determined the lower limit of LLWR in 89% of the samples in no-tillage and in 46% of the samples in conventional tillage. Additional evaluations of LLWR are needed under different texture and management conditions in tropical soils.  相似文献   

19.
    
Although crop residue management is known to affect near‐surface soil physical quality, little is known about the temporal variability of these indicators over short time intervals. This study evaluates the temporal changes of nine indicators of soil physical quality. These are organic carbon content, structural stability index, bulk density, macroporosity, air capacity, relative field capacity, plant available water capacity, Dexter's S‐index and saturated hydraulic conductivity. A second set of soil physical indicators, based on the distribution of soil pore volume, was also evaluated. The indicators were determined in three different times during the growing cycle of winter durum wheat cultivated within a long‐term field research carrying out in Southern Italy and comparing two types of crop residue management, that is, burning (B) and soil incorporation (I). Only the bulk density changed over time for both treatments, although the air capacity also changed for the incorporation of wheat residues. Residual effects of the autumnal soil tillage and soil compaction were a common source of variability, irrespective of which treatment was used. Based on the existing guidelines for evaluating the physical quality of these agricultural soils, optimal or near‐optimal values were detected in about half of the cases under consideration. This suggests that both B and I create sufficiently good conditions for crop growth during the crop cycle. The comparison between observed and optimal soil pore distribution function was always poor. The pore volume distributions showed lower densities of small pores and relatively higher densities of large pores than the proposed optimal distribution. This study also suggests that the considered optimal or references curves probably cannot be applied successfully to a wide range of agricultural soils.  相似文献   

20.
Soil physical condition following tillage influences crop yield, but the desired condition cannot be adequately evaluated with current techniques. This study was conducted to determine a soil condition index (SCI) that could be used to select the type of implement needed to achieve an optimal seedbed with minimum energy input. Effects of bulk density, moisture content, and penetration resistance resulting from three tillage systems (no-till, chisel plow and moldboard plow), on the growth of corn (Zea mays L.) were studied. The experiment was conducted in Boone County, Ames, IA, on soils that are mostly Aquic Hapludolls, Typic Haplaquolls and Typic Hapludolls with slopes ranging from 0 to 5%. The results are from the 2000 season, which had normal weather conditions and yield levels for the Iowa state. The average corn grain yield at this site was 9.36 Mg/ha. At the V2 corn growth stage, the average dry biomass was 1.34 g per plant. The soil physical properties were normalized with respect to reference values and combined via multiple regression analysis against corn biomass at V2 stage into the SCI. Mean SCI values for the no-till, chisel and moldboard plow treatments were 0.86, 0.76, and 0.73, respectively, all with a standard error of 0.0127. The lower the SCI, the more optimum the soil physical conditions. An analysis of variance showed significant differences among mean SCI for each treatment (p-value=0.001). The use of the SCI could improve the tillage decision-making process in environments similar the one studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号