首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Impact of excreted nitrogen by grazing cattle on nitrate leaching   总被引:2,自引:0,他引:2  
Abstract. At De Marke experimental farm, data on water and nitrogen flows in the unsaturated zone were gathered on two grazed pastures on sandy soils during the years 1991 to 1994. These provided a basis for calibration and validation of simulation models. The different levels of nitrate-N concentrations of the two plots could largely be explained by differences in crop uptake and simulated denitrification as influenced by different groundwater levels. The irregular distribution of excreta was taken into account by a simulation study quantifying the variability of nitrate-N concentrations under a grazed field. The resulting distribution of simulated nitrate-N concentrations explained the average and peak values of the measured concentrations. Temporal variability of weather was used to assess the nitrate leaching risk under urine patches deposited in either July or September. At site A the probability of exceeding the EC-directive by drinking water (11.3 mg/1 nitrate-N) under a urination deposited in either July or September was respectively 10 and 25%. The average field concentration at this site will hardly ever be a high risk for the environment under the current farm management. At site B the EC-directive will be exceeded under any urine patch in almost 100% of the years, affecting the field average concentration. In field B careful grazing management would result in less nitrate leaching, but the environmental goals would not be reached.  相似文献   

2.
Low altitude humid tropical mountains in Central America have experienced a process of livestock expansion during recent decades. However, the use of sloping areas for cattle grazing may lead to significant soil degradation and therefore we examined the influence of the slope gradient on soil degradation in pastures in a humid tropical mountainous area in northern Honduras. Understanding this relationship permits estimates of the physical carrying capacity of the soil, which in turn may help to improve livestock use within the study area. Variables examined included soil bulk density, texture, organic matter content and consistency as well as visual indicators of soil and vegetation degradation. There is a significant positive correlation between the bulk density as a proxy for soil degradation and slope gradient. Furthermore, it was found that when soils are water-saturated grazing leads to severe degradation. Together with visual indicators, these data show that paddocks with slopes less than 30% have a carrying capacity between 900 and 1900 Animal Units (AU) ha− 1 year− 1 and many are currently underutilized. Paddocks with slopes between 30 and 50% have a carrying capacity between 400 and 600 AU ha− 1 year− 1. Paddocks with slopes over 50% have the lowest carrying capacity: less than 200 AU ha− 1 year− 1. The latter are frequently over-used; most of them show clear signs of soil and vegetation degradation. Land use in these areas needs to change or their grazing management needs to be reorganized to adjust actual stocking rate to physical carrying capacity of the soils to prevent further degradation.  相似文献   

3.
We investigated soil response to long‐term cattle grazing at stocking rates 0 (CK), 2.4 (MG), and 4.8 (HG) animal unit months ha–1 on a Rough Fescue (Festuca campestris Rydb.) grassland. Soil organic C and N stocks and available nutrients were not affected by grazing while soil bulk densities (0–30 cm) were higher and P stocks (15–30 cm) were lower under grazing than CK. The slow rate change of soil C and N suggest the rich black grassland soils appear to tolerate intensive grazing.  相似文献   

4.
5.
《Soil Use and Management》2018,34(3):354-369
Hydraulic properties of soils, particularly water retention, are key for appropriate management of semiarid soils. Very few pedotransfer functions (PTF s) have been developed to predict these properties for soils of Mediterranean regions, where data are particularly scarce. We investigated the transferability of PTF s to semiarid soils. The quality of the prediction was compared to that for soils originating from temperate regions for which most PTF s were developed. We used two soil data sets: one from the Paris basin (French data set, n  = 30) and a Syrian data set (n  = 30). Soil samples were collected in winter when the water content was near field capacity. Composition and water content of the samples were determined at seven water potentials. Continuous‐ and class‐PTF s developed using different predictors were tested using the two data sets and their performance compared to those developed using artificial neural networks (ANN ). The best performance and transferability of the PTF s for both data sets used soil water content at field capacity as predictor after stratification by texture. The quality of prediction was similar to that for ANN ‐PTF s. Continuous‐ and class‐PTF s may be transferable to other countries with performances that vary according to their ability to account for variation in soil composition and structure. Taking into account predictors of composition (particle size distribution, texture, organic carbon content) and structure (bulk density, porosity, field capacity) did not lead to a better performance or the best transferability potential.  相似文献   

6.
Alpine soils are characterized by a high variability of chemical and physical parameters. The spatial inhomogeneity of a specific parcel must be regarded as a nuisance factor for representative soil sampling. The only way to reduce the effect of the variation between the samples is to combine several samples taken within an area of a few square meters. The presented approach shows how much soil material has to be taken in order to obtain representative values of soil properties such as soil density, the proportion of soil skeleton and fine earth, organic C, N, and the root content. Bulk density can be determined with an error ≤ 10% by sampling c. 6300 cm3 of soil within an area of 6 × 4.5 m for 0—20 cm sampling depth. With the same volume, the accuracy of soil skeleton measurement is ≤ 20%. In our case study, the determination of organic C in the fine earth of the whole soil profile needs a sample volume of 15,800 cm3 in order to reduce the error tolerance below ± 10%. In 0—20 cm soil depth, the error tolerance of ± 10% is achieved with c. 4000 cm3 for N and c. 6300 cm3 for organic C. Nearly 16,000 cm3 were needed to determine the soil root mass in the top 20 cm of a soil with an accuracy of ± 10%. In order to yield reasonable results, large sampling volumes are needed for soils in alpine areas. These volumes depend on the parameters to be investigated. Our investigation makes an initial attempt at optimizing the sampling strategy within an area of a few square meters in order to overcome this nuisance factor variation.  相似文献   

7.
ABSTRACT

The properties of secondary salt-affected soils developed from improper irrigation and drainage management and their effects on rice growth and yield are well documented. However, relevant information on coastal reclaimed tideland (RTL) soils, which are classified as primary salt-affected soils developed through salt-accumulated sediments is lacking. In this paper, we reviewed the physical and chemical properties of RTL soils in comparison with non-RTL soils and analyzed the relationship between rice production and soil salinity in RTL to suggest agricultural management practices for sustainable rice production and soil carbon sequestration in RTL. Similar to the secondary salt-affected soils, RTL soils were characterized by high alkalinity, salinity, and sodicity, and rice yield was negatively correlated with salinity. However, it was also found that lower fertility (e.g., organic matter and phosphorus) of RTL soils than non-RTL soils might also hamper rice growth and thus carbon input via plant residues in RTL soils. Correlation between years after reclamation and soil properties of RTL showed that cultivation of rice with annual fertilization and organic matter inputs increased soil fertility but salinity and sodicity did not show a significant tendency of change, suggesting that natural desalinization in RTL soils is hard to be achieved with conventional rice cultivation. Therefore, it is suggested that fertilization management as well as salinity management via drainage, gypsum application, tillage, and proper irrigation may be necessary to improve rice production and carbon sequestration in RTL soils.  相似文献   

8.
Soil salinization is one of the major causes of declining agricultural productivity in many arid and semiarid regions of the world. Excessive salt concentrations in soils, in most cases, cannot be reduced with time by routine irrigation and crop management practices. Such situations demand soil amelioration. Various means used to ameliorate saline soils include: (a) movement of excess soluble salts from upper to lower soil depths via leaching, which may be accomplished by continuous ponding, intermittent ponding, or sprinkling; (b) surface flushing of salts from soils that contain salt crusts at the surface, a shallow watertable, or a highly impermeable profile; (c) biological reduction of salts by harvest of high‐salt accumulating aerial plant parts, in areas with negligible irrigation water or rainfall available for leaching; and (d) amelioration of saline soils under cropping and leaching. Among these methods, cropping in conjunction with leaching has been found as the most successful and sustainable way to ameliorate saline soils. Cropping during leaching or between leachings causes an increase in salt‐leaching efficiency because a decrease in soil water content occurs under unsaturated water flow conditions with a concurrent decrease in large pore bypass and drainage volume. Consequently, anaerobic conditions in soil may occur during leaching that can affect crop growth. Thus, in addition to the existing salt‐tolerant crop genotypes, research is needed to seek out or develop genotypes with increased tolerances to salinity and hypoxia. Since salt leaching is interacted by many factors, evaluation of the traditional concepts such as the leaching requirement (LR), the leaching fraction (LF) and the salt balance index (SBI) demands incorporation of a rapid, efficient and economical way of monitoring changes in soil salinity during amelioration. Besides this, numerous models that have been developed for simulating movement and reactions of salts in soils need evaluation under actual field conditions. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
在河北省沧州市海兴县选取耕层土壤初始含水量有较大差异的两个地块,于春季利用当地高矿化度咸水(10~15 g·L~(-1))进行灌溉和地膜覆盖,以探究地膜覆盖对春季咸水灌溉条件下滨海盐渍土水盐动态的影响。设不灌咸水不覆膜(对照,CK)、不灌咸水覆膜(PM)及3月29日和4月13日灌咸水不覆膜(SE、SL)、灌咸水后覆膜(SE+PM、SL+PM)6个处理探讨不同咸水灌溉和覆膜对土壤水盐动态的影响;另在耕层土壤含水量≥20%(海兴县小山乡)和20%(海兴县农场)两个地点分别设灌咸水后覆膜(SE+PM)和不灌咸水不覆膜(CK)处理,探讨初始土壤含水量对咸水灌溉下土壤水盐动态的影响。灌水量均为180 mm,灌溉咸水来自排水渠,矿化度分别为12.12 g·L~(-1)和11.53 g·L~(-1),咸水入渗后,播种油葵。结果表明:春季咸水灌溉后覆膜能有效降低耕层土壤盐分,并且该项措施实施的时间越早越好,脱盐深度和脱盐率均较深和较高,本研究中,脱盐效果最优的为SE+PM处理,该处理在油葵收获后0~5 cm脱盐率为58.93%,土壤含盐量由1.15%降至0.51%。此外,脱盐效果也受到土壤初始含水量的影响,耕层土壤含水量20%时,春季咸水灌溉覆膜处理对土壤盐分的淋洗效果较好,平均脱盐深度大于40 cm,保证了油葵正常生长,油葵出苗率和产量分别为73.9%和920 kg·hm~(-2),至油葵收获时,0~20 cm土层土壤含盐量由灌溉前的1.93%降低至0.32%,脱盐率达84.07%;而当耕层土壤含水量≥20%时,脱盐速度慢、深度浅,至油葵播种时,土壤盐分依然较高,导致油葵出苗率低,最终绝收。本研究通过利用春季高矿化度咸水灌溉和地膜覆盖措施,在春季干旱和土壤严重积盐条件下有效降低了耕层土壤盐分,为作物播种出苗提供适宜的土壤水分条件和低盐环境。  相似文献   

10.
滨海棉田土壤盐分时空分布特征研究   总被引:7,自引:0,他引:7  
在黄河三角洲滨海一农田试验田共采集3期(春、夏、秋三季)EM38表观电导率数据,运用经典统计学和地统计学方法,分析试验区盐分时空分布特征。结果如下:垂直方向电导率相关系数均大于0.8,具有强相关性,水平方向相关系数在-0.2到0.2之间,相关性很弱。土壤盐分分布呈底聚型。变异系数比较显示,同期数据中,表层变异强度最强,底层变异强度最弱。半方差分析中各层块金值与基台值之比大多在25%~75%,盐分空间上偏向于中等空间相关性。棉花长势赋值后生成空间插值图,对比同期电导率插值图,将盐渍化程度划分成4个等级。分析按等级重分类后的栅格插值图中各盐渍土等级所占比例值,表层中非盐化土所占面积比已由初期的5.54%增加到11.93%,轻度盐化土所占面积比增加了42个百分点。  相似文献   

11.
降雨及隔盐层对滨海盐碱地水盐运动的影响   总被引:6,自引:0,他引:6       下载免费PDF全文
 为探索不同材料隔盐层对滨海盐碱地水盐运动的影响,在白蜡林地树穴底部布设炉渣和沙子作为隔盐层,比较研究不同深度土壤水分和总盐分的季节性变化规律。结果表明:土壤表层和不同深度处土壤含水量及含盐量变化规律不同,表层主要受降雨和蒸发影响,底层则同时还受地下水位变化的影响;1个雨季中,土壤表层强降雨的淋洗作用极为明显,表层不同隔盐层的差异性不太明显,但离表层30cm处各隔盐层隔盐和抑制返盐的效果非常明显,设置炉渣隔盐层处理的电导率从5月份的591ms/m下降到了10月份的493ms/m,沙子隔盐层处理的电导率从558ms/m下降到501ms/m;离表层60cm处炉渣隔盐层从810ms/m下降到582ms/m,沙子隔盐层从607ms/m下降到560ms/m。从减小电导率的幅度上来看,炉渣的隔盐效果好于沙子。  相似文献   

12.
喷灌强度对滨海盐碱地土壤水盐运移特征的影响   总被引:3,自引:1,他引:3  
为研究一维条件下喷灌强度对滨海盐碱地土壤湿润峰运移、水分再分布特征及盐分淋洗的影响,选用滨海盐碱地黏质重度盐碱土和砂质重度盐碱土2种土壤,设置5个喷灌强度(分别是1.72、3.13、5.27、8.75、10.11mm/h),进行室内喷灌条件下土柱模拟试验。结果表明,喷灌强度与土壤黏粒含量显著影响湿润锋运移。湿润锋推进速度随着喷灌强度增加而增大,而湿润深度随之减小,且土壤黏粒含量越高,越不利于湿润锋运移;随着土壤水分再分布过程的推进,黏质重度盐碱土在3.13mm/h喷灌强度下同一深度体积含水率较其他处理大,砂质重度盐碱土在1.72mm/h喷灌强度条件下土柱具有较高的保水性;采用喷灌淋洗,可使上层土壤脱盐,盐分均累积至下层土壤,并使其急剧增加且达到最大值。对于黏质重度盐碱土,3.13mm/h喷灌强度下,盐分淋洗效果较好,而对于砂质重度盐碱土,8.75mm/h喷灌强度淋洗效果优于其他处理。该研究可为喷灌技术合理和可持续开发利用滨海盐碱地提供参考。  相似文献   

13.
Accumulation of excess sodium (Na+) in a soil causes numerous adverse phenomena, such as changes in exchangeable and soil solution ions and soil pH, destabilization of soil structure, deterioration of soil hydraulic properties, and increased susceptibility to crusting, runoff, erosion and aeration, and osmotic and specific ion effects on plants. In addition, serious imbalances in plant nutrition usually occur in sodic soils, which may range from deficiencies of several nutrients to high levels of Na+. The structural changes and nutrient constraints in such soils ultimately affect crop growth and yield. The principal factor that determines the extent of adverse effects of Na+ on soil properties is the accompanying electrolyte concentration in the soil solution, with low concentration promoting the deleterious effects of exchangeable Na+ even at exchangeable sodium percentage (ESP) levels less than 5. Consequent to an increase in the use of poor quality waters and soils for crop production, the problems of sodic soils can be expected to increase in future. The mechanisms that explain sodic behaviour can provide a framework in which slaking, swelling and dispersion of clay together with nutrient constraints in sodic soils may be assessed so that the practices to manage such soils can be refined for long‐term sustainable agriculture. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
不同控制灌溉方式下稻田土壤盐分动态变化研究   总被引:5,自引:0,他引:5  
对不同控制灌溉方式下稻田土壤盐分在水稻各生育期的动态变化规律进行了深入分析,并结合各生育期水稻冠层叶面积指数和稻田腾发量对土壤盐分动态成因进行了探讨。研究结果表明:控制灌溉或控制灌溉+淋洗条件下,各水稻生育期土壤含盐量均有不同程度降低,表现为随着淋洗水量的增加土壤含盐量逐渐降低的规律性,试验条件下不同处理间的差异不太显著;试验各灌溉方式并未引起土壤盐分显著积聚,并且具有重要的节水增产效益,其中水稻控制灌溉(即处理1)从节水增产角度而言是稻田较佳的灌溉管理方式。本项研究内容及其成果对于指导水稻灌溉管理实际具有重要的理论指导意义。  相似文献   

15.
Abstract

Testing three imperfectly drained forest soils (Alfisols and Ultisol) by nine methods showed that cation exchange capacities were highly pH dependent. Adding lime increased CEC values obtained by buffered and unbuffered methods but decreased CEC values when total bases were added to total acidity or salt replaceable acidity. No method tested completely explained the change in CEC caused by liming. Fractionation of the whole soil CEC Indicated an appreciable masked charge caused by an apparent complexing of amorphous metal oxides with clay or organic matter. In both buffered and unbuffered solutions, calcium saturation usually gave higher CEC values than monovalent ion saturation.  相似文献   

16.
Pedotransfer functions (PTFs) to predict bulk density (BD) from basic soil data are presented. Available data pertaining to seasonally impounded shrink–swell soils of Jabalpur district in the Madhya Pradesh state of India were used for the study. The data included horizon-wise information of 41 soil profiles in the study area covering nearly 5 million ha. Six independent variables, namely textural data (sand, silt and clay), field capacity (FC), permanent wilting point (PWP) and organic carbon content (OC) were used as input in hierarchical steps to establish dependencies, with bulk density as the dependent variable, using statistical regression and artificial neural networks. The PTFs derived using neural networks [average root mean square error (RMSE) 0.05] were relatively better than statistical regression PTFs (average RMSE > 0.1). The best-performing PTFs required input data on sand, silt content, FC and PWP, with lowest prediction errors (RMSE 0.01, maximum absolute error (MAE) 0.01) and highest values of index of agreement (d, 0.95) and R 2 (0.65). Use of measures of structure, as well as information on pore structure, was found to be essential to derive acceptable PTFs. Inclusion of OC as an input variable showed relatively better fitting to the training data set, implying an underlying relationship between OC and BD, but the neural networks could not mimic the relationship when tested against subset.  相似文献   

17.
Re‐cultivated soils (previously piled soils used as the final surface cover in renovation of open cast mine sites) are particularly susceptible to compaction, which is why a simple estimate of mechanical strength is necessary for land management. In this study, therefore, precompression stress (?6 kPa matric potential) was determined for a total of 20 soil layers from 9 repeatedly cultivated areas of arable land in North Rhine–Westphalia (Germany), along with the aggregate density/dry bulk density ratio (as a measure of density heterogeneity) and air capacity (as a soil ecological parameter). These results are contrasted with the determination of packing density. Packing density (PD) is an integrated parameter that combines various properties (aggregate size, cohesion of the soil structure, root distribution, biogenic macropores and aggregate arrangement) and is assessed visually in the field. Packing density levels range between 1 (very loose soil) and 5 (very highly compacted). There is a strongly negative relationship between packing density and both the aggregate density/dry bulk density ratio and air capacity. Conversely, mechanical precompression stress increases with packing density. Ranges of the individual parameters can be assigned to each of the packing density levels. Packing density level 3 represents an optimization with regard to mechanical soil stability whilst maintaining minimum air capacity requirements (5–8 Vol.‐%).  相似文献   

18.

Objective

The concentration gradients of solid Al, Fe, Mn, Zn, Cd, Pb, Cr and Ni in freshly formed concretions and in older concretions preserved in the sediment were evaluated in a millimetre resolution scale. These results provide a better understanding of the complex biogeochemical processes in the root-sediment system and elucidate the potentialities of marshes in the restoration of contaminated aquatic systems.

Methods

Tens (soll das vielleicht tonnes/tons heißen) of freshly formed concretions and preserved concretions were collected in the Rosário salt marsh. Each tubular structure and involving sediments were scraped in concentric layers of 2-mm thickness to form two sets of composite samples. The elemental composition of concretion and sediment samples were determined by atomic absorption spectrometry.

Results and Discussion

The sediment involving the concretions contained ~0.5 mmol g-1 Fe, but concentrations increased towards the root up to 3.4 mmol g-1 in 3-mm interval. Manganese, Zn, Cd and Pb exhibited similar radial distribution in both preserved and freshly formed concretions indicating that these metals remain in those structures with the age. Chromium and Ni showed a different pattern being lower in concretions with respect to involving sediments, and consequently, concretions do not act as a barrier for these elements. The estimated amount of Zn (59 tons), Pb (5 tons) and Cd (0.4 tons) retained in the concretions all over the Rosario salt marsh highlights the importance of these structures in sequestering metals.

Conclusions and Outlook

The sequestering may be particularly relevant in salt marshes located near urban and industrial zones, being areas working as a natural remediation system and contributing for the detoxification of aquatic environments and the well-being of coastal resources.
  相似文献   

19.
海涂围垦区是陆海过渡带,围垦区土壤的传统洗盐和培肥技术易威胁近海生态环境,因此,探索新型、生态的盐土改良技术十分重要。该研究初步研究了新型微生物改良基质的盐土改良功能,结果表明微生物改良基质效果显著。相较于对照处理,微生物改良基质处理水稻产量增加了83.2%(P<0.05);土壤饱和含水率、田间持水量、总孔隙度、有机质、全氮、速效钾分别增加了13.80%、20.00%、6.80%、2.30倍、53.00%、31.00%(P<0.05);土壤容重降低了6.90%;土壤细菌、真菌和放线菌数量分别增加了10.30、11.20和3.18倍;水稻生育期累积灌溉水量减少了35.20%;0~10和>10~20cm土层可溶性盐质量分数分别降低了61.10%和54.40%。微生物改良基质能够在短期内加速盐分洗脱,提升土壤质量,是海涂新围垦区盐土改良的生态高效措施。  相似文献   

20.
再生水及盐溶液入渗与蒸发对土壤水盐和碱性的影响   总被引:1,自引:3,他引:1  
为研究再生水利用对土壤盐碱性影响的特殊性,采用室内大型土槽试验,对比研究了清水、再生水和钠吸附比(sodium adsorption ratio,SAR)分别为3、10和20(mmolc/L)0.5的盐溶液入渗与蒸发10次(模拟灌溉2a)期间对土壤及土壤溶液盐分迁移累积和碱性的影响。结果表明:与清水相比,再生水和SAR值为20(mmolc/L)0.5的盐溶液处理中0~40cm深度壤土含水率较高,80~120cm砂土含水率的增加产生滞后现象;再生水和盐溶液入渗与蒸发后土壤中盐分产生累积,累积量为9.54%~51.83%,而再生水处理中淋洗液带出的盐分最多,是其他处理的1.09~1.42倍。清水、再生水和盐溶液处理土壤溶液钠吸附比(SAR)<3(mmolc/L)0.5,土壤pH值<8.5,再生水和盐溶液入渗与蒸发引起土壤碱化的风险较低。再生水入渗与蒸发后土壤溶液中K+和Ca2+在土体中的迁移分布与清水和盐溶液处理不同,再生水对土壤中Cl-有较强的淋洗作用,长期再生水灌溉过程中土壤K+、Ca2+和Cl-的迁移和淋洗需要引起重视。试验结果对农业中长期安全合理利用再生水具有指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号