首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: To examine whether obese cats, compared with lean cats, have alterations in lipoprotein metabolism that might lead to a decrease in glucose metabolism and insulin secretion. ANIMALS: 10 lean and 10 obese adults cats (5 neutered males and 5 neutered females each). PROCEDURE: Intravenous glucose tolerance tests with measurements of serum glucose, insulin, and nonesterified fatty acid (NEFA) concentrations were performed. Lipoprotein fractions were examined in serum by isopycnic density gradient ultracentrifugation. RESULTS: Obese cats had insulin resistance. Plasma triglyceride and cholesterol concentrations were significantly increased in obese cats, compared with lean cats. Very low density lipoprotein (VLDL) concentrations were increased in obese cats, compared with lean cats; however, the composition of various fractions remained unchanged between obese and lean cats, indicating greater synthesis and catabolism of VLDL in obese cats. Serum high density lipoprotein (HDL) cholesterol concentrations were increased in obese cats, compared with lean cats. Serum NEFA concentrations were only significantly different between obese and lean cats when separated by sex; obese male cats had higher baseline serum NEFA concentrations and greater NEFA suppression in response to insulin, compared with lean male cats. CONCLUSIONS AND CLINICAL RELEVANCE: Lipid metabolism changes in obese cats, compared with lean cats. The increase in VLDL turnover in obese cats might contribute to insulin resistance of glucose metabolism, whereas the increase in serum HDL cholesterol concentration might reflect a protective effect against atherosclerosis in obese cats.  相似文献   

2.
Obesity is an important endocrine disorder in cats and is a risk factor for diabetes similar to humans. The goal of this study was to examine the effect of long-term obesity and different diets (high protein, and high carbohydrate supplemented with saturated fatty acids or n-3 polyunsaturated fatty acids) on plasma lipids in the fasted and fed states in 12 lean (LEAN) and 12 obese (OBESE) cats with ultracentrifugation, and nuclear magnetic resonance spectroscopy. OBESE had higher plasma non-esterified fatty acids and triglycerides, as well as very-low-density-lipoproteins (VLDL) consisting primarily of medium-sized particles. The concentration of low-density-lipoproteins (LDL) was comparable between the groups, although OBESE had mostly very small, whereas LEAN had mostly large particles. The concentration of high-density-lipoproteins (HDL) was lower in OBESE and consisted primarily of small particles. Plasma triglycerides, and triglycerides and cholesterol in all lipoproteins increased postprandially. Different diets had little effect on lipids. Our results show that long-term obese cats develop similar lipoprotein changes to humans, yet, hypertension and atherosclerosis have not been described in obese cats. This suggests that dyslipidemia alone is not sufficient to induce hypertension and atherosclerosis. Other anti-atherogenic factors may be present in the obese, dyslipidemic cat.  相似文献   

3.
OBJECTIVE: To determine the effects of carnitine (Ca) or taurine (Ta) supplementation on prevention of lipid accumulation in the liver of cats. ANIMALS: 24 adult cats. PROCEDURE: Cats were fed a weight-gaining diet sufficient in n-6 polyunsaturated fatty acids (PUFAs), low in long-chain n-3 PUFAs (n-3 LPUFA), and containing corn gluten for 20 weeks. Cats gained at least 30% in body weight and were assigned to 4 weight-reduction diets (6 cats/diet) for 7 to 10 weeks (control diet, control plus Ca, control plus Ta, and control plus Ca and Ta). RESULTS: Hepatic lipids accumulated significantly during weight gain and weight loss but were not altered by Ca orTa after weight loss. Carnitine significantly increased n-3 and n-6 LPUFAs in hepatic triglycerides, decreased incorporation of 13C palmitate into very-low-density lipoprotein and hepatic triglycerides, and increased plasma ketone bodies. Carnitine also significantly increased weight loss but without altering the fat to lean body mass ratio. Taurine did not significantly affect any variables. Diets low in n-3 LPUFAs predisposed cats to hepatic lipidosis during weight gain, which was further exacerbated during weight loss. Mitochondrial numbers decreased during weight gain and weight loss but were not affected by treatment. Carnitine improved fatty acid oxidation and glucose utilization during weight loss without correcting hepatic lipidosis. CONCLUSIONS AND CLINICAL RELEVANCE: The primary mechanism leading to hepatic lipidosis in cats appears to be decreased fatty acid oxidation. Carnitine may improve fatty acid oxidation but will not ameliorate hepatic lipidosis in cats fed a diet low in n-3 fatty acids.  相似文献   

4.
OBJECTIVE: To determine effects of dietary lipid and protein on plasma lipoprotein and free fatty acid concentrations and hepatic fatty acid synthesis during weight gain and rapid weight loss in cats. ANIMALS: 24 ovariohysterectomized cats. PROCEDURE: Cats were fed a high energy diet until they gained 30% of their ideal body weight and then randomly assigned to receive 1 of 4 weight reduction diets (6 cats/diet) at 25% of maintenance energy requirements. Diets contained a low or high quality protein source and a lipid source deficient or sufficient in long chain essential fatty acids. Plasma samples and liver biopsy specimens were obtained before and after weight gain and during and after weight loss for determination of free fatty acid, triglyceride, and lipoprotein concentrations. Synthesis of these substances was measured by use of isotope enrichment. RESULTS: Plasma total cholesterol concentration and concentration of lipoprotein fractions increased after weight gain, compared with baseline values. Weight loss resulted in a significant decrease in concentrations of all lipoprotein fractions except high density lipoprotein. High density lipoprotein concentration was significantly greater in cats fed diets containing an oil blend, compared with cats fed diets containing corn oil. Fatty acid synthesis after weight loss was below the detection limit of the measurement technique. CONCLUSIONS AND CLINICAL RELEVANCE: In cats undergoing rapid weight loss there is neither increased triglyceride synthesis nor decreased transport of very low density lipoproteins from the liver, suggesting that their involvement in the development of hepatic lipidosis may be minimal.  相似文献   

5.
Post-heparin plasma activity of lipoprotein lipase (LPL) and hepatic lipase (HL), and fat and muscle activity of LPL were measured in neutered lean and obese cats. Lipoprotein lipase, hormone-sensitive lipase (HSL), and tumor necrosis factor a (TNF) mRNA were measured in muscle and fat tissue with real-time PCR using primers for feline LPL, HSL, and TNF. Lipoprotein lipase plasma and fat activity and fat mRNA levels were significantly lower (50, 80, and 50%, respectively) in obese cats than lean cats, whereas the muscle/fat ratio of LPL was significantly higher in obese compared to lean cats. The activity of HL was not different between the groups. Hormone-sensitive lipase mRNA levels were significantly higher in obese than lean cats. The level of fat TNF also was significantly higher in obese cats than in lean cats, whereas the level in muscle was not different. The lower LPL activity and mRNA expression in fat and the higher LPL and HSL mRNA expression in muscle in obese cats compared to lean cats expectedly favor a redistribution of fatty acids from fat to muscle tissue where they can be deposited or used for energy in times of need. Tumor necrosis factor alpha may regulate this repartitioning process through suppression of adipocyte LPL.  相似文献   

6.
OBJECTIVE: To determine effects of dietary lipid and protein on development of hepatic lipidosis (HL) and on physical and biochemical indices following rapid weight loss in cats. ANIMALS: 24 ovariohysterectomized cats. PROCEDURE: Cats were fed a high energy diet until they gained 30% of their ideal body weight and then randomly assigned to receive 1 of 4 weight-reduction diets (6 cats/diet) at 25% of maintenance energy requirements per day. Diets contained a low or high quality protein source and a lipid source deficient or sufficient in long chain essential fatty acids (LCEFA). Serum and plasma samples and liver biopsy specimens were obtained for biochemical analyses and determination of hepatic lipid content before and after weight gain and during and after weight loss. RESULTS: Irrespective of weight-reduction diet fed, all cats lost weight at a comparable rate (4.51 to 5.00 g/d/kg of obese body weight). Three cats developed hepatic lipidosis. Significant changes in plasma insulin, cholesterol, triglyceride, and serum glucose concentrations were detected after weight gain and weight loss in all diet groups, but values for these variables did not differ among groups. CONCLUSIONS AND CLINICAL RELEVANCE: Cats can lose 25 to 30% of their obese body weight over 7 to 9 weeks without developing overt clinical signs of HL, provided that weight-reduction diets are highly palatable, contain a high quality protein, have a source of LCEFA, and are fortified with vitamins and microminerals. However, rapid weight loss may increase risk factors associated with development of diabetes mellitus.  相似文献   

7.
OBJECTIVE: To determine whether dietary fatty acids affect indicators of insulin sensitivity, plasma insulin and lipid concentrations, and lipid accumulation in muscle cells in lean and obese cats. ANIMALS: 28 neutered adult cats. PROCEDURE: IV glucose tolerance tests and magnetic resonance imaging were performed before (lean phase) and after 21 weeks of ad libitum intake of either a diet high in omega-3 polyunsaturated fatty acids (3-PUFAs; n = 14) or high in saturated fatty acids (SFAs; 14). RESULTS: Compared with the lean phase, ad libitum food intake resulted in increased weight, body mass index, girth, and percentage fat in both groups. Baseline plasma glucose or insulin concentrations and glucose area under the curve (AUC) were unaffected by diet. Insulin AUC values for obese and lean cats fed 3-PUFAs did not differ, but values were higher in obese cats fed SFAs, compared with values for lean cats fed SFAs and obese cats fed 3-PUFAs. Nineteen cats that became glucose intolerant when obese had altered insulin secretion and decreased glucose clearance when lean. Plasma cholesterol, triglyceride, and non-esterified fatty acid concentrations were unaffected by diet. Ad libitum intake of either diet resulted in an increase in both intra- and extramyocellular lipid. Obese cats fed SFAs had higher glycosylated hemoglobin concentration than obese cats fed 3-PUFAs. CONCLUSION AND CLINICAL RELEVANCE: In obese cats, a diet high in 3-PUFAs appeared to improve long-term glucose control and decrease plasma insulin concentration. Obesity resulted in intra- and extramyocellular lipid accumulations (regardless of diet) that likely modulate insulin sensitivity.  相似文献   

8.
Australian Burmese cats are predisposed to diabetes mellitus and, compared to other breeds, have delayed triglyceride clearance that may result in subtle changes within cells and tissues that trigger specific alterations in gene expression within peripheral blood leucocytes (PBLs). Expression of genes involved in energy metabolism (glucose-6-phosphate dehydrogenase and malate dehydrogenase), lipogenesis (ATP citrate lyase [ACL], fatty acid synthase [FAS] and sterol regulatory binding protein-1c [SREBP-1c]), and insulin signalling (insulin receptor substrates 1 and 2, and phosphatidylinositol-3 kinase), as well as cholesterol lipoprotein subfraction profiling were carried out on PBLs from lean Burmese cats and compared with similar profiles of age and gender matched lean and obese Australian domestic shorthaired cats (DSHs) in an attempt to identify possible biomarkers for assessing obesity.For the majority of the genes examined, the lean Burmese cats demonstrated similar PBL gene expression patterns as age and gender matched obese Australian DSH cats. Lean Burmese had increased expression of ACL and FAS, but not SREBP-1c, a main upstream regulator of lipid synthesis, suggesting possible aberrations in lipogenesis. Moreover, lean Burmese displayed a 3- to 4-fold increase in the very low density cholesterol fraction percentage, which was double that for obese DSH cats, indicating an increased degree of lipid dysregulation especially in relation to triglycerides. The findings suggest that Burmese cats may have a particular propensity for dysregulation in lipid metabolism.  相似文献   

9.
Serum lipoprotein concentrations, routine serum biochemical values, and morphologic changes of the liver were evaluated in cats undergoing weight loss. Food was withheld from 6 obese and 6 control cats for 3 days (days 0 to 2), followed by feeding 50% of previous food intake for 26 days (days 3 to 28). Percutaneous liver biopsy specimens were obtained from all cats on days 0, 7, 14, and 28. Blood samples for serum biochemical analysis and lipoprotein profiles were obtained on days 0, 3, 7, 14, and 28. All cats lost weight throughout the study, and none developed signs of clinical illness, including those of idiopathic hepatic lipidosis syndrome. Serum total cholesterol concentrations decreased initially in all cats, but rapidly returned to normal after day 3 in obese cats, suggesting altered cholesterol metabolism during dietary restriction. Low-density lipoprotein concentrations decreased throughout the study in control cats, but were unchanged in obese cats. Examination of liver biopsy specimens from each cat revealed minimal lipid accumulation in all specimens, although some specimens contained hydropic degeneration.  相似文献   

10.
Primary lipid disorders causing fasting triglyceridaemia have been documented infrequently in Burmese cats. Due to the known increased risk of diabetes mellitus and sporadic reports of lipid aqueous in this breed, the aim of this study was to determine whether healthy Burmese cats displayed a more pronounced pre- or post-prandial triglyceridaemia compared to other cats. Serum triglyceride (TG) concentrations were determined at baseline and variably at 2, 4 and 6h after ingestion of a high-fat meal (ie, an oral fat tolerance test) in a representative sample of Burmese and non-Burmese cats. The median 4 and 6h serum TG concentrations were significantly higher in Burmese cats (4h - 2.8mmol/l; 6h - 8.2mmol/l) than in other pedigree and domestic crossbred cats (4h - 1.5mmol/l; 6h - 1.0mmol/l). The non-Burmese group had post-prandial TG concentrations ranging from 0.6 to 3.9mmol/l. Seven Burmese cats had post-prandial TG concentrations between 6.6 and 19.0mmol/l, five had concentrations between 4.2 and 4.7mmol/l, while the remaining 15 had post-prandial concentrations between 0.5 and 2.8mmol/l. None of these Burmese cats had fasting triglyceridaemia. Most Burmese cats with a 4 h TG > 6.0 mmol/l had elevated fasting very low density lipoprotein (VLDL) concentrations. This study demonstrates that a proportion of Burmese cats in Australia have delayed TG clearance compared to other cats. The potential repercussions of this observation with reference to lipid aqueous, pancreatitis and diabetes mellitus in Burmese cats are discussed.  相似文献   

11.
OBJECTIVE: To measure and compare concentrations of selected blood lipids before and after thyroidectomy in horses. ANIMALS: 5 healthy adult mares. PROCEDURE: Mares were confirmed to be euthyroid. Thyroidectomy was performed, and hypothyroidism was confirmed. Selected blood lipid variables were measured before hypothyroidism was induced and weekly for 4 weeks after induction. Plasma concentrations of very low-density lipoprotein (VLDL), low-density lipoprotein (LDL), serum triglyceride (TG), total cholesterol (TC), and nonesterified fatty acid (NEFA) were measured. The composition of VLDL and LDL also was examined. RESULTS: Mean plasma concentrations of VLDL and LDL increased significantly after thyroidectomy. By 4 weeks after thyroidectomy, a ninefold increase in mean plasma concentration of VLDL and a threefold increase in LDL, compared with baseline values, were detected. After thyroidectomy, mean percentage of TG in VLDL increased significantly, whereas free cholesterol and cholesterol ester content decreased. Mean percentage of TG in LDL also increased by 3 to 4 weeks after thyroidectomy. Serum concentrations of TG and TC increased, whereas serum NEFA concentration decreased. CONCLUSIONS: Hypothyroidism significantly alters blood lipid concentrations of horses. After thyroidectomy, markedly high VLDL concentration, appearance of TG-rich VLDL, increased serum concentrations of TG and TC, and decreased blood concentration of NEFA were evident. CLINICAL RELEVANCE: Examination of blood lipid concentrations of horses may be useful for detecting naturally acquired hypothyroidism.  相似文献   

12.
Obese donkeys are susceptible to a hyperlipaemic crisis characterised by high plasma triglyceride concentrations. In this study, the relationships between the body condition of 24 donkeys and their basal lipid metabolism were investigated. Plasma cholesterol, triglyceride and lipoprotein cholesterol concentrations were measured in healthy donkeys classified according to their body condition as thin, ideal or obese. There were significant differences between the groups in the concentrations of triglyceride and very low density lipoprotein (VLDL), which increased in concentration with body condition (P less than 0.05). Cholesterol, low density lipoprotein (LDL) and high density lipoprotein (HDL) concentrations were similar in all the groups. Triglyceride and VLDL concentrations were positively correlated with body weight (r = 0.82) and plasma free fatty acid concentration (r = 0.48). There were no significant differences in basal plasma concentrations of insulin or cortisol. These results suggest that obesity in donkeys is associated with changes in lipid and lipoprotein metabolism that might predispose the animals to hyperlipaemia.  相似文献   

13.
This study was designed to compare the effects of a fat-supplemented diet versus a traditional diet on the lipoprotein (LP) content in horses. In the first of two trials, eight two-year old horses were fed a basal diet, in which 80% of the digestible energy was supplied as chopped alfalfa hay. One group of four horses (fat-supplemented group, FS) was fed the remaining 20% of the digestible energy as corn oil, while the other group of four horses (control) was fed rolled corn to complete their diet. Blood samples were collected at the start of the experiment and every 2.5 weeks thereafter for 10 weeks. Total serum lipids were measured in both groups of horses and the lipoproteins were fractionated into very low density LP (VLDL), low density LP (LDL), and high density LP (HDL) using ultracentrifugation and agarose-column chromatography. Each LP fraction was measured for protein, cholesterol (CH) and triglyceride TG) content. Total serum lipids were increased in the FS group above the control (9.16 vs. 4.65 mg/ml, week 5). Serum cholesterol and triglyceride concentrations were elevated in the FS group, but were highly variable. Variations in lipid concentrations may have been due to variation in time of sampling during the day. In the second trial, four of the eight horses were used and divided into the same two groups; FS vs. control. After an initial sample, postprandial serial blood samples (1 hour intervals for 8 hours) were drawn at 2, 4 and 6 weeks. Upon examination of the data, Hour 3 post-feeding was chosen to represent postprandial LP values. In both trials, the horses were able to adapt to the added dietary fat. Maintenance of body weight and increased speed of lipid clearance from the blood by the end of each trial in the FS group support this statement. In the FS group, there was an increase in VLDL TG concentration, but not in LDL. This indicates an increase in VLDL TG clearance from the circulation, presumably by increased lipoprotein lipase (LPL) activity. Cholesterol concentrations were also increased in the FS horses in the LDL and HDL. The rise in cholesterol may be attributed to endogenous recycling of liver products such as bile salts, which aid in digestion and absorption and are cholesterol based. In addition, there were greater quantities of LDL and HOL produced in the FS horses as supported by the increased protein concentrations as well as larger peaks for the eluate from the gel filtration column.  相似文献   

14.
Concentrations of total, free, and esterified carnitine were determined in plasma, liver, and skeletal muscle from cats with idiopathic hepatic lipidosis and compared with values from healthy cats. The mean concentrations of plasma, liver, and skeletal muscle total carnitine; plasma and skeletal muscle free carnitine; and plasma and liver esterified carnitine were greater (P less than 0.05) in cats with idiopathic hepatic lipidosis than in control cats. The mean for the ratio of free/total carnitine in plasma and liver was lower (P less than 0.05) in cats with idiopathic hepatic lipidosis than in control cats. These data suggest that carnitine deficiency does not contribute to the pathogenesis of feline idiopathic hepatic lipidosis.  相似文献   

15.
Feline obesity generally results in aberrations to plasma metabolite levels, such as lipid concentrations and lipoprotein composition. This study sought to investigate the resultant effect of obesity on cholesterol lipoprotein composition and circulating adiponectin concentrations in cats. Plasma glucose, lipids (triglyceride, cholesterol and free fatty acid), insulin and adiponectin concentrations, and cholesterol lipoprotein composition were measured and compared between body condition score (BCS) determined normal healthy control and obese cats. Although the obese group demonstrated higher levels of plasma cholesterol, glucose, and triglycerides, as compared to healthy controls, the difference was insignificant thus indicating that the BCS determined obese cats may have been overweight and not morbidly obese. Plasma insulin levels were significantly higher (25–30%) versus healthy control animals thereby possibly hinting at the ensuing emergence of obesity induced insulin resistance. However, the BCS determined obese cat demonstrated a significant reduction (p < 0.05) in plasma adiponectin concentration and a significant increase (p < 0.05) in LDL-cholesterol % as compared to age matched healthy control animals. This would indicate that changes in plasma adiponectin concentration and cholesterol lipoprotein composition may be good early indicators of obesity in cats.  相似文献   

16.
Intravenous glucose tolerance tests (IVGTTs) are used in cats and other species to assess insulin sensitivity. Several dosages have been reported but the dosage that maximally stimulates insulin secretion in cats has not been determined nor has it been compared in lean and obese animals. IVGTTs were performed in 4 lean and 4 obese spayed female cats with 5 glucose dosages: 0.3 (A), 0.5 (B), 0.8 (C), 1.0 (D). and 1.3 (E) g/kg body weight (BW). Each cat received each dosage in a random design. The glucose disposal rate was significantly different only between lean and obese cats at the highest glucose dosage. The area under the curve for insulin increased significantly among A, B, C, and D in lean and among A, B, and C in obese cats but not between D and E in lean and among C, D, and E in obese cats. Baseline insulin secretion was significantly higher (P = .03) and 1st peak insulin secretion was approximately 50% lower in obese as compared to lean cats (P = .03). Lean but not obese cats reached baseline insulin concentrations at all dosages at 120 minutes. We conclude that the glucose dosage for maximal insulin secretion is 1.0 g/ kg BW in lean and 0.8 g/kg BW in obese cats, supporting routine use of 1 g/kg BW to maximally stimulate insulin secretion regardless of body composition. Obese cats showed an abnormal insulin secretion pattern, indicating a defect in insulin secretion with obesity and insulin resistance.  相似文献   

17.
Feline obesity generally results in aberrations to plasma metabolite levels, such as lipid concentrations and lipoprotein composition. This study sought to investigate the resultant effect of obesity on cholesterol lipoprotein composition and circulating adiponectin concentrations in cats. Plasma glucose, lipids (triglyceride, cholesterol and free fatty acid), insulin and adiponectin concentrations, and cholesterol lipoprotein composition were measured and compared between body condition score (BCS) determined normal healthy control and obese cats. Although the obese group demonstrated higher levels of plasma cholesterol, glucose, and triglycerides, as compared to healthy controls, the difference was insignificant thus indicating that the BCS determined obese cats may have been overweight and not morbidly obese. Plasma insulin levels were significantly higher (25–30%) versus healthy control animals thereby possibly hinting at the ensuing emergence of obesity induced insulin resistance. However, the BCS determined obese cat demonstrated a significant reduction (p < 0.05) in plasma adiponectin concentration and a significant increase (p < 0.05) in LDL-cholesterol % as compared to age matched healthy control animals. This would indicate that changes in plasma adiponectin concentration and cholesterol lipoprotein composition may be good early indicators of obesity in cats.  相似文献   

18.
Metabolic and hormonal alterations in cats with hepatic lipidosis   总被引:2,自引:0,他引:2  
Hepatic lipidosis in cats is a commonly diagnosed hepatobiliary disease of unknown cause. The purpose of this prospective study was to characterize the blood hormone and lipid status of cats with hepatic lipidosis, and to compare this status to that of cats with other types of liver disease and to control cats. Twenty-three cats with hepatic disease were assigned to 1 of 2 groups on the basis of cytopathologic or histopathologic examination of the liver: group 1, hepatic lipidosis (n = 18); or group 2, cholangiohepatitis (n = 5). Ten healthy young adult cats were used as controls. Food was withheld from control animals for 24 hours before blood collection. Concentrations of plasma glucagon and serum insulin, cortisol, thyroxine, triglycerides, cholesterol, phospholipids, and nonesterified fatty acids (NEFAs) were determined in all cats, in addition to routine hematologic and serum biochemical testing. Cats with hepatic lipidosis had higher serum NEFA concentrations than cats with cholangiohepatitis or control cats (P < .05). Cats with cholangiohepatitis had higher serum cholesterol and phospholipid concentrations than those of cats with lipidosis or control cats (P < .05); their plasma glucagon concentrations were higher than those of control cats (P < .05), but were not different from those of cats with hepatic lipidosis. Serum insulin concentrations were significantly higher in control cats than in diseased cats (P < .05), but neither serum insulin nor the insulin to glucagon ratio was significantly different among the cats with hepatic disease. The high concentration of NEFAs in cats with hepatic lipidosis suggests that at least 1 factor in the pathogenesis of this syndrome may involve the regulation of hormone-sensitive lipase.  相似文献   

19.

Background

There are conflicting reports of plasma lipoprotein lipid content in dogs with diabetes mellitus (DM).

Objectives

To determine lipoprotein lipid content of plasma of dogs with DM by spectrophotometry and ultracentrifugation; to compare lipoprotein lipid content in diabetic and healthy dogs; and to quantify apolipoprotein B‐100 (ApoB) in dogs with DM.

Animals

22 dogs with DM and 9 healthy dogs.

Methods

Cross‐sectional study. Triglyceride (TG), total cholesterol (TC), and high‐density lipoprotein cholesterol (HDL‐C) concentrations were measured by spectrophotometry. Very low‐density lipoprotein cholesterol (VLDL‐C) and low‐density lipoprotein cholesterol (LDL‐C) concentrations were calculated after ultracentrifugation. Non‐HDL‐C cholesterol was calculated by subtracting HDL‐C from TC. ApoB was quantified by ELISA. The Mann‐Whitney test was used for comparison of median lipoprotein concentrations, and Spearman's correlation was used to assess associations between ApoB and lipoprotein fractions.

Results

All values are reported in mg/dL. Median TG (122), TC (343.5), HDL‐C, (200), VLDL‐C, (27) LDL‐C (68), non‐HDL‐C (114), and ApoB (320) were significantly higher in dogs with DM, compared to healthy dogs (57, 197, 168, 12, 16, 31, and 258, respectively, P‐values 0.0079, <0.001, 0.029, 0.011, <0.001, <0.001, 0.025, respectively). A significant association was found between ApoB and LDL‐C (Spearman's rho = 0.41, P = 0.022) and between ApoB and non‐HDL‐C (Spearman's rho = 0.40, P = 0.027).

Conclusions and Clinical Importance

Dyslipidemia of dogs with DM is characterized by pronounced increases in LDL‐C and non‐HDL‐C concentrations, although all lipoprotein fractions are significantly increased. Knowledge of specific lipoprotein fraction alterations in dogs with DM can enhance treatment options for diabetic dyslipidemia in dogs.  相似文献   

20.
In young broiler chicks inoculated with 2 x 10(6) sporulated oocysts of Eimeria acervulina per bird, total plasma lipids were significantly depressed compared with controls in the first week after inoculation. The lowest level observed was at 5 days post-inoculation (d.p.i.), at which time the chick host is known to experience malabsorption in the chick host (Ruff and Wilkins, 1980). Analysis of plasma components of infected chicks at 4 and 7 d.p.i. showed that triglycerides, total cholesterol, free fatty acids, pigments and total protein were significantly decreased compared with controls. At 7 d.p.i., reduction of total cholesterol reflected mainly reduction in high density lipoprotein (HDL) cholesterol. However, the ratio of HDL cholesterol/total plasma cholesterol was not significantly different from the control ratio. Density gradient ultracentrifugation of chick plasma separated lipoproteins into three main fractions: portomicrons plus very low density lipoproteins (PM + VLDL), low density lipoproteins (LDL) and HDL. These fractions were analyzed for lipid content. Infection with E. acervulina caused (1) significant reduction in the triglyceride and cholesterol contents of the PM + VLDL fraction at 3 and 5 d.p.i., (2) significant reduction of LDL cholesterol at 9 d.p.i. and LDL phospholipid at 5-9 d.p.i., and (3) significant reduction of HDL cholesterol at 3-9 d.p.i. and HDL phospholipid at 5-9 d.p.i. Starvation of uninfected chicks for 48 h caused significant reduction in plasma triglycerides and phospholipids, but an increase in total cholesterol. Density gradient ultracentrifugation showed that the changes in these components reflected mainly reduction of the lipids in the PM + VLDL fraction. The LDL fractions, however, appeared more intense than those of the controls and contained more cholesterol and phospholipids. These results suggest that changes at 3 and 5 d.p.i. in the plasma lipoprotein pattern of chicks infected with E. acervulina most closely resemble changes seen in chicks starved for 48 h as far as PM + VLDL fraction is concerned. However, changes seen from 7 to 9 d.p.i. involve the LDL and HDL fractions and may reflect alterations in lipid and/or lipoprotein synthesis in the liver and intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号