首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
In the course of a series of studies conducted to investigate the long-term behavior of 129I (which has a half-life of 16 million years) in the environment, the concentration of stable iodine (127I) in precipitation, irrigation water and soil water to a depth of 2.5 m in a forest plot, an upland field and a paddy field in the upland area of Tsukuba, Japan, was determined. In the forest plot, the mean iodine concentrations in soil water at all the depths ranged from 0.13 to 0.21 μg L?1, about one-tenth of the values recorded in precipitation (weighted mean 2.1 μg L?1). This finding suggests that the major part of iodine in precipitation was sorbed onto the surface soil horizon under oxidative conditions. In the upland field, the mean iodine concentration in soil water was 2.2 μg L?1 at a depth of 0.2 m and it decreased to 0.34–0.44 μg L?1 at a depth of 0.5 m or more; these concentrations were about one-fifth of that in precipitation. This suggested that the major part of the iodine derived from precipitation was sorbed onto the subsurface soil horizon (at depths between 0.2 and 0.5 m). In the paddy field, during the non-irrigation period, the mean iodine concentrations in soil water at all the depths ranged from 1.8 to 4.8 μg L?1, almost the same values as those recorded in precipitation. During the irrigation period, the mean iodine concentrations at depths of 0.2 and 0.5 m were 18.8 and 16.7 μg L?1, values higher than the 10.9 μg L?1 value recorded in irrigation water and the 11.8 μg L?1 value recorded in ponding water. However, at a depth of 1.0 m or more, the mean iodine concentrations in soil water rapidly decreased from 7.3 to 1.8 μg L?1. These data suggested that a significant amount of iodine flowed out from the paddy field by surface runoff and a considerable amount of iodine that leached to a depth of 0.5 m was retained onto the mildly oxidative soil horizon (2Bw) that lay at depths between 0.5 and 1.0 m. At a depth of 2.5 m in the paddy field, the mean iodine concentration in soil water decreased to 1.8 μg L?1, but this level was much higher than those in the forest plot and upland field at the same depth, which suggested that a significant amount of iodine had leached into the groundwater-bearing layer. There was a negative correlation (r=-0.889) between the Eh of soil and the iodine concentration in soil water (0.2 m depth) of the paddy field. Particularly, when the Eh of soil fell below approximately 150 mV, the iodine concentration rapidly increased to above 10μg L?1. As for the chemical forms of iodine in precipitation, irrigation water, ponding water and soil water during the winter irrigation period in the paddy field with oxidative conditions, 58–82% of iodine consisted of IO? 3 and 17–42% of iodine consisted of I?. In the soil water during the summer irrigation period in the paddy field under reductive conditions, 52–58% of iodine consisted of I?, and 42–47% consisted of IO? 3.  相似文献   

2.
3.
4.
不同水耕年限稻田土壤水分渗漏与保持特征   总被引:3,自引:2,他引:1  
以江汉平原连续水耕年限大于100年(老稻田)和由旱耕改为水耕17年(新稻田)的稻田为研究对象,通过测定土壤剖面基本理化性质和水力学参数,揭示了2种稻田土壤水分渗漏和保持特征差异。结果表明:(1)新稻田土壤的平均饱和导水率(Ks)为32.05cm/d,显著高于老稻田(17.91cm/d)。新、老稻田土壤Ks均表现为耕作层底土层犁底层,新稻田耕作层Ks分别为犁底层和底土层的6.3倍和5.7倍,老稻田耕作层Ks分别是犁底层和底土层的6.9倍和4.0倍。(2)老稻田土壤持水能力高于新稻田,同一剖面不同土层持水能力表现为耕犁底层底土层耕作层。0.03mm当量孔径的孔隙比例随土壤剖面深度的增加而降低,新稻田各层土壤比例大于老稻田。(3)新、老稻田最大有效水含量随土壤深度的增加而降低,老稻田各土层(32.25%~46.59%)均高于新稻田(26.99%~36.74%)。老稻田平均总库容(135.8mm)大于新稻田(124.4mm),新稻田滞洪库容(11.21~38.74mm)大于老稻田(8.1~60.74mm)。旱耕改水耕加重了水资源的消耗,增加了浅层地下水污染风险。  相似文献   

5.
Abstract

In the course of a series of studies conducted to investigate the long-term behavior of 129I (which has a half-life of 16 million years) in the environment, seasonal variation in the concentration of stable iodine (127I) in precipitation and soil water to a depth of 2.5 m in a forest plot, an upland field and a paddy field in the upland area of Tsukuba, Japan, were determined. Iodine concentration in precipitation tended to increase during the summer (high air temperature) season and low-rainfall period, and a positive high correlation was observed between annual rainfall and the annual amount of iodine supplied by precipitation. No seasonal variations in iodine concentration in soil water were observed at any depth in the forest plot and upland field unlike at shallow depths (0.2 and 0.5 m) in the paddy field. In the paddy field, from the beginning of summer irrigation, under flooding conditions, iodine concentration in soil water at shallow depths (0.2 and 0.5 m) continuously increased, and immediately before mid-summer (intermittent) drainage and drainage, the maximum iodine concentration (approximately 50 µg L?1) and lowest Eh values (approximately ?150 to ?200 mV) were recorded. These high iodine concentration levels and low Eh values were ascribed to high air temperature (approximately > 25°C on average every 10 days) and the continuation of the groundwater level above the ground surface. As for the temporary winter irrigation period (mean daily air temperature 2?4°C), the iodine concentration was low (1.7–3.7 µg L?1) at all depths, as was the case in the non-irrigation period. After mid-summer drainage, and drainage, the iodine concentration in soil water at depths of 0.2 and 0.5 m decreased drastically as the groundwater level decreased. The mean annual amount of iodine accumulated in the surface soil horizons (0–0.67 m) in the forest plot was estimated to be approximately 2.9 mg m?2 (7.5 µg kg?1 dry soil), which coincided with the mean annual amount of iodine supplied to the earth surface by precipitation. A mildly oxidative subsurface 2Bw horizon (0.60–0.89 m) in the paddy field was estimated to illuviate approximately 3.1 mg m?2 (20 µg kg?1 dry soil) of iodine annually by retaining iodine in the soil water percolated to this horizon.  相似文献   

6.
杨东伟  章明奎  张鹏启  刘千千  董静  李雪  黄笑 《土壤》2020,52(3):567-574
近年来水田改为林地在我国南方地区非常普遍,为了解这种转变对土壤矿物(黏土矿物和氧化铁)演变的影响,在浙江省平原地区构建了4个水田改林地系列土壤,采用野外调查和室内分析相结合的方法,研究水田改林地后土壤剖面中氧化铁形态和黏土矿物类型的演变规律。结果表明,改林地后,土壤剖面中全铁含量变化不明显,耕作层和犁底层土壤游离氧化铁有轻微增加趋势。改林地15~20 a后,4个系列土壤耕作层活性铁和活化度降幅分别在18.0%~38.4%和24.7%~48.9%;耕作层土壤铁氧化物的晶胶比增幅在0.73倍~1.62倍;耕作层土壤亚铁含量明显下降,降幅最高达95.8%,变异系数达到143.9%;耕作层络合铁降幅在21.3%~36.2%,并与有机质呈极显著正相关(P<0.01)。改林地后,犁底层土壤中绿泥石相对含量及其与高岭石的比值都呈降低趋势,其他黏土矿物相对含量变化规律不明显,土壤有机质显著下降,土壤明显酸化。土壤铁氧化物形态和数量的变化对土壤结构以及土壤重金属的迁移转化等产生重要影响。  相似文献   

7.
农田面源污染已成为引起水体富营养化的主要原因之一。为了减少稻田氮素流失、改善稻田局部水体养分负载过重的问题,采用盆栽试验,通过生物炭吸附富营养水中的养分后再利用于盆栽水稻,设置主区为持续淹水灌溉(IF)与干湿交替灌溉(IA),副区为1个对照(常规施氮,N1C0)与4种不同用量的氮肥与氮负载生物炭处理(N3/4C1、N3/4C2、N1/2C1、N1/2C2),其中N3/4、N1/2表示氮肥施入量为当地传统施氮量(N1)的3/4,1/2倍;C1、C2分别为10 t/hm2和20 t/hm2氮负载生物炭。结果表明:(1)减少氮肥施入配施氮负载生物炭显著提高了常规施氮处理田面水的pH;(2)常规施氮肥处理下,干湿交替灌溉(IA)田面水NH4+—N平均浓度较持续淹水灌溉(IF)高8.0%,但是添加20 t/hm2氮负载生物炭后,干湿交替灌溉田面水NH4+—N平均浓度低于持续淹水灌溉处理;(3)水稻生育后期,氮负载生物炭对NH4+—N具有明显的缓释作用,而在干湿交替灌溉中,减施氮肥配合添加氮负载生物炭处理较N1C0处理降低了田面水NO3-—N浓度;(4)减施氮肥配合添加氮负载生物炭可提高水稻分蘖率,而添加20 t/hm2氮负载生物炭在氮肥施用量较少时,有利于提高水稻的有效分蘖率。综上,氮负载生物炭不仅可以降低富营养水中30.8%含氮量,还能显著降低施肥初期水稻田面水中NH4+—N浓度,降低流失风险,延长NH4+—N的释放时间而减少1/4的施氮量和保证水稻生育末期的氮素需求,从而有利于水稻生长。  相似文献   

8.
生物炭施用对稻田氮磷肥流失的影响   总被引:3,自引:0,他引:3  
针对宁夏引黄灌区稻田过量施肥导致土壤养分利用效率低的问题,通过田间小区试验,在优化施氮条件下(240kg·hm~(-2)),设4个生物炭水平(0、4500、9000、13500kg·hm~(-2)),研究施用外源生物炭对稻田氮磷流失和土壤养分含量的影响。结果表明:生物炭对稻田田面水氮素动态产生影响,表现为田面水中全氮、硝态氮含量随生物炭用量的增加而降低,铵态氮表现则相反;全氮和铵态氮的最大峰值出现在第1次追施氮肥后的第2天,最大值为34.86、8.28mg·L~(-1);硝态氮最大峰值3.31mg·L~(-1)出现在第2次追施氮肥后的第2天。随后均迅速下降,全氮含量在施氮肥后10d回到第1次追氮前的含量水平,并趋于稳定,铵态氮和硝态氮则在7d后。生物炭对田面水全磷未产生显著影响,全磷含量在第1次施氮肥后3d达到峰值,为3.69mg·L~(-1),之后迅速下降,6~7d后降至追氮前的含量水平,并趋于稳定。生物炭处理显著降低了稻田全氮流失量8.03%~13.36%,高量炭处理(13500kg·hm~(-2))显著提高了土壤全氮和有机质含量,提高幅度分别为41.2%和27.5%(P0.05)。说明生物炭对稻田磷流失、土壤全磷和速效磷含量无显著影响,对降低稻田氮素淋失表现出积极效果。  相似文献   

9.
增效剂对稻田田面水氮素转化及水稻产量的影响   总被引:2,自引:0,他引:2  
采用田间试验的方法,通过种植单季水稻绍粳18,研究施用添加聚天门冬氨酸、腐植酸、硝化抑制剂DMPP(3,4—二甲基吡唑磷酸盐)等增效剂的肥料对水稻田面水氮素转化及其产量的影响。结果表明,稻田施氮明显提高了田面水的可溶性总氮、铵态氮、硝态氮浓度。聚天门冬氨酸、DMPP、腐植酸等增效剂的施用,水稻生育期田面水可溶性总氮平均浓度分别下降14.1%,15.8%和7.3%,铵态氮增加10.6%,27.5%和8.6%,硝态氮降低31.8%,46.7%和26.9%,有助于降低氮素流失对水体环境造成的面源污染风险。增效剂聚天门冬氨酸、DMPP和腐植酸可使水稻籽粒产量分别增加6.2%,7.8%和2.4%,秸秆产量增加10.8%,6.1%和4.0%。添加增效剂的肥料较普通肥料可以降低田面水的总氮含量,并且能更好地促进水稻生长,提高水稻产量。  相似文献   

10.
太湖地区稻田田面水氮磷动态特征及径流流失研究   总被引:19,自引:3,他引:16  
为探讨稻田氮磷养分地表径流流失特征,以太湖地区典型稻田为研究对象,通过在溧阳、宜兴两地实施田间试验,对稻田施肥后田面水氮磷动态变化特征及径流流失进行了研究。结果表明:两试验点田面水总氮浓度均在施肥当日达到最高,然后迅速下降,基肥在施肥7 d后逐渐趋于稳定,而追肥则在施肥5 d后逐渐趋于稳定;田面水总磷浓度也是在施肥后的当日达到最高,而后迅速下降,8 d后基本趋于稳定;施肥后田面水总氮及总磷浓度与施肥天数均可用指数方程进行拟合,且均达极显著水平;溧阳和宜兴两试验点稻季总氮径流量分别为8.21,10.73 kg/hm^2,分别占稻季氮肥总投入量的2.49%和3.25%,总磷径流量分别为0.58,0.75 kg/hm^2,分别占稻季磷肥总投入量的0.97%和1.25%。  相似文献   

11.
不同氮肥运筹模式对稻田田面水氮浓度和水稻产量的影响   总被引:6,自引:0,他引:6  
通过构建包括不同氮肥类型、氮肥用量、施肥方式和施肥次数的6种氮肥运筹模式,分析了不同氮肥运筹模式对稻田田面水各形态氮浓度变化和水稻产量的影响。结果表明:不同时期施用缓控释肥和尿素后,总氮和铵态氮浓度均在1天达到峰值,硝态氮浓度在2~3天达到峰值,之后逐渐下降趋于稳定。铵态氮为各处理施肥后初期的主要氮形态,1天时铵态氮占总氮比例达50.6%~92.8%,而硝态氮仅占3.8%~22.6%。田面水总氮和铵态氮峰值浓度大小与氮肥类型、施用用量和施肥方式均存在相关性,等氮量施用条件下,田面水总氮和铵态氮峰值浓度大小顺序为撒施尿素处理撒施缓控释肥处理侧深施缓控释肥处理,在N施用量48 kg/hm~2条件下,撒施尿素处理、撒施缓控释肥处理、侧深施缓控释肥处理的总氮和铵态氮平均峰值浓度分别为38.44,16.44,7.55 mg/L和34.39,13.00,3.82 mg/L。等氮施用量和相同施肥次数条件下,基肥采用侧深施缓控释肥的处理4,5,6比相应的撒施缓控释肥的处理1,2,3的产量分别提高2.8%,3.5%,2.7%。基肥采用侧深施缓控释肥和一基一穗2次施肥的处理6的水稻产量,在氮肥总施用量减少30%条件下,仅比基肥采用撒施缓控释肥和一基一蘖一穗3次施肥的处理1的水稻产量减少0.3%。侧深施缓控释肥可以有效降低施肥初期田面水铵态氮峰值浓度,从而减少氨挥发和降低径流流失风险,并在一定程度减量条件下不会对水稻产量产生影响。  相似文献   

12.
针对盐渍化灌区土壤盐渍化问题,以河套灌区下游乌拉特灌域为研究区,通过野外实测与室内试验分析结合,采用统计学方法地质统计学原理分析表层土壤(0-20,20-40 cm)及深层土壤(40-100 cm)含水率与盐分(EC值)时空分布和变异规律,以及探求地下水埋深对土壤盐分的影响。结果表明:(1)除6月0-20 cm(9.779%)外,表层土壤含水率变异系数均在12.384%~19.667%,属于中等变异性,深层土壤含水率变异系数较小,在3.513%~9.757%,属于弱变异性;表层土壤盐分(EC值)变异系数在100.845%~129.279%,属于强变异性,深层土壤盐分变异系数均在83.685%~98.853%,属于中等变异性;随着土壤深度的增加,含水率和盐分的变异性都相对减弱。(2)不同时期土壤含水率和盐分在一定范围内具有空间结构特征,均可用高斯模型模拟,各层土壤含水率空间相关度在0.038%~20.408%,各层土壤盐分空间相关度在0.043%~8.374%,均小于25%,说明具有强烈的空间相关性,可以认为主要是受结构性因素的影响,其自相关引起的空间变异性较强。(3)试验区土壤盐分主要集中在北侧盐荒地,由于蒸发强烈,包气带毛细水上升,把深层土壤以及地下水中的可溶性盐类带到土壤表层,致使盐分升高,属于典型的盐分表聚型土壤,需及时防治与治理,同时土壤盐分受地下水埋深的影响较大,随着地下水埋深减小而增大,荒地地下水埋深与土壤盐分满足线性关系,耕地地下水埋深与土壤盐分满足指数关系。荒地0-20 cm土壤盐分含量随地下水埋深变化趋势较大,20-40,40-100 cm土壤盐分含量随地下水埋深变化趋势较小,耕地地下水埋深在1~1.6 m时,土壤盐分含量随着地下水埋深变化趋势较大,当地下水埋深大于1.6 m时,土壤盐分含量随着地下水埋深变化趋势较小。研究结果为河套灌区下游盐渍化土壤的防治与改良提供了重要的理论基础和参考依据。  相似文献   

13.
为分析莫索湾垦区不同滴灌年限及不同水质灌溉棉田膜下滴灌盐分的运移规律,从不同土壤质地、不同生育时期、水平方向不同土层、垂直方向不同土层、总盐含量与产量间关系等5个方面对膜下滴灌盐分的运移进行了分析比对,初步得出:黏土中的盐分积累最重,壤土中次之,砂土积累最少;随着生育时期的推后,各土层含盐量都有不同程度的加大;水平方向露地行中央土层盐分积累最多,滴头处盐分积累最少;垂直方向盐分的积累在0-60cm土层逐渐增加,60-100 cm土层盐分积累受膜下滴灌影响较小;总盐含量越高产量下降越严重;总体来说,井水灌处理要比河水灌各处理积盐多.分析认为,井水与河水轮灌,定期大水漫灌洗盐,恢复排碱渠功能以及合理的轮作是土壤脱盐的必要手段.  相似文献   

14.
赵露  叶含春  王振华  刘健  吝海霞  邹杰  谭明东 《土壤》2024,56(3):623-638
为探究SHAW(Simultaneous heat and water)模型在北疆地区长期膜下滴灌棉田冻融期土壤水热盐动态模拟的适用性,本研究选用滴灌起始年限为1998年(21 a)的棉田土壤水热盐实测数据对SHAW模型进行率定,以滴灌起始年限为2006年(13 a)、2008年(11 a)、2012年(7 a)和荒地(0 a)的水热盐实测数据进行验证。模型率定结果表明,随土壤深度增加土壤温度的模拟效果越好;土壤水盐的模拟效果先增强后减弱。模拟土壤温度Nash系数(NSE)、均方根误差(RMSE)和R2分别为0.713 ~ 0.993、0.209 ~ 2.498 ℃ 和0.911 ~ 0.994;模拟土壤水分NSE和RMSE分别为0.824 ~ 0.967和0.009% ~ 0.032%;模拟土壤盐分NSE和RMSE分别为0.609 ~ 0.844和0.001 ~ 0.012 g/kg。模型验证结果表明,随滴灌年限增加模拟效果越好,模拟除荒地20 ~ 60 cm土层土壤温度NSE小于0.600,滴灌7、11和13 a地块各层土壤温度NSE均大于0.600,RMSE介于0.143 ~ 3.213 ℃;滴灌0、7、11和13 a地块模拟的各层土壤水分NSE均大于0.670,RMSE为0.009% ~ 0.057%;滴灌0、7、11和13 a地块模拟的除120~140 cm土层土壤盐分NSE小于0.600,其他各层土壤盐分NSE均大于0.616,RMSE为0.000 ~ 0.016 g/kg。总体而言,SHAW模型适用于北疆地区冻融期长期膜下滴灌棉田的一维土壤水热盐模拟。  相似文献   

15.
[目的]探索干旱半干旱区土壤水盐氮的分布规律,为防治地下水面源污染和实现水土资源可持续利用提供依据。[方法]选取河北坝上地区4种典型的土地利用类型(林、田、湖、草),分析土壤水分、盐分以及硝态氮的变化特征,阐明不同土地利用类型土壤剖面的水盐氮分布规律。[结果](1)不同土地利用方式中,安固里淖干涸湖底的土壤水盐含量最高,平均含水率达60.18%,且土壤水盐分布均表现出中等变异性,含水率变异程度更大。(2)林地、旱作农田和安固里淖干涸湖底0—220cm土壤水盐分布规律基本一致,分别呈振荡型、均匀型和底聚型,而草地的水盐分布存在差异。(3)盐分离子在4种土地利用类型间均具有显著差异(p<0.05),其构成以SO42-为主,K+,Mg2+和Ca2+普遍缺乏。(4)安固里淖干涸湖底土壤剖面平均硝态氮含量高达134.18mg/kg,在林地和旱作农田分布呈表聚型,在安固里淖干涸湖底呈中间少、上下多的特征。草地硝态氮上层土壤累积明显。(5)林田湖草土壤硝态氮均与K+  相似文献   

16.
聚天门冬氨酸钙盐对水稻田面水中三氮动态变化的影响   总被引:1,自引:3,他引:1  
利用桶栽试验探究不同浓度水平的聚天门冬氨酸钙盐(PASP-Ca)对水稻田面水中铵态氮(NH_4~+)、硝态氮(NO_3~-)和总氮(TN)浓度动态变化的影响。结果表明,施氮后,田面水中TN、NH_4~+和NO_3~-分别于第1,3,9天达到最大值,随后逐渐降低。NO_3~-/TN多在0.1以下,(NH_4~++NO_3~-)/TN多在0.5以上。因此,可以将NH_4~+和TN作为农田水污染防治的主要监测指标,NO_3~-作为辅助指标。添加一定浓度的PASP—Ca能对田面水中氮素浓度的变化起到缓释作用,其中0.3%浓度水平的PASP—Ca效果相对较好,田面水中NH_4~+和TN的下降速率分别为3.452,4.806mg/(L·d),与单施氮肥(CK)相比,分别降低了11.68%和16.25%;同时,NH_4~+的平均浓度为6.999mg/L,较CK低了3.88%;NO_3~-的平均浓度为0.396mg/L,较CK低了24.83%;TN的平均浓度为20.077mg/L,较CK提升了3.10%。施氮后田面水中TN浓度随时间呈对数递减,而NH_4~+浓度在施氮后3天内随时间呈对数增加,之后随时间呈对数递减趋势。施氮后的9天内是防止稻田田面水中氮素流失的关键时期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号