首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
It was hypothesized that the application of eucalyptus biochar enhances nutrient use efficiencies of simultaneously supplied fertilizer, as well as provides additional nutrients (i.e., Ca, P, and K), to support crop performance and residual effects on subsequent crops in a degraded sandy soil. To test this hypothesis, we conducted an on‐farm field experiment in the Khon Kaen province of Northeastern Thailand to assess the effects of different application rates of eucalyptus biochar in combination with mineral fertilizers to upland rice and a succeeding crop of sugarcane on a sandy soil. The field experiment consisted of three treatments: (1) no biochar; (2) 3.1 Mg ha?1 biochar (10.4 kg N ha?1, 3.1 kg P ha?1, 11.0 kg K ha?1, and 17.7 kg Ca ha?1); (3) 6.2 Mg ha?1 biochar (20.8 kg N ha?1, 6.2 kg P ha?1, 22.0 kg K ha?1, and 35.4 kg Ca ha?1). All treatments received the same recommended fertilizer rate (32 kg N ha?1, 14 kg P ha?1, and 16 kg K ha?1 for upland rice; 119 kg N ha?1, 21 kg P ha?1, and 39 kg K ha?1 for sugarcane). At crop harvests, yield and nutrient contents and nitrogen (N) use efficiency were determined, and soil chemical properties and pH0 monitored. The eucalyptus biochar material increased soil Ca availability (117 ± 28 and 116 ± 7 mg kg?1 with 3.1 and 6.2 Mg ha?1 biochar application, respectively) compared to 71 ± 13 mg kg?1 without biochar application, thus promoting Ca uptake and total plant biomass in upland rice. Moreover, the higher rate of eucalyptus biochar improved CEC, organic matter, available P, and exchangeable K at succeeding sugarcane harvest. Additionally, 6.2 Mg ha?1 biochar significantly increased sugarcane yield (41%) and N uptake (70%), thus enhancing N use efficiency (118%) by higher P (96%) and K (128%) uptake, although the sugar content was not increased. Hence, the application rate of 6.2 Mg ha?1 eucalyptus biochar could become a potential practice to enhance not only the nutrient status of crops and soils, but also crop productivity within an upland rice–sugarcane rotation system established on tropical low fertility sandy soils.  相似文献   

2.
Background : Nepal's traditional rice–wheat rotation systems are subject to continuing changes. Changing consumer demand currently drives a replacement of wheat by high‐value vegetables during the dry season, while emerging water shortages lead to a substitution of rice by maize in the wet season. Hence, associated changes in soil aeration status and shifting conditions of soil nutrient supply to match crop nutrient demand are expected to increase the requirements for the principle limiting micro‐nutrients such as boron (B) and zinc (Zn). Aim: Our aim was to investigate the changes in B and Zn availability as well as crop yields and nutrient uptake after system shifts from rice to maize and from wheat to vegetables. Method : We analyzed the B and Zn availability in rice‐ and maize‐based systems as well as crop yields and the nutrient uptake by wheat, cauliflower, and tomato during the dry season in Nepal. Plants were grown at two field sites (midhills vs. lowland) and under greenhouse conditions using soils from the field sites. Results : A change from irrigated rice to maize reduced soil C and N contents with resulting decreases in dry season crop yields. Low soil Zn after rice cultivation led to shortage in Zn uptake by vegetables in both greenhouse and field experiments. The shift from wheat to vegetables increased the demand for B and to a lesser extent for Zn, and consequently vegetables showed visual symptoms of B deficiency. Boron concentrations in dry biomass were below the critical limits with < 10 mg B kg?1 in wheat, < 21 mg B kg?1 in cauliflower, and < 23 mg B kg?1 in tomato. Conclusions: Soils in larger parts of Nepal are low in available B and that the ongoing system shifts increase in the demand for B and Zn in the currently emerging and more diversified production systems.  相似文献   

3.
We conducted a pot experiment using a wheat‐millet rotation to examine the effects of two successive rice‐straw biochar applications on crop growth and soil properties in acidic oxisols and alkaline cambosols from China. Biochar was incorporated into soil at rates of 0, 2.25 or 22.5 Mg/ha at the beginning of each crop season with identical applications of NPK fertilizer. In the oxisols, the largest biochar treatment enhanced soil pH and cation exchange capacity, decreased soil bulk density, improved soil P, K, Ca and Mg availability and enhanced their uptake, and increased wheat and millet yields by 157 and 150% for wheat grain and straw, respectively, and 72.6% for millet straw. In the cambosols, biochar treatment decreased soil bulk density, improved P and K availability, increased N, P and K uptake by crops and increased wheat and millet straw yields by 19.6 and 60.6%, respectively. Total soil organic carbon increased in response to successive biochar applications over the rotation. No difference in water‐soluble organic carbon was recorded between biochar‐treated and control soils. Converting straw to biochar and treating soils with successive applications may be a viable option for improving soil quality, sequestering carbon and utilizing straw resources in China.  相似文献   

4.
Background: The fertilizer value of phosphorus (P) in waste products relies heavily on its availability to the subsequent crop. Aim: We studied the link between extractable P in waste products and apparent P recovery (APR, i.e., difference in plant P uptake between P amended and un‐amended soils divided by the amount of P added) using spring barley grown on three sandy soils. Methods: The products included sewage sludge, biomass ash, struvite, compost, meat and bone meal, biochar from sewage sludge, and industrial sludge. Soft rock phosphate and triple‐superphosphate (TSP) were included for comparison. Availability of P was characterized by extraction with water and solutions of sodium bicarbonate, citric acid, oxalic acid, hydrochloric acid, ammonium acetate, ammonium fluoride and anion exchange resin membranes. TSP was used to establish mineral‐fertilizer‐equivalents (MFE). Water and bicarbonate extractions were also applied to products incubated with soil before extraction. Results: The APR ranged 26 to 31% for TSP and 0 to 30% for waste products. APR correlated most strongly with bicarbonate extractable P. The correlation increased when products were incubated with soil before extraction. Conclusions: We conclude that bicarbonate extraction is a good indicator of potential P availability. However, interactions between waste products and soil properties modify P availability.  相似文献   

5.
Response of sugar beet ( Beta vulgaris var. altissima ) to potassium fertilization—a 20‐year field experiment A long‐term fertilizer experiment was performed to develop a K fertilization strategy to achieve highest extractable sugar yields (BZE). Sugar beet was grown in a crop rotation with wheat and barley on an alluvial soil (clayic silt) in Lower Saxony with annual recycling of straw and beet tops, respectively. Since 1983, the treatments were as follows: 1) K fertilization with 0, 29, 58, 87,174, and 524 kg K ha–1 a–1 corresponding to 0, 0.5, 1, 1.5, 3, and 9 times the average annual K removal by the marketable products of the crop rotation—since 1995, the two highest treatments (3 and 9 times the removal) received only 174 kg ha–1 every third year; 2) K fertilization according to the average K removal, given each year (58 kg K ha–1) or every third year (174 kg ha–1) to sugar beet; 3) annual K fertilization of 87 kg K ha–1 (1.5 times the removal) applied in autumn or spring, respectively; 4) annual K fertilization, applied as mineral fertilizer or as organic material (recycling of grain and straw or root and leaves); 5) application of 29 kg NaCl ha–1 to sugar beet supplemental to a yearly application of 58 kg K ha–1. Both root yield and soil concentration of lactate‐soluble K increased with K fertilization up to the highest K treatment. The extractable sugar content reached a maximum at a yearly application of 174 kg K ha–1. Averaged over years, the extractable sugar yield (BZE) increased up to the highest K application. The time of K application (autumn or spring) and the source of K (mineral fertilizer or organic material) had no effect on BZE. An additional fertilization with NaCl increased BZE only slightly in single years. Low‐grade muriate of potash containing 33% K and 3% Na can thus be used. The economically optimal K‐fertilization rate was 174 kg K ha–1 given once in the crop rotation to sugar beet. A soil K concentration of about 110 mg (kg soil)–1 (lactate‐extractable K) is sufficient in this soil to achieve a high BZE.  相似文献   

6.
Abstract

Manganese is often limiting in cereal crop production in the Kootenai River Valley of Northern Idaho; however, attempts to relate DTPA‐extractable Mn in soils to crop yield response have not been successful. Consequently, Mn plant tissue diagnosis may be an alternate diagnostic tool. The objectives of this study were to: (1) determine the critical nutrient concentration (CNC) of Mn in spring wheat and spring barley tissue in the Kootenai River Valley of northern Idaho, (2) examine yield response of spring wheat and spring barley to Mn fertilization, and (3) assess relative efficiencies of foliar and surface broadcast Mn applications to these crops. Paired plots with four replications consisting of a foliar Mn application rate of 1.5 kg ha‐1 and a control were located at four sites in 1988 and at ten sites in 1989. Soil, plant tissue samples and grain yield data were evaluated by linear plateau regression to determine CNCs of Mn for spring wheat and spring barley tissue. In addition, five randomized complete block experiments were conducted in 1989 and 1990 to evaluate Mn fertilizer rates and sources (foliar vs. surface applied) on spring wheat and spring barley production. Tissue Mn was highly correlated by linear plateau regression to both spring wheat (r2 = 0.74**) and spring barley (r2 = 0.70**) grain yield. The Mn CNC was established at 11.0 mg Mn kg‐1 plant tissue for spring wheat and 10.1 mg Mn kg‐1 plant tissue for spring barley. The Mn CNCs were established at 92.4 and 93.0% of maximum yield for spring wheat and spring barley, respectively. DTPA‐extractable Mn was not significantly correlated to grain yield for either crop (r2 = 0.02, NS). Based on study results, Mn analysis of spring wheat and spring barley plant tissue was diagnostic of eventual grain yield. When tissue diagnosis showed plants to be deficient in Mn, the deficiency was corrected by applying Mn fertilizer as a surface broadcast or a foliar spray. However, foliar application of Mn was more efficient than broadcast application.  相似文献   

7.
Thermal drying of sewage sludge implies sanitation and improves practical handling options of the sludge prior to land application. However, it may also affect its value as a fertilizer. The objective of this study was to assess whether thermal drying of sewage sludge, as well as drying temperature, affects plant P availability after application to soil. The experiment included dewatered sewage sludge (20% DM) and thermally dried sewage sludge (95% DM) collected at a Danish wastewater treatment plant, as well as laboratory oven‐dried (70, 130, 190, and 250°C; DM > 95%) subsamples of the dewatered sludge, and a triple superphosphate as a reference. Plant P availability was studied in a 197 d soil incubation experiment, with sampling for Diffusive Gradients in Thin films (DGT) and water extractable P (WEP) analyses over time, and in a pot experiment with spring barley (Hordeum vulgare L.). In both experiments, thermal drying reduced P availability, as shown by 37 and 23% lower DGT and WEP values, respectively, and a 16% lower P uptake by barley in the pot experiment. The specific drying temperature did not appear to have much effect. Overall, our results suggest that thermal drying of iron‐precipitated sewage sludge is not an optimal treatment option if the aim is to optimize plant P availability.  相似文献   

8.
Application of legume green manure (GM) is suggested to be effective in increasing the availability of native soil phosphorus (P) and the dissolution and utilization of phosphate rock (PR)‐P by food crops. Experiments were conducted to study the dynamics of extractable P (P extracted by Bray‐1‐extracting solution) of an Ultisol amended with or without GM residues of contrasting P concentrations in the absence of growing plants. In two separate experiments, GM residues of Aschynomene afraspera (a flood‐tolerant legume) and of Crotalaria micans (upland) with varying P concentrations were added to an acidic soil amended with PR‐P or triple superphosphate (TSP) in plastic bottles. Soil moisture was brought to field capacity of the soil in the upland experiment and saturated with distilled water in the lowland setup. This was done to simulate aerobic upland and anaerobic lowland soil conditions in the relevant plastic bottles. Only P concentration of the residues added varied, while lignin and C : N ratios were similar. A temperature of 25°C was maintained throughout the experiment. Changes in soil extractable Bray‐1‐P were measured at the end of the incubation period (60 or 80 d). In the aerobic soils, extractable P in the combined PR+GM or TSP+GM treatments was significantly lower than in the PR‐ or TSP‐ treated soils. The amendment with GM residues alone significantly increased Bray‐1‐P over the unamended control in the case of the inorganic P‐fertilized GM residues. The trend in extractable P was similar in the soils incubated under anaerobic conditions. However, in the case of PR, concentrations of P extracted by Bray‐1 solution did not significantly change in the presence or absence of GM. The results suggest that the incorporation of GM residues with low P concentration does not lead to a net P release in upland or lowland soils. These results have implications for nutrient cycling in farming systems in W Africa as most of the soils are poor and very low in available P.  相似文献   

9.
In recent time, phytoliths (silicon deposition between plant cells) have been recognized as an important nutrient source for crops. The work presented here aims at highlighting the potential of phytolith‐occluded K pool in ferns. Dicranopteris linearis (D. linearis ) is a common fern in the humid subtropical and tropical regions. Burning of the fern D. linearis is, in slash‐and‐burn regions, a common practice to prepare the soil before planting. We characterised the phytolith‐rich ash derived from the fern D. linearis and phytolith‐associated potassium (K) (phytK), using X‐ray tomographic microscopy in combination with kinetic batch experiments. D. linearis contains up to 3.9 g K/kg d.wt, including K subcompartmented in phytoliths. X‐ray tomographic microscopy visualized an interembedding structure between organic matter and silica, particularly in leaves. Corelease of K and Si observed in the batch experiments confirmed that the dissolution of ash phytoliths is one of major factors controlling K release. Under heat treatment, a part of the K is made available, while the remainder entrapped into phytoliths (ca. 2.0–3.3%) is unavailable until the phytoliths are dissolved. By enhanced removal of organic phases, or forming more stable silica phases, heat treatment changes dissolution properties of the phytoliths, affecting K release for crops and soils. The maximum releases of soluble K and Si were observed for the phytoliths treated at 500–800 °C. For quantitative approaches for the K provision of plants from the soil phytK pool in soils, factors regulating phytolith dissolution rate have to be considered.  相似文献   

10.
Soil test indicators are needed to predict the contribution of soil organic N to crop N requirements. Labile organic matter (OM) fractions containing C and N are readily metabolized by soil microorganisms, which leads to N mineralization and contributes to the soil N supply to crops. The objective of this study was to identify labile OM fractions that could be indicators of the soil N supply by evaluating the relationship between the soil N supply, the C and N concentrations, and C/N ratios of water extractable OM, hot‐water extractable OM, particulate OM, microbial biomass, and salt extractable OM. Labile OM fractions were measured before planting spring wheat (Triticum aestivum L.) in fertilized soils and the soil N supply was determined from the wheat N uptake and soil mineral N concentration after 6 weeks. Prior to the study, fertilized sandy loam and silty clay soils received three annual applications of 90 kg available N (ha · y)?1 from mineral fertilizer, liquid dairy cattle manure, liquid swine manure or solid poultry litter, and there was a zero‐N control. Water extractable organic N was the only labile OM fraction to be affected by fertilization in both soil types (P < 0.01). Across both test soils, the soil N supply was significantly correlated with the particulate OM N (r = 0.87, P < 0.001), the particulate OM C (r = 0.83, P < 0.001), and hot‐water extractable organic N (r = 0.81, P < 0.001). We conclude that pre‐planting concentrations of particulate OM and hot‐water extractable organic N could be early season indicators of the soil N supply in fertilized soils of the Saint Lawrence River Lowlands in Quebec, Canada. The suitability of these pre‐planting indicators to predict the soil N supply under field conditions and in fertilized soils from other regions remains to be determined.  相似文献   

11.
稻壳基生物炭对生菜Cd吸收及土壤养分的影响   总被引:14,自引:1,他引:14  
探讨稻壳基生物炭对Cd污染土壤上叶菜吸收Cd和土壤Cd形态的影响作用,明确稻壳基生物炭对土壤Cd污染的调控效应,可为合理利用稻壳基生物炭降低叶菜Cd含量提供参考。采用盆栽试验,研究了稻壳基生物炭在不同用量水平下对2茬生菜地上部Cd含量、土壤养分含量及Cd赋存形态的影响。结果表明,在5~25 g-kg-1用量范围内,稻壳基生物炭显著降低了2茬生菜地上部和根系Cd含量,且在最大用量25 g-kg-1时效果最好,地上部Cd含量分别比未施稻壳基生物炭的对照处理降低了19.6%和45.8%,根系Cd含量分别降低了36.8%和28.0%。在25 g-kg-1用量水平下,稻壳基生物炭对土壤p H、有效磷、速效钾及有机质含量提升效果明显,但显著降低了土壤碱解氮含量。施加稻壳基生物炭对土壤有效态Cd含量及Cd化学形态也有不同影响。随着稻壳基生物炭用量的增加,土壤NH4OAc提取态Cd含量和弱酸提取态Cd含量显著降低,在用量为25 g-kg-1时,分别比对照降低17.9%和10.4%,可还原态Cd含量无显著变化,可氧化态Cd含量呈减低趋势,残渣态Cd含量增加17.6%。因此推测,提升土壤p H、降低土壤有效态Cd含量、增加残渣态Cd含量可能是稻壳基生物炭降低生菜体内Cd含量的主要原因。稻壳基生物炭可以作为土壤改良剂,抑制Cd污染土壤上叶菜对Cd的吸收,改善土壤养分状况。  相似文献   

12.
Agricultural constructed wetlands (CWs) are intended to retain sediment and phosphorus (P) carried off with runoff and drainage water. The accumulated sediment, with adsorbed P, is often advised to be recycled to agricultural land, but little is known about the fertilizer value of sediment‐associated P. This study examined the effects on P adsorption characteristics and P plant availability of mixing CW sediment into soil. Although the total P content in the sediment was approximately equal to that in catchment soil and the NaOH‐extractable P content was higher to that in catchment soil, in adsorption‐desorption tests sediment P solubility decreased and affinity for P increased with increasing addition rate of CW sediment to soil. Already the lowest sediment addition rate (12.5% of dry weight) decreased the equilibrium P concentration (EPC0') by 60% on average compared to unamended catchment soil. In a greenhouse pot experiment, Italian ryegrass (Lolium multiflorum L.) yield was largely unaffected by CW sediment application, but P uptake systematically decreased when the rate of sediment application to soil increased. When 12.5% dry weight of sediment was added, plant P uptake decreased by 6–50% in P‐unfertilized pots and by 6–17% in P‐fertilized pots (150 mg P kg−1) compared with P uptake of ryegrass grown in unamended field soil. Our other results suggest that the plant availability of P in CW sediments is very low due to high clay content and high concentrations of aluminium (Al) and iron (Fe) (hydr)oxides in the sediment. Thus, if applied to agricultural fields in large quantities, dredged CW sediment may impair crop P supply.  相似文献   

13.
Abstract

Long‐term effects of alternate tillage systems on soil‐test values for Coastal Plain soils were unknown. Therefore, soil pH, organic carbon, and Mehlich I extractable P, K, Ca, and Mg concentrations measured during an eight‐year tillage study on Norfolk loamy sand (fine‐loamy, silicious, thermic, Typic Paleudults) have been summarized. Yields for corn (Zea mays L.), wheat (Triticum aestivum L.), and soybean [Glycine max (L.) Merr.] are also summarized to provide an indication of nutrient removal by the crops. Soil‐test measurements after six years showed no significant differences in Mehlich I extractable nutrient concentrations for the 0‐ to 20‐cm depth between disked (conventional) and nondlsked (conservation) tillage treatments, but for pH, P, Ca, and Mg, the tillage by depth of sampling interaction was significant at P‐0.05. Stratification did not appear to affect crop yield. Soil organic matter concentration in the Ap horizon nearly doubled after eight years of research at this site. This change occurred within both tillage treatments, apparently because high levels of management produced good crop yields, residues were not removed, and even for the disked treatment, surface tillage was not excessive. These results show that long‐term average yields for corn and soybean on Norfolk soil will not be reduced by adopting reduced or conservation tillage practices. They also show that nutrient levels can be maintained at adequate levels for crop production on Coastal Plain soils by using current soil‐test procedures and recommendations for lime and fertilizer application.  相似文献   

14.
The use of pyrolysis products of manures gives positive effects on soil fertility, crop productivity and soil carbon sequestration. However, effects depend on soil characteristics, plant species and the raw material from which the biochar is derived, and some negative effects of biochar have been reported. The objective of this study was to evaluate the effectiveness of poultry manure (PM)‐derived biochar on the growth, and P, N, K, Ca, Mg, Fe, Zn, Cu and Mn concentration of lettuce (Lactuca sativa L.) plant. The treatments as follows: control, 20 g/kg poultry manure (PM), 20 g/kg phosphorus‐enriched poultry manure (PM+P), 10 g/kg Biochar (B), 10 g/kg Biochar+P (B+P). Application of biochar and PM significantly increased lettuce growth, and P‐enriched forms of PM and biochar gave the higher growth. PM has no significant effect on the N concentrations but biochar and, P‐enriched PM and biochar treatments significantly increased N concentrations. Phosphorus concentration of the lettuce leaves significantly increased by PM and biochar treatments. Plant K concentrations were also increased by PM and biochar, and their P‐enriched forms. Leaf Ca and Mg concentrations were lower in Biochar and B+P treatments than that of PM and PM+P treatments. Compared to control and PM treatments, biochar applications reduced Fe, Zn, Mn and Cu concentrations of the lettuce plants. The results of this study indicated that application of biochar to alkaline soil is beneficial for crop growth and N, P and K nutrition, but it certainly reduced Fe, Cu, Zn and Mn nutrition of lettuce.  相似文献   

15.
Biochar (BC) application as a soil amendment has aroused much interest and was found to considerably improve soil nutrient status and crop yields on poor, tropical soils. However, information on the effect of BC on temperate soils is still insufficient, with effects expected to differ from tropical soils. We investigated the effects of BC on soil nutrient dynamics, crop yield, and quality in a greenhouse pot experiment. We compared three agricultural soils (Planosol, Cambisol, Chernozem), and BCs of three different feedstocks (wheat straw [WS], mixed woodchips [WC], vineyard pruning [VP]) slowly pyrolyzed at 525°C, of which the latter was also pyrolyzed at 400°C. The BCs were applied at two rates (1% and 3%, which would correspond to 30 and 90 t ha–1 in the field). Three crops, namely mustard (Sinapis alba L.), barley (Hordeum vulgare L.), and red clover (Trifolium pretense L.) were grown successively within one year. The investigated soil properties included pH, electrical conductivity (EC), cation‐exchange capacity (CEC), calcium‐acetate‐lactate (CAL)–extractable P (PCAL) and K (KCAL), C, N, and nitrogen‐supplying potential (NSP). The results show a pH increase in all soils. The CEC increased only on the Planosol. The C : N ratio increased at 3% application rate. Despite improving the soil nutrient status partly, yields of the first crop (mustard) and to a lesser extent of the second crop (barley) were significantly depressed through BC application (by up to 68%); the yield of clover as third crop was not affected. Only the BC from WS maintained yields in the range of the control and even increased barley yield by 6%. The initial yield reduction was accompanied by notable decreases (Cu, Fe, Mn, Zn) and increases (Mo) in micronutrient concentrations of plant tissues while nitrogen concentrations were hardly affected. The results of the pot experiment show that despite additional mineral fertilization, short‐term growth inhibition may occur when applying BC without further treatment to temperate soils.  相似文献   

16.
In extensive farmer‐led trials practicing conservation farming (CF) in three regions of Zambia (Mongu: sandy soils; Kaoma: sandy or loamy sand soils; Mkushi: sandy loam or loamy soils), we studied the effects of biochar made of maize cobs (0, 2, and 6 t ha?1 corresponding to 0, 0.8, and 2.5% per basin) at different fertilizer rates of NPK and urea on crop yield of maize (Zea mays) and groundnuts (Arachis hypogaea). Conservation farming in this case combines minimum tillage (how basins), crop rotation and residue retention. For the first time, the effect of biochar on in situ soil nutrient supply rates [determined by buried Plant Root Simulator (PRS?) exchange resins] was studied, as well as the effects of biochar on elemental composition of maize. Effects of 0–10% (w:w) biochar addition on soil physical and soil chemical properties were determined in the laboratory. At all sites there was a consistent positive response in crop yield upon the addition of biochar. However, due to a great variability between farms there were no significant differences in absolute yields between the treatments. In the sandy soils at Mongu, relative yields (i.e., percentage yield with biochar relative to the same fertilizer rate without biochar) of maize grains and maize stover were significantly increased at recommended fertilizer rates (232 ± 60%) and at half the recommended rate (128 ± 6%), respectively. In addition, biochar significantly increased concentrations of K and P in maize stover. In situ soil nutrient supply rates as measured by PRS?‐probes were highly spatially variable with no consistent effects of the different treatments in the three regions. By contrast, the fraction of plant available water (Vol.‐%) significantly increased upon the addition of biochar in all three soils. The increase caused by 10% biochar addition was of factor 2.5 in Mongu (from 4.5% to 11.2%) and 1.2 in both Kaoma (from 14.7% to 18.2%) and Mkushi (from 18.2% to 22.7%). Cation exchange capacity, pH, and exchangeable K significantly increased upon the addition of 10% (w:w) biochar in all three regions with a subsequent increase in base saturation and decrease of available Al3+. Our findings suggest that the addition of biochar in combination with CF might have a positive impact on crop growth and that this positive effect is mainly caused by increases in plant‐available water and decreased available Al.  相似文献   

17.
Four levels of soil organic matter (SOM) had been established on a coarse sandy loam after application of four combinations of mineral fertilizer, animal manure, straw incorporation and catch crops for 12 years. Soil tillage was carried out in a growing spring barley crop (Hordeum vulgare) to examine the potential for improving the synchrony between soil N mineralization and crop N demand. Tillage raised soil nitrate concentrations temporarily but did not influence barley dry matter (DM) yield. At maturity, both grain DM yield and N uptake were largest on soil with the highest OM level. The previous OM applications had a pronounced influence on crop development and N availability, but soil tillage did not significantly improve the synchrony between soil N mineralization and crop N demand.  相似文献   

18.
We performed a series of experiments in controlled conditions to assess the potential of hardwood‐derived biochar either as a source or as a removing additive of macronutrients [nitrate‐nitrogen (NO3‐N), ammonium‐N (NH4‐N), potassium (K), phosphorus (P), and magnesium (Mg)] in solution. In addition, a 3‐year field trial was carried out in a commercial nectarine orchard to evaluate the effect of increasing soil‐applied biochar rates on tree nutritional status, yield, fruit quality, soil pH, soil NO3‐N, and NH4‐N concentration and soil water content. In controlled conditions, the concentrations of K, P, Mg, and NH4‐N in solution were significantly increased and positively correlated with biochar rates. Biochar was ineffective in removing NO3‐N, K, P, and Mg from enriched solutions, while at the rate of 40 g L?1 biochar removed almost 52% of the initial NH4‐N concentration. In a mature, irrigated, fertilized, commercial nectarine orchard (Big Top/GF677) on a sandy‐loam soil in the Italian Po Valley, soil‐applied biochar at the rates of 5, 15, and 30 t ha?1 were effective in reducing the leached amount of NH4‐N in the top 0.25 m soil layer over 13 months, as estimated by ion exchange resin lysimeters. Nevertheless, independent of the rate, biochar did not affect soil pH, soil N mineral availability, soil moisture, tree nutritional status, yield, and fruit quality. We conclude that, unless an evident constraint is identified, in non‐limiting conditions (e.g., water availability and soil fertility), potential benefits from biochar application in commercial orchards are hidden or negligible.  相似文献   

19.
Currently, potassium (K)‐ and phosphate (P)‐fertilizer recommendation in Germany is based on standardized soil‐testing procedures, the results of which are interpreted in terms of nutrient availability. Although site‐specific soil and plant properties (e.g., clay and carbon content, pH, crop species) influence the relation between soil nutrient content and fertilizer effectiveness, most of these factors are not accounted for quantitatively when assessing fertilizer demand. Recent re‐evaluations of field observations suggest that even for soil nutrient contents well within the range considered to indicate P or K deficiency, fertilizer applications often resulted in no yield increase. In this study, results from P‐ and K‐fertilization trials (in total about 9000 experimental harvests) conducted during the past decades in Germany and Austria were re‐analyzed using a nonparametric data‐mining procedure which consists of a successive segmentation of the data pool in order to elaborate a modified recommendation scheme. In addition to soil nutrient content, fertilizer‐application rates, nutrient‐use efficiency, and site properties such as pH, clay content, and soil organic matter, have a distinct influence on yield increase compared to an unfertilized control. For K, nutrient‐use efficiency had the largest influence, followed by soil‐test K content, whereas for P, the influence of soil‐test P content was largest, followed by pH and clay content. The results may be used in a novel approach to predict the probability of yield increase for a specified combination of crop species, fertilizer‐application rate, and site‐specific data.  相似文献   

20.
The use of biochar as a soil amendment is gaining interest to mitigate climate change and improve soil fertility and crop productivity. However, studies to date show a great variability in the results depending on raw materials and pyrolysis conditions, soil characteristics, and plant species. In this study, we evaluated the effects of biochars produced from five agricultural and forestry wastes on the properties of an organic‐C‐poor, slightly acidic, and loamy sand soil and on sunflower (Helianthus annuus L.) growth. The addition of biochar, especially at high application rates, decreased soil bulk density and increased soil field capacity, which should impact positively on plant growth and water economy. Furthermore, biochar addition to soil increased dissolved organic C (wheat‐straw and olive‐tree‐pruning biochars), available P (wheat‐straw biochar), and seed germination, and decreased soil nitrate concentration in all cases. The effects of biochar addition on plant dry biomass were greatly dependent upon the biochar‐application rate and biochar type, mainly associated to its nutrient content due to the low fertility of the soil used. As a result, the addition of ash‐rich biochars (produced from wheat straw and olive‐tree pruning) increased total plant dry biomass. On the other hand, the addition of biochar increased the leaf biomass allocation and decreased the stem biomass allocation. Therefore, biochar can improve soil properties and increase crop production with a consequent benefit to agriculture. However, the use of biochar as an amendment to agricultural soils should take into account its high heterogeneity, particularly in terms of nutrient availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号